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How can we find dark matter?

First, we have to guess the answer!
… Need a strategy ...
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Focus on DM-related observations:

● DM density → Asymmetric DM

● Patterns of gravitational clustering → Self-interacting DM

Proposed strategy
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Outline

 Asymmetric DM: general structure and features
 Self-interacting DM

 Self-interacting  ∩  Asymmetric DM

 Case study: atomic dark matter
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A  cosmic  coincidence

Why ΩDM ~ ΩOM  ?

 Unrelated mechanisms → different parameters 
→ result expected to differ by orders of magnitude.

 Similarity of abundances hints towards 
related physics for OM and DM production.
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● Stable particles:  p  e  γ ν
● p+ make up most of ordinary matter in the universe. 

Only p+, no p– present today: matter-antimatter asymmetry

  Ordinary matter

Ordinary 
particles

Ordinary 
anti-particles

Asymmetry
         ∝ ΩOM           

 annihilated in the   
 early universe

conserved today
b/c of global U(1) symmetry

of the SM, baryon-number BV
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A non-coincidence

Atoms:      4.9 %

   Ordinary matter Photons:   0.0022 %

Neutrinos: 0.0016 %

Particle-antiparticle asymmetry

Relativistic 
thermal relics



8

A  cosmic  coincidence

● Just a coincidence
  OR 

● Dynamical explanation: 

DM production related to ordinary matter-antimatter 
asymmetry → asymmetric DM

Why ΩDM ~ ΩOM  ?
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● DM density due to an excess of dark particles over antiparticles. 

● DM – OM asymmetries related dynamically, by high-energy 
processes which occurred in the early universe.

● Dark and visible asymmetries conserved separately today.

The asymmetric DM proposal
[Review of asymmetric dark matter; KP, Volkas (2013) ]       

Ordinary 
particles

Ordinary 
anti-particles

Dark
anti-particles

Dark
particles

DM asymmetry
    ∝ ΩDM       

OM asymmetry
         ∝ ΩOM           

generated / shaped 
by same processes

got annihilated
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  Ingredients

 Low-energy theory:

➢ Standard Model: Ordinary baryon number symmetry BO 

Dark sector: “Dark baryon number BD” [accidental global U(1) symmetry]

➢ Interaction which annihilates dark antiparticles. How strong?
→ determines possibilities for DM couplings → low-energy pheno.

 High-energy theory:

BO  violation
BD  violation

Ordinary 
particles

Ordinary 
anti-

particles

Dark
anti-

particles

Dark
particles

DM asymmetry
    ∝ ΩDM       

     OM asymmetry
         ∝ ΩOM           

generated / shaped 
by same processes

annihilated
in the early universe

    if correlated → related asymmetries ΔBO & ΔBD 

 Asymmetric DM 
   [Review of asymmetric dark matter; 
   KP, Volkas (2013) ]
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Bgen    ≡   BO  –  BD

    X   ≡   BO  +  BD

 Relating ΔBO & ΔBD

Δ(B-L)O = ΔBD  =  ΔΧ / 2
Need processes which
● violate X → ΔΧ ≠ 0
● preserve Bgen → ΔBgen  = 0

Bgen    ≡   (B-L)O  –  BD

    X   ≡   (B-L)O  +  BD
or

Consider

[e.g. Bell, KP, Shoemaker, Volkas (2011);
KP, Trodden, Volkas (2011); 
von Harling, KP, Volkas (2012)]

Side point: Bgen remains always conserved  →  could originate from a gauge 
symmetry, a generalization of the B-L symmetry of the SM, coupled to a dark 
sector   →   Z'B-L with invisible decay width in colliders

 Asymmetric DM 
   [Review of asymmetric dark matter; 
   KP, Volkas (2013) ]
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particlesΩDM ∝1 / (σv)ann  anti-
particles+

particles

anti-
particles

excess ∝ ΩDM 

Symmetric DM Asymmetric DM

annihilated

Non-relativistic thermal relic DM

 σannvrel ≈ 4.4 x 10-26 cm3/s        σannvrel >  4.4 x 10-26 cm3/s  
    fixed value no upper limit

