Self-interacting asymmetric dark matter

Kallia Petraki

Oslo, 24 June 2015
How can we find dark matter?

First, we have to guess the answer!

... Need a strategy ...
Proposed strategy

Focus on DM-related observations:

- DM density \rightarrow Asymmetric DM
- Patterns of gravitational clustering \rightarrow Self-interacting DM
Outline

- Asymmetric DM: general structure and features
- Self-interacting DM
- Self-interacting \cap Asymmetric DM
- Case study: atomic dark matter
A cosmic coincidence

Why $\Omega_{DM} \sim \Omega_{OM}$?

- Unrelated mechanisms \rightarrow different parameters \rightarrow result expected to differ by orders of magnitude.

- Similarity of abundances hints towards related physics for OM and DM production.
Ordinary matter

- Stable particles: $p \ e \ \gamma \ \nu$
- p^+ make up most of ordinary matter in the universe.

 Only p^+, no p^- present today: matter-antimatter asymmetry

\[\text{Asymmetry} \propto \Omega_{\text{OM}} \]

Ordinary particles \rightarrow conserved today

b/c of global U(1) symmetry of the SM, baryon-number B_{V}

Ordinary anti-particles \rightarrow

annihilated in the early universe
A non-coincidence

Ordinary matter

- Atoms: 4.9 %
- Photons: 0.0022 %
- Neutrinos: 0.0016 %

Particle-antiparticle asymmetry

Relativistic thermal relics

Dark Energy (69.1 ± 0.6) %

Ordinary Matter (4.9 ± 0.03) %

Dark Matter (26 ± 0.2) %
A cosmic coincidence

Why $\Omega_{\text{DM}} \sim \Omega_{\text{OM}}$?

- Just a coincidence

 OR

- Dynamical explanation:
 DM production related to ordinary matter-antimatter asymmetry \rightarrow asymmetric DM
The asymmetric DM proposal

[Review of asymmetric dark matter; KP, Volkas (2013)]

- DM density due to an excess of dark particles over antiparticles.
- DM – OM asymmetries related dynamically, by high-energy processes which occurred in the early universe.
- Dark and visible asymmetries conserved separately today.

\[
\begin{align*}
\text{OM asymmetry} & \propto \Omega_{\text{OM}} \\
\text{DM asymmetry} & \propto \Omega_{\text{DM}}
\end{align*}
\]

Ordinary particles \quad Ordinary anti-particles \quad Dark anti-particles \quad Dark particles
Asymmetric DM

[Review of asymmetric dark matter; KP, Volkas (2013)]

Ingredients

Low-energy theory:
- Standard Model: Ordinary baryon number symmetry \(B_O \)
 - Dark sector: "Dark baryon number \(B_D \)" [accidental global U(1) symmetry]
- Interaction which annihilates dark antiparticles. How strong?
 - \(\rightarrow \) determines possibilities for DM couplings \(\rightarrow \) low-energy pheno.

High-energy theory:
- \(B_O \) violation
- \(B_D \) violation
 - \(\rightarrow \) if correlated \(\rightarrow \) related asymmetries \(\Delta B_O \) & \(\Delta B_D \)
Low-energy theory:

- Standard Model: Ordinary baryon number symmetry B_O
 - Dark sector: “Dark baryon number B_D” [accidental global U(1) symmetry]

High-energy theory:

B_O violation B_D violation \[\text{if correlated} \rightarrow \text{related asymmetries } \Delta B_O \& \Delta B_D \]
Consider

\[B_{\text{gen}} \equiv B_O - B_D \]
\[X \equiv B_O + B_D \]

or

\[B_{\text{gen}} \equiv (B-L)_O - B_D \]
\[X \equiv (B-L)_O + B_D \]

Need processes which

- violate \(X \rightarrow \Delta X \neq 0 \)
- preserve \(B_{\text{gen}} \rightarrow \Delta B_{\text{gen}} = 0 \)

\[\Delta(B-L)_O = \Delta B_D = \Delta X / 2 \]

