Self-interacting asymmetric dark matter

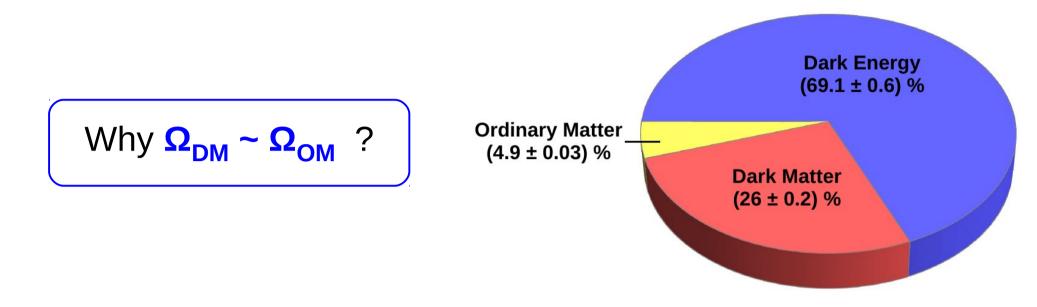
Kallia Petraki

Oslo, 24 June 2015

How can we find dark matter?

First, we have to guess the answer! ... Need a strategy ...

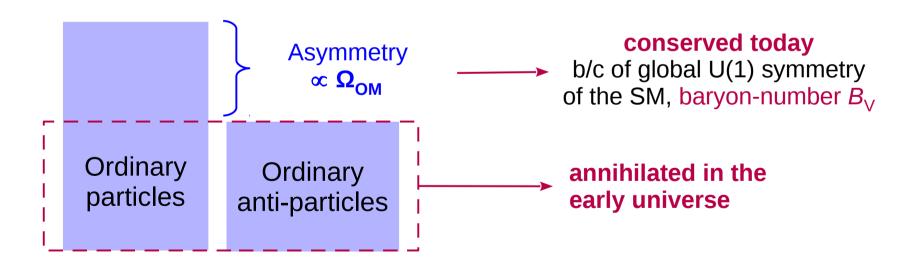
Proposed strategy

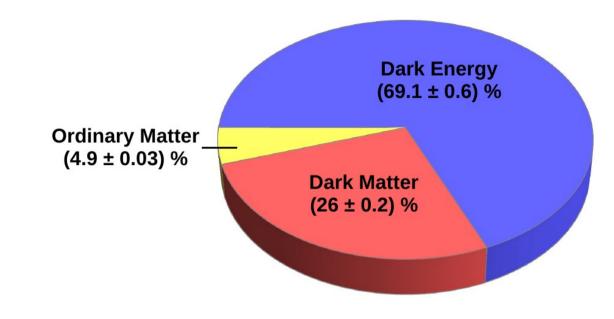

Focus on DM-related observations:

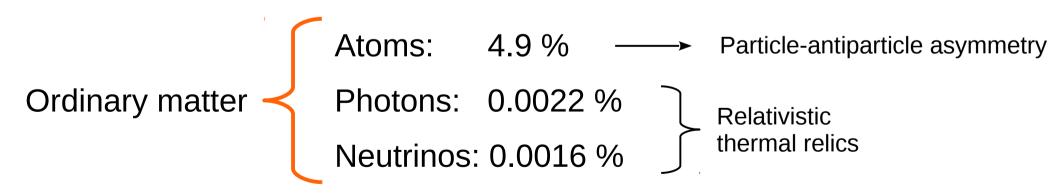
- DM density → Asymmetric DM
- Patterns of gravitational clustering → Self-interacting DM

Outline

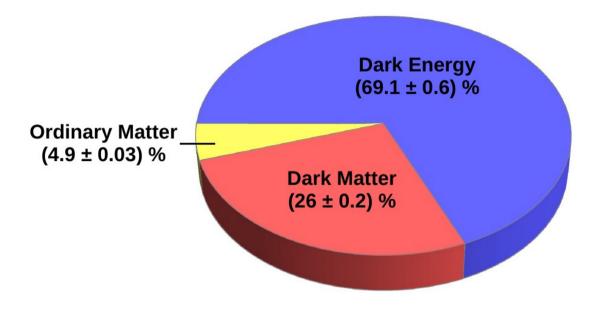
- Asymmetric DM: general structure and features
- Self-interacting DM
- Self-interacting Asymmetric DM
- Case study: atomic dark matter


A cosmic coincidence


- Unrelated mechanisms → different parameters
 - → result expected to differ by orders of magnitude.
- Similarity of abundances hints towards related physics for OM and DM production.


Ordinary matter

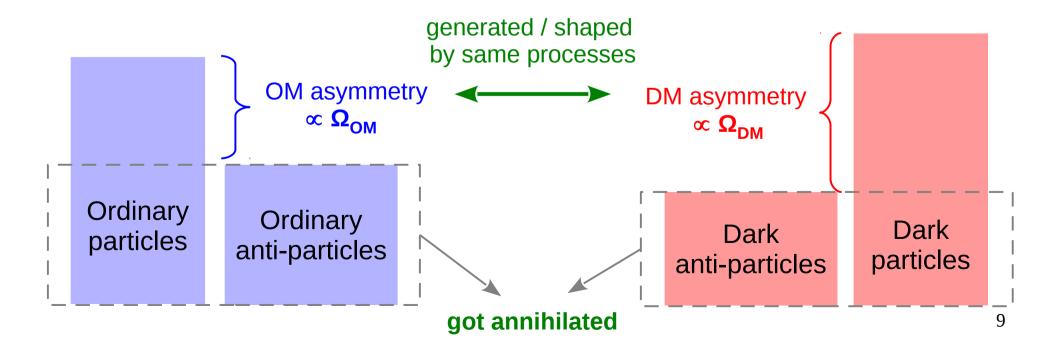
- Stable particles: p e y v
- p+ make up most of ordinary matter in the universe.
 Only p+, no p- present today: matter-antimatter asymmetry