(σv)ann

4.4 x 10-26 cm3/s
For                             > 2 →           < 5%

n(χ)

n(χ)

[Graesser, Shoemaker, Vecchi (2011)]
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To get ΩDM ~ 26% :

Non-thermal relics
e.g. sterile neutrinos, axions Asymmetric DM

increasing  (σv)ann
4.4 x 10-26 cm3 / s

Symmetric 
(WIMP) DM

Asymmetric dark matter
● Encompasses most of the low-energy parameter space of 

thermal relic DM → study models and low-energy pheno.
● Provides a suitable host for DM self-interacting via light species.

 Phase space of 
 stable / long-lived relics

 Asymmetric DM 
   [Review of asymmetric dark matter; 
   KP, Volkas (2013) ]
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  DM annihilation

Need  (σv)ann  >  4.4 x 10-26 cm3 / s.  

What interaction can do the job?

● χ χ → SM SM 

Annihilation directly into SM particles highly constrained via 
colliders and direct detection (see bounds on symmetric WIMP DM)

● χ χ → φ φ 

Annihilation into new light states:

✗ φ → SM SM  : metastable mediators decaying into SM

✗ φ  stable light species, e.g. dark photon (possibly massive, 
with kinetic mixing to hypercharge), or a new light scalar.

 Asymmetric DM 
   [Review of asymmetric dark matter; 
   KP, Volkas (2013) ]
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  Structure

STANDARD MODEL

gauge group
GSM = SU(3)c x SU(2)L x U(1)Y

→ accidental global BO 
→ strong pp, nn annihilation

DARK  SECTOR

gauge group GD  

→ accidental global BD

→ efficient annihilation

CONNECTOR  SECTOR

particles with 
GSM , GD and possibly Gcommon

Interactions which break one 
linear combination of global symmetries:

e.g. conserved  BO – BD  ;  broken  BO + BD

→ Δ(BO + BD)  =  2 ΔBO  = 2 ΔBD

Portal 
interactions

BO & BD 
preserving

 Asymmetric DM 
   [Review of asymmetric dark matter; 
   KP, Volkas (2013) ]
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STANDARD MODEL

gauge group
GSM = SU(3)c x SU(2)L x U(1)Y

→ accidental global BO 
→ strong pp, nn annihilation

DARK  SECTOR

gauge group GD  

→ accidental global BD

→ efficient annihilation

CONNECTOR  SECTOR

particles with 
GSM , GD and possibly Gcommon

Interactions which break one 
linear combination of global symmetries:

e.g. conserved  BO – BD  ;  broken  BO + BD

→ Δ(BO + BD)  =  2 ΔBO  = 2 ΔBD

Portal 
interactions
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 Asymmetric DM 
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Most phenomenological 
implications determined 
by low-energy physics.
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  Phenomenology:
  zoo of possibilities

● Does asymmetric DM pheno have to be unconventional ?  No.

➢ Many regimes where it behaves as collisionless CDM.
➢ Could have weak-scale interactions with ordinary matter.
➢ Main difference in (sufficiently) high-energy physics. 
➢ Scenario still motivated by cosmic coincidence.

● Is it interesting to consider regimes with unconventional pheno? Yes!

➢ Disagreement between collisionless CDM predictions and 
observations of galactic structure: May be telling us something 
non-trivial about DM.

➢ Potential for interesting signatures (not yet fully explored).

 Asymmetric DM 
   [Review of asymmetric dark matter; 
   KP, Volkas (2013) ]
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 Very successful in explaining large-scale structure.

 At galactic and subgalactic scales: simulations 
predict too rich structure. Various problems identified: 
“cusps vs cores”, “missing satellites”, “too big to fail”.

too much matter
in central few kpc of typical galaxies.