Side point: \(B_{\text{gen}} \) remains always conserved \(\rightarrow \) could originate from a gauge symmetry, a generalization of the \(B-L \) symmetry of the SM, coupled to a dark sector \(\rightarrow Z'_{B-L} \) with invisible decay width in colliders

[Review of asymmetric dark matter; KP, Volkas (2013)]
Asymmetric DM

Ingredients

[Review of asymmetric dark matter; KP, Volkas (2013)]

- **Low-energy theory:**
 - Standard Model: Ordinary baryon number symmetry B_O
 - Dark sector: "Dark baryon number B_D" [accidental global U(1) symmetry]

- **High-energy theory:**
 - B_O violation
 - B_D violation
 - if correlated → related asymmetries ΔB_O & ΔB_D
Non-relativistic thermal relic DM

Symmetric DM

\[\Omega_{\text{DM}} \propto \frac{1}{(\sigma v)_{\text{ann}}} \]

\[\sigma_{\text{ann}} v_{\text{rel}} \approx 4.4 \times 10^{-26} \text{ cm}^3/\text{s} \]

fixed value

Asymmetric DM

\[\text{excess } \propto \Omega_{\text{DM}} \]

\[\sigma_{\text{ann}} v_{\text{rel}} > 4.4 \times 10^{-26} \text{ cm}^3/\text{s} \]

no upper limit

For \[\frac{(\sigma v)_{\text{ann}}}{4.4 \times 10^{-26} \text{ cm}^3/\text{s}} > 2 \rightarrow \frac{n(\chi)}{n(\chi)} < 5\% \]

[Graesser, Shoemaker, Vecchi (2011)]
To get $\Omega_{\text{DM}} \sim 26\%$:

Non-thermal relics e.g. sterile neutrinos, axions

Symmetric (WIMP) DM

Asymmetric DM

4.4 x 10^{-26} cm3 / s

increasing $(\sigma v)_{\text{ann}}$

Asymmetric dark matter

- Encompasses most of the low-energy parameter space of thermal relic DM \rightarrow study models and low-energy pheno.
- Provides a suitable host for DM self-interacting via light species.
DM annihilation

Need \((\sigma v)_{\text{ann}} > 4.4 \times 10^{-26} \text{ cm}^3/\text{s}\).

What interaction can do the job?

- \(\bar{\chi} \chi \rightarrow \text{SM SM}\)
 Annihilation directly into SM particles highly constrained via colliders and direct detection (see bounds on symmetric WIMP DM)

- \(\bar{\chi} \chi \rightarrow \phi \phi\)
 Annihilation into new light states:
 - \(\phi \rightarrow \text{SM SM}\): metastable mediators decaying into SM
 - \(\phi\) stable light species, e.g. dark photon (possibly massive, with kinetic mixing to hypercharge), or a new light scalar.
DM annihilation

Need \((\sigma v)_{\text{ann}} > 4.4 \times 10^{-26} \text{ cm}^3/\text{s}\).

What interaction can do the job?

- \(\chi \chi \rightarrow \text{SM SM}\)

 Annihilation directly into SM particles highly constrained via colliders and direct detection (see bounds on symmetric WIMP DM)

- \(\chi \chi \rightarrow \phi \phi\)

 Annihilation into new light states:

 * \(\phi \rightarrow \text{SM SM}\): metastable mediators decaying into SM
 * \(\phi\) stable light species, e.g. dark photon (possibly massive, with kinetic mixing to hypercharge), or a new light scalar.

Asymmetric DM

[Review of asymmetric dark matter; KP, Volkas (2013)]
Asymmetric DM

[Review of asymmetric dark matter; KP, Volkas (2013)]

Structure

CONNECTOR SECTOR

particles with
G_{SM}, G_D and possibly G_{common}

Interactions which break one linear combination of global symmetries:

e.g. conserved $B_O - B_D$; broken $B_O + B_D$

$\rightarrow \Delta(B_O + B_D) = 2 \Delta B_O = 2 \Delta B_D$

STANDARD MODEL

gauge group

$G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$

\rightarrow accidental global B_O

\rightarrow strong pp, nn annihilation

DARK SECTOR

gauge group G_D

\rightarrow accidental global B_D

\rightarrow efficient annihilation

Portal interactions

B_O & B_D

preserving
Asymmetric DM

[Review of asymmetric dark matter; KP, Volkas (2013)]

\[G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y \]

\[\rightarrow \text{accidental global } B_O \]

\[\rightarrow \text{strong pp, nn annihilation} \]

\[G_D \rightarrow \text{efficient annihilation} \]

Most phenomenological implications determined by low-energy physics.