A non-coincidence

A cosmic coincidence

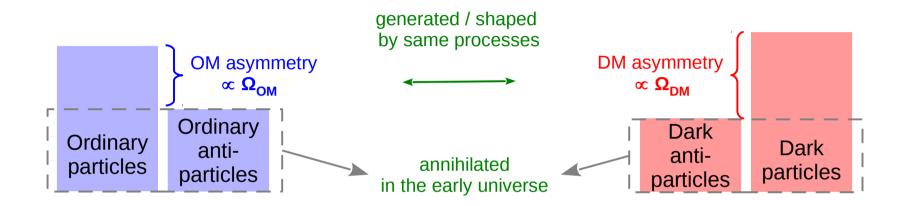
Why $\Omega_{DM} \sim \Omega_{OM}$?

• Just a coincidence OR


Dynamical explanation:

DM production related to ordinary matter-antimatter asymmetry → asymmetric DM

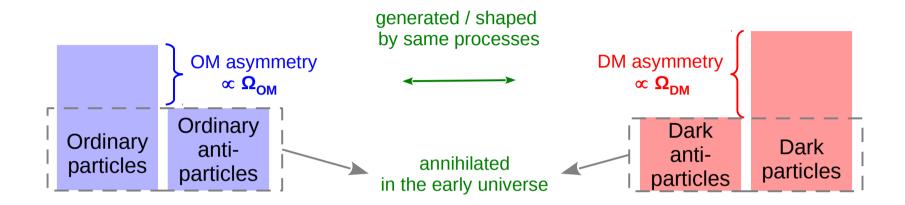
The asymmetric DM proposal


[Review of asymmetric dark matter; KP, Volkas (2013)]

- DM density due to an excess of dark particles over antiparticles.
- DM OM asymmetries related dynamically, by high-energy processes which occurred in the early universe.
- Dark and visible asymmetries conserved separately today.

[Review of asymmetric dark matter; KP, Volkas (2013)]

Ingredients


Low-energy theory:

- Standard Model: Ordinary baryon number symmetry B_0 Dark sector: "Dark baryon number B_D " [accidental global U(1) symmetry]
- Interaction which annihilates dark antiparticles. How strong?
 - → determines possibilities for DM couplings → low-energy pheno.
- High-energy theory:

$$B_{\rm D}$$
 violation $B_{\rm D}$ if correlated \rightarrow related asymmetries $\Delta B_{\rm O} \& \Delta B_{\rm D}$

[Review of asymmetric dark matter; KP, Volkas (2013)]

Ingredients

- Low-energy theory:
 - Standard Model: Ordinary baryon number symmetry B_0 Dark sector: "Dark baryon number B_D " [accidental global U(1) symmetry]
 - Interaction which annihilates dark antiparticles. How strong?
 - → determines possibilities for DM couplings → low-energy pheno.
- High-energy theory:

$$B_{\rm O}$$
 violation $B_{\rm D}$ violation if correlated \rightarrow related asymmetries $\Delta B_{\rm O}$ & $\Delta B_{\rm D}$

[Review of asymmetric dark matter; KP, Volkas (2013)]

Relating $\Delta B_{\rm O}$ & $\Delta B_{\rm D}$

Consider

$$B_{\text{gen}} \equiv B_{\text{O}} - B_{\text{D}}$$

 $X \equiv B_{\text{O}} + B_{\text{D}}$

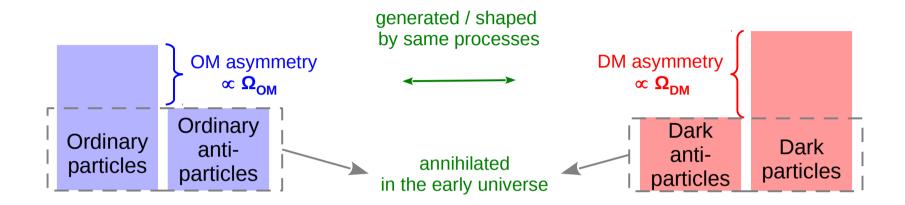
or

$$B_{\text{gen}} \equiv (B-L)_{\text{O}} - B_{\text{D}}$$

 $X \equiv (B-L)_{\text{O}} + B_{\text{D}}$

Need processes which

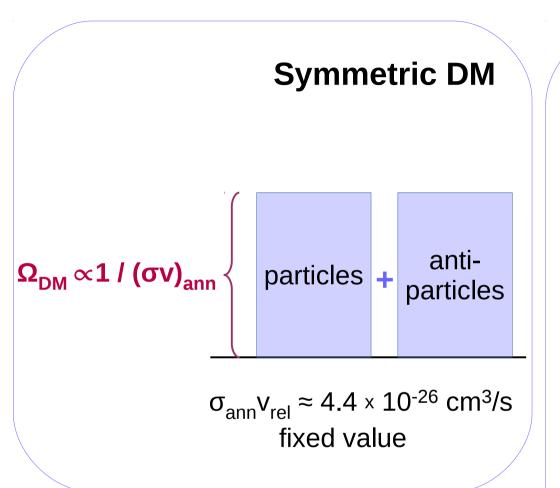
- violate $X \rightarrow \Delta X \neq 0$
- preserve $\mathbf{B}_{gen} \rightarrow \Delta B_{gen} = 0$