[an overview: Weinberg, Bullock, Governato, Kuzio de Naray, Peter; arXiv: 1306.0913]

Collisionless ΛCDM and galactic structure



23

 Baryonic physics

 Shift in the DM paradigm: 
Retain success of collisionless ΛCDM at large scales, suppress 
structure at small scales

➢ Warm DM,  e.g. keV sterile neutrinos
➢ Self-interacting DM

Continuum of possibilities: 

How warm or how self-interacting can / should DM be?

Small-scale galactic structure:
How to suppress it
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The energy & momentum exchange between DM particles:

 Heats up the low-entropy material

→ suppresses overdensities  [cusps vs cores]

→ suppresses star-formation rate  [missing satellites, “too big to fail”]

 Isotropises DM halos 
→ constrained by observed ellipticity of large haloes.

0.2 barn/GeV  <  σscatt / mDM   <   2 barn/GeV

 Self-interacting DM 

to affect 
dynamics of 
small halos

to retain 
ellipticity of 
large halos

[Theory: Spergel, Steinhardt (2000). Simulations: Rocha et al. (2012); Peter et al. (2012); Zavala et al (2012)]

 What is it good for?
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σscatt / mDM   ~   barn / GeV

 
DM coupled to a light or massless force mediator (long-range 
interaction)

● σscatt / mDM  ~ nuclear interaction strength

● If mediator sufficiently light: σscatt ~ 1 / vn , n > 0: 

➢ Significant effect on small halos (small velocity dispersion)
➢ Negligible effect on large halos (large velocity dispersion)

 Self-interacting DM  What interaction?

large!
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L ⊃ g φ χ χ

Self-interaction

Annihilation

Sizable self-interactions via light mediators imply minimum contribution to 
DM annihilation; annihilation cross-section could exceed canonical value 
for symmetric thermal relic DM

→ consider asymmetric DM (also motivated by ΩDM ~ ΩOM)

 Self-interacting DM 
   χ : dark matter

    φ : mediator
  mφ << mχ 

 Sketching a theory
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Asymmetric dark matter 
with (long-range) self-interactions
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● How to go about studying it?

● Many studies of long-range DM self-interactions (in either the 
symmetric or asymmetric regime) employ a Yukawa potential Vχχ (r)  =  ± α exp (– mφ r) / r

[upper bound on σscatt→ lower bound on mφ / upper bound on α]
● However, typically reality is often more complex for 

asymmetric DM with (long-range) self-interactions. 

Self-interacting asymmetric dark matter
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Self-interacting asymmetric dark matter

● Complex early-universe dynamics 

Formation of stable DM bound states → Multi-species DM, e.g. dark 
ions, dark atoms, dark nuclei.

● Implications for detection

– Variety of DM self-interactions → affect kinematics of halos.

– Variety of DM-nucleon interactions → direct detection.

– Variety of radiative DM processes → indirect detection.

● Consider classes of models, 
calculate cosmology + phenomenology self-consistently
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A minimal self-interacting 
asymmetric DM example: 

 

atomic dark matter
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 Atomic DM  Minimal assumptions

● DM relic density: dark particle-antiparticle asymmetry
● DM couples to a gauged U(1)D  [dark electromagnetism]

→ DM self-scattering in halos today via dark photons.
→ DM annihilation in the early universe into dark photons.

[specific models: Kaplan et al (2009, 2011); KP, Trodden, Volkas (2011); von Harling, KP, Volkas (2012)] 
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 Atomic DM  Minimal assumptions → rich dynamics 

Gauge invariance mandates DM be multi-component:

● Massless dark photon: 
Dark electric charge carried by dark protons pD

+ compensated 

by opposite charge carried by dark electrons eD
-.  They can 

bind in dark Hydrogen atoms HD.