Standard Model

Connector Sector

particles with \(G_{SM}, G_D \) and possibly \(G_{\text{common}} \)

Interactions which break one linear combination of global symmetries:

- e.g. conserved \(B_O - B_D \)
- broken \(B_O + B_D \)

\[\Delta(B_O + B_D) = 2 \Delta B_O = 2 \Delta B_D \]

Dark Sector

Portal Interactions

\(B_O \) and \(B_D \) preserving

\[\rightarrow \text{accidental global } B_D \]

\[\rightarrow \text{efficient annihilation} \]
Does asymmetric DM pheno have to be unconventional? **No.**

- Many regimes where it behaves as collisionless CDM.
- Could have weak-scale interactions with ordinary matter.
- Main difference in (sufficiently) high-energy physics.
- Scenario still motivated by cosmic coincidence.

Is it interesting to consider regimes with unconventional pheno? **Yes!**

- Disagreement between collisionless CDM predictions and observations of galactic structure: May be telling us something non-trivial about DM.
- Potential for interesting signatures (not yet fully explored).
Does asymmetric DM pheno have to be unconventional? **No.**
- Many regimes where it behaves as collisionless CDM.
- Could have weak-scale interactions with ordinary matter.
- Main difference in (sufficiently) high-energy physics.
- Scenario still motivated by cosmic coincidence.

Is it interesting to consider regimes with unconventional pheno? **Yes!**
- Disagreement between collisionless CDM predictions and observations of galactic structure: May be telling us something non-trivial about DM.
- Potential for interesting signatures (not yet fully explored).
Collisionless ΛCDM and galactic structure

- Very successful in explaining large-scale structure.

- At galactic and subgalactic scales: simulations predict too rich structure. Various problems identified: “cusps vs cores”, “missing satellites”, “too big to fail”.

 too much matter in central few kpc of typical galaxies.

[an overview: Weinberg, Bullock, Governato, Kuzio de Naray, Peter; arXiv: 1306.0913]
Small-scale galactic structure: How to suppress it

- **Baryonic physics**

- **Shift in the DM paradigm:**
 Retain success of collisionless ΛCDM at large scales, suppress structure at small scales
 - Warm DM, e.g. keV sterile neutrinos
 - Self-interacting DM

Continuum of possibilities:
How warm or how self-interacting can / should DM be?
The energy & momentum exchange between DM particles:

- **Heats up the low-entropy material**
 -suppresses overdensities [cusps vs cores]
 -suppresses star-formation rate [missing satellites, “too big to fail”]

- **Isotropises DM halos**
 -constrained by observed ellipticity of large haloes.

\[0.2 \text{ barn/GeV} < \frac{\sigma_{\text{scatt}}}{m_{\text{DM}}} < 2 \text{ barn/GeV}\]

DM coupled to a light or massless force mediator (long-range interaction)

- $\sigma_{\text{scatt}} / m_{\text{DM}} \sim$ nuclear interaction strength
- If mediator sufficiently light: $\sigma_{\text{scatt}} \sim 1 / v^n$, $n > 0$:
 - Significant effect on small halos (small velocity dispersion)
 - Negligible effect on large halos (large velocity dispersion)
Sizable self-interactions via light mediators imply minimum contribution to DM annihilation; annihilation cross-section could exceed canonical value for symmetric thermal relic DM

→ consider **asymmetric DM** (also motivated by $\Omega_{\text{DM}} \sim \Omega_{\text{OM}}$)
Asymmetric dark matter with (long-range) self-interactions
Self-interacting asymmetric dark matter

How to go about studying it?