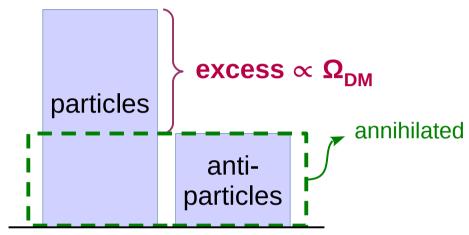

$$\Delta (B-L)_{O} = \Delta B_{D} = \Delta X / 2$$

[e.g. Bell, KP, Shoemaker, Volkas (2011); KP, Trodden, Volkas (2011); von Harling, KP, Volkas (2012)]

Side point: B_{gen} remains always conserved \rightarrow could originate from a gauge symmetry, a generalization of the B-L symmetry of the SM, coupled to a dark sector \rightarrow Z'_{B-L} with invisible decay width in colliders

[Review of asymmetric dark matter; KP, Volkas (2013)]


Ingredients


- Low-energy theory:
 - Standard Model: Ordinary baryon number symmetry B_0 Dark sector: "Dark baryon number B_D " [accidental global U(1) symmetry]
 - Interaction which annihilates dark antiparticles. How strong?
 - → determines possibilities for DM couplings → low-energy pheno.
- High-energy theory:

$$B_{\rm D}$$
 violation $B_{\rm D}$ if correlated \rightarrow related asymmetries $\Delta B_{\rm O} \& \Delta B_{\rm D}$

Non-relativistic thermal relic DM

Asymmetric DM

$$\sigma_{ann} v_{rel} > 4.4 \times 10^{-26} \text{ cm}^3/\text{s}$$

no upper limit

For
$$\frac{(\sigma v)_{ann}}{4.4 \times 10^{-26} \text{ cm}^3/\text{s}} > 2 \rightarrow \frac{n(\overline{\chi})}{n(\chi)} < 5\%$$

[Graesser, Shoemaker, Vecchi (2011)]

[Review of asymmetric dark matter; KP, Volkas (2013)]

Phase space of stable / long-lived relics

To get $\Omega_{DM} \sim 26\%$:

Non-thermal relics e.g. sterile neutrinos, axions

 $4.4 \times 10^{-26} \text{ cm}^3 / \text{ s}$

increasing $(\sigma v)_{ann}$

Asymmetric dark matter

- Encompasses most of the low-energy parameter space of thermal relic DM → study models and low-energy pheno.
- Provides a suitable host for DM self-interacting via light species.

[Review of asymmetric dark matter; KP, Volkas (2013)]

DM annihilation

Need
$$(\sigma v)_{ann} > 4.4 \times 10^{-26} \text{ cm}^3 / \text{ s.}$$

What interaction can do the job?

- $\overline{\chi} \chi \rightarrow SM SM$
 - Annihilation directly into SM particles highly constrained via colliders and direct detection (see bounds on symmetric WIMP DM)
- $\chi \chi \rightarrow \phi \phi$

Annihilation into new light states:

- $\phi \rightarrow SM SM$: metastable mediators decaying into SM
- φ stable light species, e.g. dark photon (possibly massive, with kinetic mixing to hypercharge), or a new light scalar.

[Review of asymmetric dark matter; KP, Volkas (2013)]

DM annihilation

Need
$$(\sigma v)_{ann} > 4.4 \times 10^{-26} \text{ cm}^3 / \text{ s.}$$

What interaction can do the job?

• $\overline{\chi} \chi \rightarrow SM SM$

Annihilation directly into SM particles highly constrained via colliders and direct detection (see bounds on symmetric WIMP DM)

- $\overline{\chi} \chi \rightarrow \varphi \varphi$
 - Annihilation into new light states:
 - $\phi \rightarrow SM SM$: metastable mediators decaying into SM
 - φ stable light species, e.g. dark photon (possibly massive, with kinetic mixing to hypercharge), or a new light scalar.

Structure

[Review of asymmetric dark matter; KP, Volkas (2013)]

CONNECTOR SECTOR

particles with \mathbf{G}_{SM} , \mathbf{G}_{D} and possibly $\mathbf{G}_{\mathrm{common}}$

Interactions which break one linear combination of global symmetries:

e.g. conserved
$$B_O - B_D$$
; broken $B_O + B_D$

$$\rightarrow$$
 $\Delta(B_O + B_D) = 2 \Delta B_O = 2 \Delta B_D$

STANDARD MODEL

gauge group $G_{SM} = SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

- → accidental global **B**_O
- → strong pp, nn annihilation

Portal interactions

B_O & B_D preserving

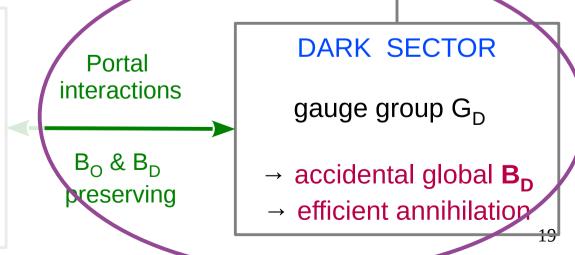
DARK SECTOR

gauge group G_D

- → accidental global B_D
- → efficient annihilation

[Review of asymmetric dark matter; KP, Volkas (2013)]