● Mildly broken U(1)D, light dark photon:

Similar conclusion in most of the parameter space of interest.
[KP, Pearce, Kusenko (2014)]

● DM relic density: dark particle-antiparticle asymmetry
● DM couples to a gauged U(1)D  [dark electromagnetism]

→ DM self-scattering in halos today via dark photons.
→ DM annihilation in the early universe into dark photons.

[specific models: Kaplan et al (2009, 2011); KP, Trodden, Volkas (2011); von Harling, KP, Volkas (2012)] 
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G = GSM x  U(1)Bgen  x  U(1)D gauged

B
gen

gauged

D 

accidental 
global

B
D

p
D -2 1 2

e
D 0 -1 0

same as (B-L)V 
for SM particles ● Efficient annihilation

● DM self-scattering in halos

δLlow  = LSM +  pD (iD – mp)pD +  eD (iD – me) eD  + (ε/2) FY μν FD
μν

δLhigh ⊃ (1/Λ8) ( ucd sc u dc s) eD
c pD  

accidental global (B-L)V & BD

preserves   Bgen = (B-L)V –  BD 
     breaks   X      = (B-L)V +  BD

X asymmetry generation: Δ (B-L)V = ΔΒD
[e.g. via Affleck-Dine mechanism in susy models; 
von Harling, KP, Volkas (2012)]

Direct / Indirect detection

  Atomic DM  Model-building example
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  Dark asymmetry generation
  in U(1)D–neutral op (pDeD)

Tasym  >  mpD
 / 25

  Freeze-out of annihilations
   pD pD → γD γD    &  eD eD → γD γD

TFO  ≈  mpD,eD / 30

  Dark recombination, 
  pD + eD →HD + γD 

Trecomb  ≲ binding energy = αD
2μD / 2

  Residual ionisation fraction

  [If dark photon massive] 
  Dark phase transition

TPT ~ mγD / (8παD)1/2

x ion ≡
npD

npD
+ nHD

∼ min [ 1, 10−10 mpD
meD

αD
4 GeV 2 ]

[Kaplan, Krnjaic, Rehermann, Wells (2009); KP, Trodden, Volkas (2011);
Cyr-Racine, Sigurdson (2012); KP, Pearce, Kusenko (2014)]

t

 Cosmology Atomic DM 
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➢ Bound-state formation cannot be ignored.
➢ The formation of atomic bound states screens the 

DM self-interaction.
➢ Force mediator need not be “sufficiently massive” 

to satisfy constraints.
➢ Interplay between cosmology and strength of the 

interactions.

 Atomic DM  with a massive dark photon

Asymmetric DM coupled to a dark photon is 
multicomponent (pD , eD), and possibly atomic (HD) 

in much of the parameter space where 
the dark photon is light enough to mediate 
sizable (long-range) DM self-interactions

[KP, Pearce, Kusenko (2014)]
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● Multi-component DM with different inter- and intra-species 
interactions

HD – HD ,   HD – pD ,   HD – eD ,   pD – pD ,   eD – eD,   pD – eD

● Strong velocity dependence of scattering cross-sections

(valid away from resonances; b0, b1, b2 : fitting parameters, depend mildly on mp/me ) 
[Cline, Liu, Moore, Xue (2013)]

σ ion− ion ∝ v−4 , screened at μ ion− ion v < mγD

σHD−HD
≈ (αDμD )

−2 [ b0+b1 ( mHD
v 2

4μD αD
2 )+b2 ( mHD

v2

4μD αD
2 )

2

]
−1

 Self-interactions Atomic DM 
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● Non-monotonic behavior in αD, because 
of the formation of bound states (→ no 
upper limit on αD, or lower limit on mγD 

).

● Strong velocity dependence of 
scattering cross-sections allows for 
ellipticity constraints to be satisfied, 
while having a sizable effect on small 
scales.