Many studies of long-range DM self-interactions (in either the symmetric or asymmetric regime) employ a Yukawa potential

\[V_{\chi\chi} (r) = \pm \alpha \exp (- m_\phi r) / r \]

[upper bound on \(\sigma_{\text{scatt}} \) → lower bound on \(m_\phi \) / upper bound on \(\alpha \)]

However, typically reality is often more complex for asymmetric DM with (long-range) self-interactions.
Self-interacting asymmetric dark matter

- **Complex early-universe dynamics**
 - Formation of stable DM bound states \rightarrow Multi-species DM, e.g. dark ions, dark atoms, dark nuclei.

- **Implications for detection**
 - Variety of **DM self-interactions** \rightarrow affect kinematics of halos.
 - Variety of **DM-nucleon interactions** \rightarrow direct detection.
 - Variety of **radiative DM processes** \rightarrow indirect detection.

- Consider classes of models, calculate cosmology + phenomenology self-consistently
A minimal self-interacting asymmetric DM example:

atomic dark matter
Atomic DM

Minimal assumptions

- DM relic density: dark particle-antiparticle asymmetry
- DM couples to a gauged $U(1)_{D}$ [dark electromagnetism]
 - DM self-scattering in halos today via dark photons.
 - DM annihilation in the early universe into dark photons.

Atomic DM

Minimal assumptions → rich dynamics

• DM relic density: dark particle-antiparticle asymmetry
• DM couples to a gauged $U(1)_D$ [dark electromagnetism]
 → DM self-scattering in halos today via dark photons.
 → DM annihilation in the early universe into dark photons.

Gauge invariance mandates DM be multi-component:

• Massless dark photon:
 Dark electric charge carried by dark protons p_D^+ compensated
 by opposite charge carried by dark electrons e_D^-. They can
 bind in dark Hydrogen atoms H_D.

• Mildly broken $U(1)_D$, light dark photon:
 Similar conclusion in most of the parameter space of interest.

Atomic DM

Minimal assumptions → rich dynamics

- DM relic density: dark particle-antiparticle asymmetry
- DM couples to a gauged $U(1)_D$ [dark electromagnetism]
 - DM self-scattering in halos today via dark photons.
 - DM annihilation in the early universe into dark photons.

Gauge invariance mandates DM be multi-component:

- Massless dark photon:
 Dark electric charge carried by p_{D}^+ compensated by opposite charge carried by e_{D}^-.
 They can bind in dark Hydrogen atoms H_D.

- Mildly broken $U(1)_D$, light dark photon:
 Similar conclusion in most of the parameter space of interest.

[KP, Pearce, Kusenko (2014)]
\[G = G_{SM} \times U(1)_{B_{gen}} \times U(1)_D \]

same as \((B-L)_V\) for SM particles

- Efficient annihilation
- DM self-scattering in halos

\[
\begin{align*}
\delta L_{\text{low}} &= \mathcal{L}_{SM} + \bar{p}_D (i\not{D} - m_p) p_D + \bar{e}_D (i\not{D} - m_e) e_D + \left(\varepsilon/2\right) F_{\mu\nu} F_D^{\mu\nu} \\
\delta L_{\text{high}} &\supset \left(1/\Lambda^8\right) (\bar{u}^c d \bar{s}^c u \bar{d}^c s) \bar{e}_D^c p_D
\end{align*}
\]

preserves \(B_{gen} = (B-L)_V - B_D \)

breaks \(X = (B-L)_V + B_D \)

\[\Delta (B-L)_V = \Delta B_D \]

[e.g. via Affleck-Dine mechanism in susy models; von Harling, KP, Volkas (2012)]

Direct / Indirect detection

accidental global \((B-L)_V \& B_D\)
Dark asymmetry generation in \(U(1)_D - \)neutral op \((p_D e_D)\)

\[
T_{\text{asym}} > m_{p_D} / 25
\]

Freeze-out of annihilations

\[
\bar{p}_D p_D \rightarrow \gamma_D \gamma_D \quad \text{&} \quad \bar{e}_D e_D \rightarrow \gamma_D \gamma_D
\]

\[
T_{\text{FO}} \approx m_{p_D, e_D} / 30
\]