Structure


particles with \mathbf{G}_{SM} , \mathbf{G}_{D} and possibly $\mathbf{G}_{\mathrm{common}}$

Interactions which break one linear combination of global synMost phenomenological e.g. conserved $B_O - B_D$; broke by low-energy physics. $\rightarrow \Delta(B_O + B_D) = 2 \Delta B_O = 2 \Delta B_D$

STANDARD MODEL

gauge group $G_{SM} = SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

- → accidental global B_O
- → strong pp, nn annihilation

[Review of asymmetric dark matter; KP, Volkas (2013)]

Phenomenology: zoo of possibilities

- Does asymmetric DM pheno have to be unconventional? No.
 - Many regimes where it behaves as collisionless CDM.
 - Could have weak-scale interactions with ordinary matter.
 - Main difference in (sufficiently) high-energy physics.
 - Scenario still motivated by cosmic coincidence.
- Is it interesting to consider regimes with unconventional pheno? Yes!
 - Disagreement between collisionless CDM predictions and observations of galactic structure: May be telling us something non-trivial about DM.
 - Potential for interesting signatures (not yet fully explored).

[Review of asymmetric dark matter; KP, Volkas (2013)]

Phenomenology: zoo of possibilities

- Does asymmetric DM pheno have to be unconventional? No.
 - Many regimes where it behaves as collisionless CDM.
 - Could have weak-scale interactions with ordinary matter.
 - Main difference in (sufficiently) high-energy physics.
 - Scenario still motivated by cosmic coincidence.
- Is it interesting to consider regimes with unconventional pheno? Yes!
 - Disagreement between collisionless CDM predictions and observations of galactic structure: May be telling us something non-trivial about DM.
 - Potential for interesting signatures (not yet fully explored).

Collisionless ACDM and galactic structure

- Very successful in explaining large-scale structure.
- At galactic and subgalactic scales: simulations predict too rich structure. Various problems identified: "cusps vs cores", "missing satellites", "too big to fail".

too much matter in central few kpc of typical galaxies.

[an overview: Weinberg, Bullock, Governato, Kuzio de Naray, Peter; arXiv: 1306.0913]

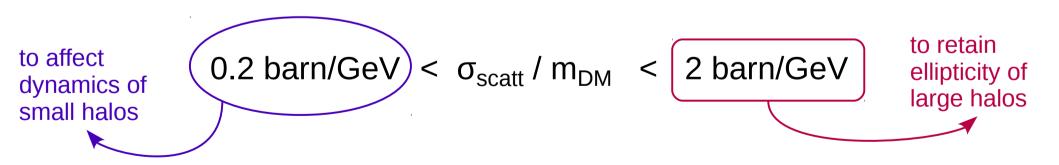
Small-scale galactic structure: How to suppress it

- Baryonic physics
- Shift in the DM paradigm:

Retain success of collisionless \(\Lambda CDM \) at large scales, suppress structure at small scales

- Warm DM, e.g. keV sterile neutrinos
- Self-interacting DM

Continuum of possibilities:


How warm or how self-interacting can / should DM be?

Self-interacting DM

What is it good for?

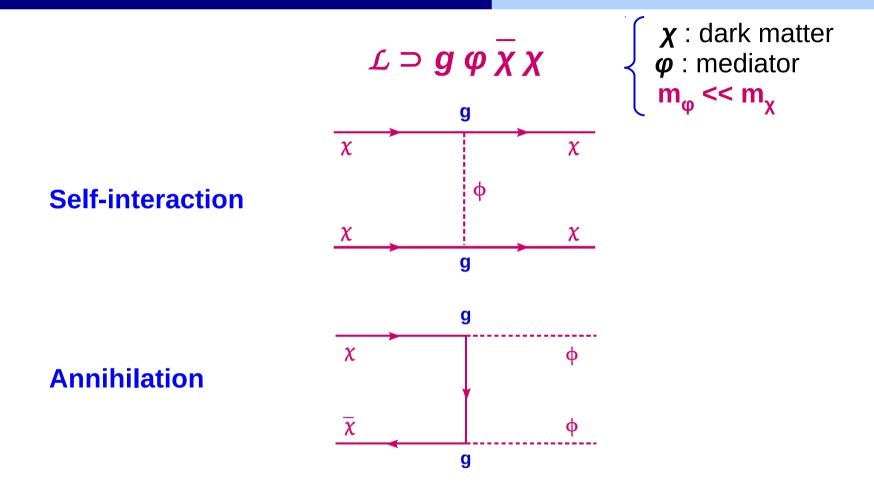
The energy & momentum exchange between DM particles:

- Heats up the low-entropy material
 - → suppresses overdensities [cusps vs cores]
 - → suppresses star-formation rate [missing satellites, "too big to fail"]
- Isotropises DM halos
 - → constrained by observed ellipticity of large haloes.