● Collisionless CDM limits: 
large mHD

 → small number density 

large αD → tightly bound atoms

small αD → small interaction

small mγD
 →atom formation

large mγD
 → no atoms, ion-ion screening

[KP, Pearce, Kusenko (2014)]

Dark Hydrogen mass  mHD
  [GeV]

D
ar

k 
fin

e-
st

ru
ct

ur
e 

co
ns

ta
nt

  
α D 

Binding energy  Δ = 0.5 MeV
Dark photon mass mγD

 = 1 eV

 Self-scattering in halos

co
lli

si
on

le
ss

 Atomic DM 
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 Self-scattering in halos

[KP, Pearce, Kusenko (2014)]

● Non-monotonic behavior in αD, because 
of the formation of bound states (→ no 
upper limit on αD, or lower limit on mγD 

).

● Strong velocity dependence of 
scattering cross-sections allows for 
ellipticity constraints to be satisfied, 
while having a sizable effect on small 
scales.

● Collisionless CDM limits: 
large mHD

 → small number density 

large αD → tightly bound atoms

small αD → small interaction

small mγD
 →atom formation

large mγD
 → no atoms, ion-ion screening

D
ar

k 
fin

e-
st

ru
ct

ur
e 

co
ns

ta
nt

  
α D 

Dark Hydrogen mass  mHD
  [GeV]

Binding energy  Δ = 3 MeV
Dark photon mass mγD

 = 1 MeV

co
llis

ionless

 Atomic DM 
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 Self-scattering in halos

● DM in bound states: even 
massless mediators viable 
(and very interesting:  
v-dependent scattering)

● If DM mostly ionized, and  
mDM < 500 GeV  →sizable 
mediator mass needed

● Even if DM mostly ionized, 
very light / massless 
mediators still good,    
if mDM > 500 GeV 

ionisation fraction  xion = 0.6
dark proton mass mpD

 = dark electron mass meD
 

da
rk

 p
ho

to
n 

m
as

s 
 m

γ  [G
eV

]

[KP, Pearce, Kusenko (2014)]

mpD 
,  meD

  [GeV]

 Atomic DM 
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 Indirect detection: δL = (ε/2) FY FD

 Bound-state formation in galaxies today from ionized component

  pD
+  +   eD

– 
  →   HD + γD  

         γD  →  e+  e–     (for mγ > 1.022 MeV)

[Pearce, KP, Kusenko (2015)]

 Level transitions (dark Hydrogen excitations and de-excitations)

   HD + HD → HD + HD
*,    HD

* → HD + γD, γD  → e+ e– 

 Atomic DM 
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Indirect detection:
dark-atom formation in halos

Bound−state formation :
d ΓBSF

dV
= (σBSF v rel ) x ion

2 ρDM
2

mHD

2

Annihilation of symmetric DM :
d Γann

dV
= (σ ann v rel )

ρDM
2

mDM
2

sBSF≡
x ion

2
(σBSF v rel )

mHD

2
[GeV−4 ]

Interplay between early 
universe cosmology and 
strength of interaction→ 
min and max signal strengthxion = 1 xion < 1

[Pearce, KP, Kusenko (2015)]

 Atomic DM 
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Indirect detection:
atomic DM  vs  annihilating DM

atomic DM : δE = binding energy ≪mHD

annihilating DM : δE = 2 mDM

[Pearce, KP, Kusenko (2015)]

 Atomic DM 
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 511 keV line in the Milky Way 
 from dark-atom formation

fully ionized DM  partially ionized DM

mγD = 2 MeV;  contracted NFW profile (γ = 1.4)

Insufficient annihilation 
in early universe

Overproduction of 
photon continuum

[Pearce, KP, Kusenko (2015)]

 Atomic DM 
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Conclusion

● Symmetric thermal-relic WIMP DM ↔ collisionless CDM
       Asymmetric (thermal relic) DM ↔ self-interacting DM

               independently motivated

● Dark-sector dynamics can be complex. Interplay between 
cosmology and strength of fundamental interactions 
determines low-energy phenomenology: 

The early universe regulates any manifestation of DM we 
may hope to detect today.

● Lots more to think about and to calculate!
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