Dark recombination,

\[
p_D + e_D \rightarrow H_D + \gamma_D
\]

\[
T_{\text{recomb}} \lesssim \text{binding energy} = \alpha_D^2 \mu_D / 2
\]

Residual ionisation fraction

\[
x_{\text{ion}} \equiv \frac{n_{p_D}}{n_{p_D} + n_{H_D}} \sim \min \left[1, 10^{-10} \frac{m_{p_D} m_{e_D}}{\alpha_D^4 \text{ GeV}^2} \right]
\]

[If dark photon massive] Dark phase transition

\[
T_{\text{PT}} \sim m_{\gamma_D} / (8\pi\alpha_D)^{1/2}
\]

[Kaplan, Krnjaic, Rehermann, Wells (2009); KP, Trodden, Volkas (2011); Cyr-Racine, Sigurdson (2012); KP, Pearce, Kusenko (2014)]
Atomic DM with a massive dark photon

Asymmetric DM coupled to a dark photon is multicomponent \((p_D, e_D)\), and possibly atomic \((H_D)\) in much of the parameter space where the dark photon is light enough to mediate sizable (long-range) DM self-interactions

[KP, Pearce, Kusenko (2014)]

- Bound-state formation cannot be ignored.
- The formation of atomic bound states screens the DM self-interaction.
- Force mediator need not be “sufficiently massive” to satisfy constraints.
- Interplay between cosmology and strength of the interactions.
Multi-component DM with different inter- and intra-species interactions

\[H_D - H_D, \ H_D - p_D, \ H_D - e_D, \ p_D - p_D, \ e_D - e_D, \ p_D - e_D \]

Strong velocity dependence of scattering cross-sections

\[\sigma_{\text{ion-ion}} \propto v^{-4}, \text{ screened at } \mu_{\text{ion-ion}} v < m_{\gamma_D} \]

\[
\sigma_{H_D - H_D} \approx (\alpha_D \mu_D)^{-2} \left[b_0 + b_1 \left(\frac{m_{H_D} v^2}{4 \mu_D \alpha_D^2} \right) + b_2 \left(\frac{m_{H_D} v^2}{4 \mu_D \alpha_D^2} \right)^2 \right]^{-1}
\]

(valid away from resonances; \(b_0, b_1, b_2\) : fitting parameters, depend mildly on \(m_p/m_e\))

[Cline, Liu, Moore, Xue (2013)]
Non-monotonic behavior in α_D, because of the formation of bound states (\rightarrow no upper limit on α_D, or lower limit on m_{γ_D}).

- Strong velocity dependence of scattering cross-sections allows for ellipticity constraints to be satisfied, while having a sizable effect on small scales.

- Collisionless CDM limits:
 - Large $m_{H_D} \rightarrow$ small number density
 - Large $\alpha_D \rightarrow$ tightly bound atoms
 - Small $\alpha_D \rightarrow$ small interaction
 - Small $m_{\gamma_D} \rightarrow$ atom formation
 - Large $m_{\gamma_D} \rightarrow$ no atoms, ion-ion screening

[KP, Pearce, Kusenko (2014)]
Self-scattering in halos

- Non-monotonic behavior in α_D, because of the formation of bound states (\rightarrow no upper limit on α_D, or lower limit on m_{γ_D}).

- Strong velocity dependence of scattering cross-sections allows for ellipticity constraints to be satisfied, while having a sizable effect on small scales.