[Theory: Spergel, Steinhardt (2000). Simulations: Rocha et al. (2012); Peter et al. (2012); Zavala et al (2012)]

Self-interacting DM What interaction?

$$\sigma_{\text{scatt}} / m_{\text{DM}} \sim \text{barn} / \text{GeV}$$



DM coupled to a light or massless force mediator (long-range interaction)

- σ_{scatt} / m_{DM} ~ nuclear interaction strength
- If mediator sufficiently light: $\sigma_{scatt} \sim 1 / v^n$, n > 0:
 - Significant effect on small halos (small velocity dispersion)
 - Negligible effect on large halos (large velocity dispersion)

Self-interacting DM

Sketching a theory

Sizable self-interactions via light mediators imply minimum contribution to DM annihilation; annihilation cross-section could exceed canonical value for symmetric thermal relic DM

 \rightarrow consider **asymmetric DM** (also motivated by $\Omega_{DM} \sim \Omega_{OM}$)

Asymmetric dark matter with (long-range) self-interactions

Self-interacting asymmetric dark matter

- How to go about studying it?
- Many studies of long-range DM self-interactions (in either the symmetric or asymmetric regime) employ a Yukawa potential

$$V_{\chi\chi}(r) = \pm \alpha \exp(-m_{\phi} r)/r$$

[upper bound on $\sigma_{\text{scatt}} \rightarrow \text{lower bound on } m_{\phi} / \text{ upper bound on } \alpha$]

 However, typically reality is often more complex for asymmetric DM with (long-range) self-interactions.

Self-interacting asymmetric dark matter

Complex early-universe dynamics

Formation of stable DM bound states → Multi-species DM, e.g. dark ions, dark atoms, dark nuclei.

Implications for detection

- Variety of DM self-interactions → affect kinematics of halos.
- Variety of DM-nucleon interactions → direct detection.
- Variety of radiative DM processes → indirect detection.
- Consider classes of models,
 calculate cosmology + phenomenology self-consistently

A minimal self-interacting asymmetric DM example:

atomic dark matter

Minimal assumptions

- DM relic density: dark particle-antiparticle asymmetry
- DM couples to a gauged U(1)_D [dark electromagnetism]
 - → DM self-scattering in halos today via dark photons.
 - → DM annihilation in the early universe into dark photons.

[specific models: Kaplan et al (2009, 2011); KP, Trodden, Volkas (2011); von Harling, KP, Volkas (2012)]

Minimal assumptions → rich dynamics

- DM relic density: dark particle-antiparticle asymmetry
- DM couples to a gauged U(1)_D [dark electromagnetism]
 - → DM self-scattering in halos today via dark photons.
 - → DM annihilation in the early universe into dark photons.

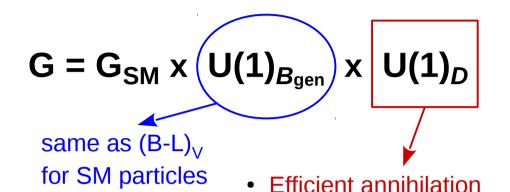
[specific models: Kaplan et al (2009, 2011); KP, Trodden, Volkas (2011); von Harling, KP, Volkas (2012)]

Gauge invariance mandates DM be multi-component:

- Massless dark photon: Dark electric charge carried by dark protons p_D^+ compensated by opposite charge carried by dark electrons e_D^- . They can bind in dark Hydrogen atoms H_D .
- Mildly broken U(1)_D, light dark photon:
 Similar conclusion in most of the parameter space of interest.
 [KP, Pearce, Kusenko (2014)]

Minimal assumptions → rich dynamics

- DM relic density: dark particle-antiparticle asymmetry
- DM couples to a gauged U(1)_D [dark electromagnetism]
 - → DM self-scattering in halos today via dark photons.
 - → DM annihilation in the early universe into dark photons.


[specific models: Kaplan et al (2009, 2011); KP, Trodden, Volkas (2011); von Harling, KP, Volkas (2012)]

Gauge invariance mandates DM be multi-component:

- Massless dark photon:
 Dark electric charge carried by dark protons p_D compensated by opposite charge carried by dark electrons e_D. They can bind in dark Hydrogen atoms H_D.
- Mildly broken U(1)_D, light dark photon:
 Similar conclusion in most of the parameter space of interest.
 [KP, Pearce, Kusenko (2014)]

Model-building example

	gauged $oldsymbol{B_{gen}}$	gauged D	accidental global \boldsymbol{B}_{D}
$p_{\scriptscriptstyle D}$	-2	1	2
$e_{\scriptscriptstyle D}$	0	-1	0

accidental global $(B-L)_{V} \& B_{D}$

$$\delta \mathcal{L}_{low} = \mathcal{L}_{SM} + \overline{p}_{D} (i \cancel{D} - m_{p}) p_{D} + \overline{e}_{D} (i \cancel{D} - m_{e}) e_{D} + (\varepsilon/2) F_{Y \mu \nu} F_{D}^{\mu \nu}$$

$$\delta \mathcal{L}_{high} \supset (1/\Lambda^{8}) (\overline{u}^{c} d \overline{s}^{c} u \overline{d}^{c} s) \overline{e}_{D}^{c} p_{D}$$
Direct / Indirect detection

DM self-scattering in halos

preserves
$$B_{gen} = (B-L)_V - B_D$$

breaks $X = (B-L)_V + B_D$

X asymmetry generation: $\Delta (B-L)_V = \Delta B_D$

[e.g. via Affleck-Dine mechanism in susy models; 34 von Harling, KP, Volkas (2012)]

Cosmology

Dark asymmetry generation in $U(1)_D$ -neutral op $(p_D e_D)$	$T_{\text{asym}} > m_{p_D} / 25$
Freeze-out of annihilations $\bar{p}_{D} p_{D} \rightarrow \gamma_{D} \gamma_{D} \& \bar{e}_{D} e_{D} \rightarrow \gamma_{D} \gamma_{D}$	$T_{\text{FO}} \approx m_{\rho_{\text{D}}, e_{\text{D}}} / 30$
Dark recombination, $p_D + e_D \rightarrow H_D + \gamma_D$	$T_{\text{recomb}} \lesssim \text{binding energy} = \alpha_{\text{D}}^2 \mu_{\text{D}} / 2$
Residual ionisation fraction	$x_{ion} \equiv \frac{n_{p_D}}{n_{p_D} + n_{H_D}} \sim min \left[1, 10^{-10} \frac{m_{p_D} m_{e_D}}{\alpha_D^4 \text{ GeV}^2} \right]$
[If dark photon massive] Dark phase transition	$T_{\rm PT} \sim m_{\gamma_{\rm D}} / \left(8\pi\alpha_{\rm D}\right)^{1/2}$

[Kaplan, Krnjaic, Rehermann, Wells (2009); KP, Trodden, Volkas (2011); Cyr-Racine, Sigurdson (2012); KP, Pearce, Kusenko (2014)]

with a massive dark photon

Asymmetric DM coupled to a dark photon is **multicomponent** (p_D , e_D), and possibly **atomic** (H_D) in much of the parameter space where the dark photon is light enough to mediate sizable (long-range) DM self-interactions

[KP, Pearce, Kusenko (2014)]

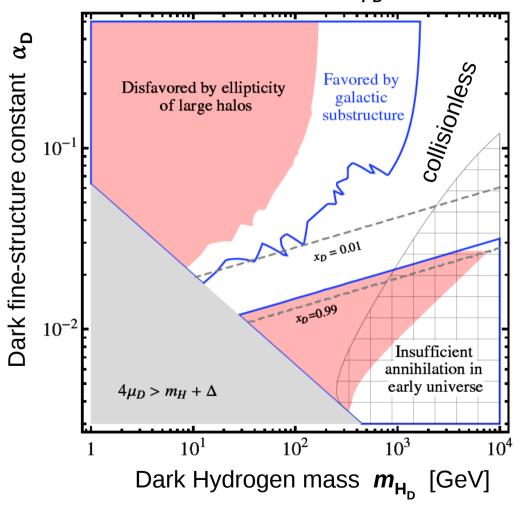
- Bound-state formation cannot be ignored.
- The formation of atomic bound states screens the DM self-interaction.
- Force mediator need not be "sufficiently massive" to satisfy constraints.
- Interplay between cosmology and strength of the interactions.

Self-interactions

Multi-component DM with different inter- and intra-species interactions

$$H_{\rm D} - H_{\rm D}$$
, $H_{\rm D} - p_{\rm D}$, $H_{\rm D} - e_{\rm D}$, $p_{\rm D} - p_{\rm D}$, $e_{\rm D} - e_{\rm D}$, $p_{\rm D} - e_{\rm D}$

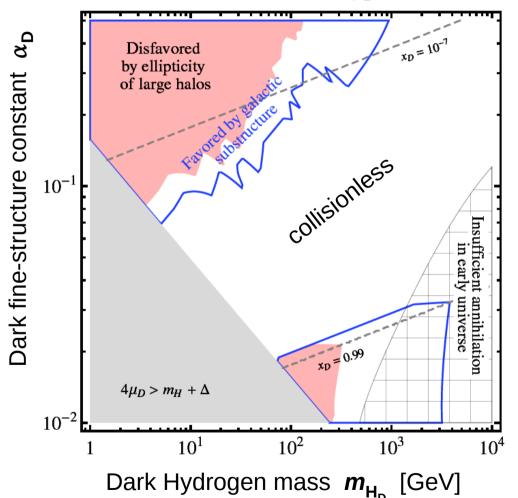
Strong velocity dependence of scattering cross-sections


$$\sigma_{ion-ion} \propto v^{-4}$$
, screened at $\mu_{ion-ion}v < m_{\gamma_D}$

$$\sigma_{H_D-H_D} \approx (\alpha_D \mu_D)^{-2} \left[b_0 + b_1 \left(\frac{m_{H_D} v^2}{4 \mu_D \alpha_D^2} \right) + b_2 \left(\frac{m_{H_D} v^2}{4 \mu_D \alpha_D^2} \right)^2 \right]^{-1}$$

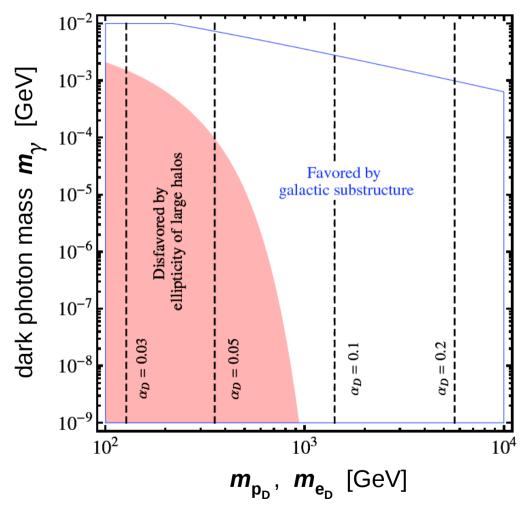
(valid away from resonances; b_0 , b_1 , b_2 : fitting parameters, depend mildly on m_p/m_e) [Cline, Liu, Moore, Xue (2013)]