- Collisionless CDM limits:
 - large $m_{H_D} \rightarrow$ small number density
 - large $\alpha_D \rightarrow$ tightly bound atoms
 - small $\alpha_D \rightarrow$ small interaction
 - small $m_{\gamma_D} \rightarrow$ atom formation
 - large $m_{\gamma_D} \rightarrow$ no atoms, ion-ion screening

[KP, Pearce, Kusenko (2014)]
Self-scattering in halos

- DM in bound states: even massless mediators viable (and very interesting: v-dependent scattering)

- If DM mostly ionized, and $m_{\text{DM}} < 500 \text{ GeV} \rightarrow$ sizable mediator mass needed

- Even if DM mostly ionized, very light / massless mediators still good, if $m_{\text{DM}} > 500 \text{ GeV}$

$$\text{ionisation fraction } x_{\text{ion}} = 0.6$$
$$\text{dark proton mass } m_{p_D} = \text{dark electron mass } m_{e_D}$$

[KP, Pearce, Kusenko (2014)]
Indirect detection: $\delta \mathcal{L} = (\varepsilon/2) F_Y F_D$

- **Bound-state formation** in galaxies today from ionized component

 \[p_{D^+} + e_{D^-} \rightarrow H_D + \gamma_D \]

 \[\gamma_D \rightarrow e^+ e^- \text{ (for } m_\gamma > 1.022 \text{ MeV)} \]

 [Pearce, KP, Kusenko (2015)]

- **Level transitions** (dark Hydrogen excitations and de-excitations)

 \[H_D + H_D \rightarrow H_D + H_D^*, \quad H_D^* \rightarrow H_D + \gamma_D, \quad \gamma_D \rightarrow e^+ e^- \]
Indirect detection: $\delta \mathcal{L} = (\varepsilon/2) F_Y F_D$

- **Bound-state formation** in galaxies today from ionized component

 $$p^+_{D} + e^-_{D} \rightarrow H_D + \gamma_D$$

 $$\gamma_D \rightarrow e^+ e^- \quad \text{(for } m_\gamma > 1.022 \text{ MeV})$$

 [Pearce, KP, Kusenko (2015)]

- **Level transitions** (dark Hydrogen excitations and de-exitations)

 $$H_D + H_D \rightarrow H_D + H_D^*, \quad H_D^* \rightarrow H_D + \gamma_D, \quad \gamma_D \rightarrow e^+ e^-$$
Bound-state formation in galaxies today from ionized component

\[p_D^+ + e_D^- \rightarrow H_D + \gamma_D \]

\[\gamma_D \rightarrow e^+ e^- \] (for \(m_\gamma > 1.022 \text{ MeV} \))

Level transitions (dark Hydrogen excitations and de-excitations)

\[H_D + H_D \rightarrow H_D + H_D^*, \quad H_D^* \rightarrow H_D + \gamma_D, \quad \gamma_D \rightarrow e^+ e^- \]
Indirect detection: dark-atom formation in halos

Bound – state formation:
\[
\frac{d \Gamma_{BSF}}{d \nu} = \left(\sigma_{BSF} v_{rel} \right) x_{ion}^2 \frac{\rho_{DM}^2}{m_{H_D}^2}
\]

Annihilation of symmetric DM:
\[
\frac{d \Gamma_{ann}}{d \nu} = \left(\sigma_{ann} v_{rel} \right) \frac{\rho_{DM}^2}{m_{DM}^2}
\]

Interplay between early universe cosmology and strength of interaction → min and max signal strength

[Pearce, KP, Kusenko (2015)]
Indirect detection:
atomic DM vs annihilating DM

atomic DM: \(\delta E = \text{binding energy} \ll m_{H_0} \)

annihilating DM: \(\delta E = 2m_{DM} \)

[Pearce, KP, Kusenko (2015)]
Atomic DM

511 keV line in the Milky Way from dark-atom formation

\[m_\gamma^D = 2 \text{ MeV}; \] contracted NFW profile (\(\gamma = 1.4 \))

Fully Ionized DM

- Insufficient annihilation in early universe
- No value of \(\sigma_D \) produces signal

Partially Ionized DM

- Overproduction of photon continuum

[Pearce, KP, Kusenko (2015)]
Conclusion

- Symmetric thermal-relic WIMP DM ↔ collisionless CDM
 Asymmetric (thermal relic) DM ↔ self-interacting DM
 independently motivated

- Dark-sector dynamics can be complex. Interplay between cosmology and strength of fundamental interactions determines low-energy phenomenology:
 The early universe regulates any manifestation of DM we may hope to detect today.

- Lots more to think about and to calculate!