Self-scattering in halos


Binding energy $\Delta = 0.5 \text{ MeV}$ Dark photon mass $m_{\gamma_D} = 1 \text{ eV}$

- Non-monotonic behavior in α_D , because of the formation of bound states (\rightarrow no upper limit on α_D , or lower limit on m_{γ_D}).
- Strong velocity dependence of scattering cross-sections allows for ellipticity constraints to be satisfied, while having a sizable effect on small scales.
- Collisionless CDM limits: large $m_{H_D} \to \text{small number density}$ large $\alpha_D \to \text{tightly bound atoms}$ small $\alpha_D \to \text{small interaction}$ small $m_{\gamma_D} \to \text{atom formation}$ large $m_{\gamma_D} \to \text{no atoms, ion-ion screening}$

Self-scattering in halos


Binding energy $\Delta = 3 \text{ MeV}$ Dark photon mass $m_{\gamma_D} = 1 \text{ MeV}$

- Non-monotonic behavior in α_D , because of the formation of bound states (\rightarrow no upper limit on α_D , or lower limit on m_{γ_D}).
- Strong velocity dependence of scattering cross-sections allows for ellipticity constraints to be satisfied, while having a sizable effect on small scales.
- Collisionless CDM limits: large $m_{H_D} \rightarrow$ small number density large $\alpha_D \rightarrow$ tightly bound atoms small $\alpha_D \rightarrow$ small interaction small $m_{\gamma_D} \rightarrow$ atom formation large $m_{\gamma_D} \rightarrow$ no atoms, ion-ion screening

Self-scattering in halos

ionisation fraction $\mathbf{x}_{\mathrm{ion}} = \mathbf{0.6}$ dark proton mass $m_{\mathrm{p_D}} = \mathrm{dark}$ electron mass $m_{\mathrm{e_D}}$

- DM in bound states: even massless mediators viable (and very interesting: v-dependent scattering)
- If DM mostly ionized, and m_{DM} < 500 GeV → sizable mediator mass needed
- Even if DM mostly ionized, very light / massless mediators still good, if m_{DM} > 500 GeV

Indirect detection: $\delta \mathcal{L} = (\epsilon/2) F_Y F_D$

Bound-state formation in galaxies today from ionized component

$$p_D^+ + e_D^- \rightarrow H_D + \gamma_D$$

$$\gamma_D \rightarrow e^+ e^- \quad \text{(for } m_{\gamma} > 1.022 \text{ MeV)}$$
[Pearce, KP, Kusenko (2015)]

Level transitions (dark Hydrogen excitations and de-excitations)

$$H_{\rm D} + H_{\rm D} \rightarrow H_{\rm D} + H_{\rm D}^{*}, \quad H_{\rm D}^{*} \rightarrow H_{\rm D} + \gamma_{\rm D}, \quad \gamma_{\rm D} \rightarrow e^{+}e^{-}$$

Indirect detection: $\delta \mathcal{L} = (\epsilon/2) F_Y F_D$

Sommerfeld-enhanced process: efficient in non-relativistic environment of halos

Bound-state formation in galaxies today from ionized component

$$p_D^+ + e_D^- \rightarrow H_D + \gamma_D$$

$$\gamma_D \rightarrow e^+ e^- \quad \text{(for } m_{\gamma} > 1.022 \text{ MeV)}$$
[Pearce, KP, Kusenko (2015)]

Level transitions (dark Hydrogen excitations and de-excitations)

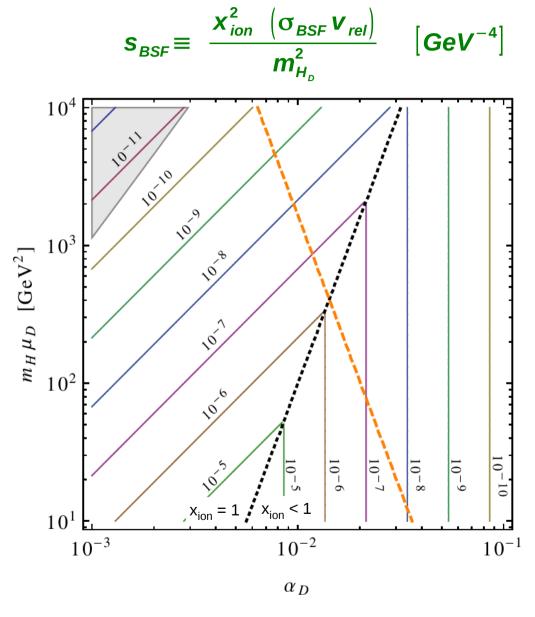
$$H_{\rm D} + H_{\rm D} \rightarrow H_{\rm D} + H_{\rm D}^{*}, \quad H_{\rm D}^{*} \rightarrow H_{\rm D} + \gamma_{\rm D}, \quad \gamma_{\rm D} \rightarrow e^{+}e^{-}$$

Indirect detection: $\delta \mathcal{L} = (\epsilon/2) F_Y F_D$

Sommerfeld-enhanced process: efficient in non-relativistic environment of halos

Bound-state formation in galaxies today from ionized component

$$p_D^+ + e_D^- \rightarrow H_D + \gamma_D$$


$$\gamma_D \rightarrow e^+ e^- \quad \text{(for } m_{\gamma} > 1.022 \text{ MeV)}$$

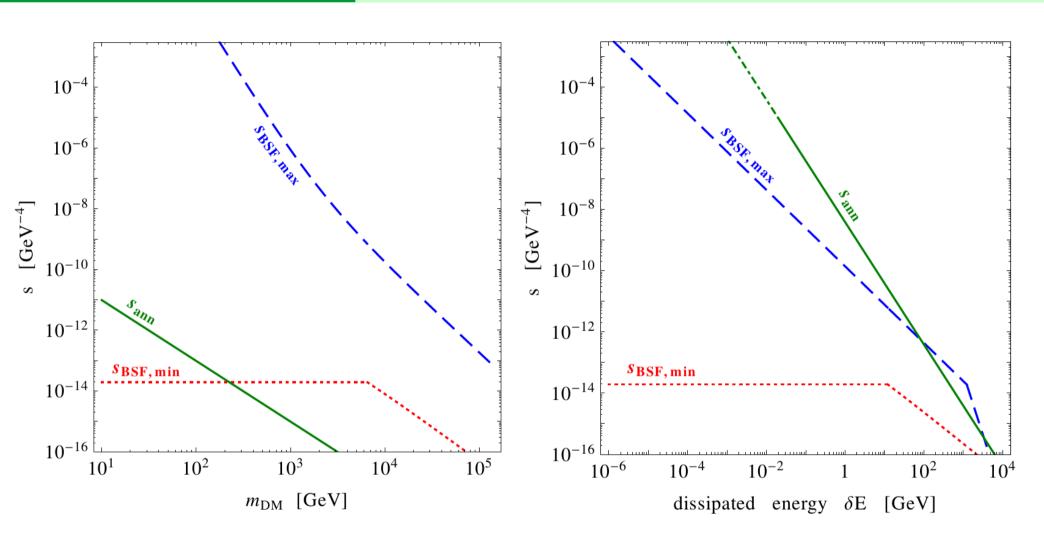
[Pearce, KP, Kusenko (2015)]

Level transitions (dark Hydrogen excitations and de-excitations)

$$H_{\mathrm{D}} + H_{\mathrm{D}} \rightarrow H_{\mathrm{D}} + H_{\mathrm{D}}^{*}, \quad H_{\mathrm{D}}^{*} \rightarrow H_{\mathrm{D}} + \gamma_{\mathrm{D}}, \quad \gamma_{\mathrm{D}} \rightarrow e^{+}e^{-}$$

Indirect detection: dark-atom formation in halos

Bound – state formation:

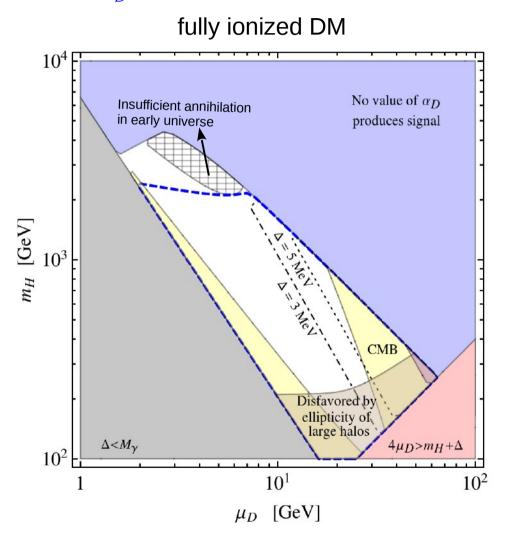

$$\frac{d \Gamma_{BSF}}{dV} = (\sigma_{BSF} V_{rel}) x_{ion}^{2} \frac{\rho_{DM}^{2}}{m_{H_{D}}^{2}}$$

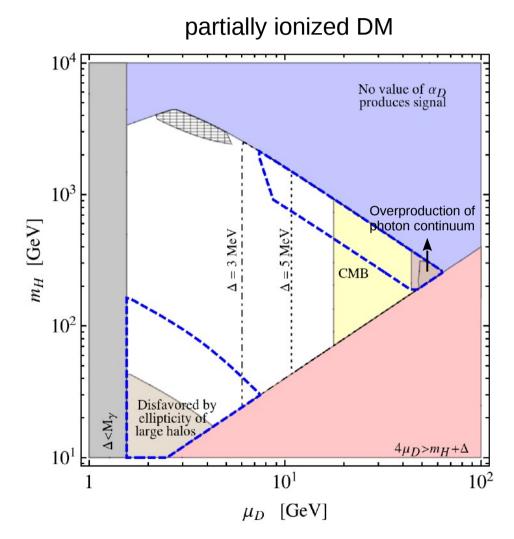
Annihilation of symmetric DM:

$$\frac{d \Gamma_{ann}}{dV} = (\sigma_{ann} V_{rel}) \frac{\rho_{DM}^2}{m_{DM}^2}$$

Interplay between early universe cosmology and strength of interaction → min and max signal strength

Indirect detection: atomic DM vs annihilating DM




atomic DM: $\delta E = binding energy \ll m_{H_0}$

annihilating DM: $\delta E = 2 m_{DM}$

511 keV line in the Milky Way from dark-atom formation

m_{γ_D} = 2 MeV; contracted NFW profile (y = 1.4)

Conclusion

 Dark-sector dynamics can be complex. Interplay between cosmology and strength of fundamental interactions determines low-energy phenomenology:

The early universe regulates any manifestation of DM we may hope to detect today.

Lots more to think about and to calculate!