## Galactic Cosmic rays as a dark matter probe

Carmelo Evoli (Universität Hamburg)





Oslo University - 22th of April 2015

# A 100 years old discovery!





Victor Hess



W. Bothe



W. Kolhorster

## High-energy photons or charged particles?



## High-energy photons or charged particles?



Bruno Rossi in his laboratory in Florence



The CR telescope used by Bruno Rossi during the expedition in Eritrea

#### Über die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau.

Von Bruno Rossi in Florenz, Arcetri.

Mit 16 Abbildungen. (Eingegangen am 24. Februar 1933.)



### A unique particle physics laboratory



Carl D. Anderson



@ London's Westminster Abbey, adjacent to Newton's grave.



The first anti-matter evidence was found in the cosmic radiation in 1933.

# Today

# Cosmic-ray flux

 Almost a perfect power-law over 12 energy decades.



- Almost a perfect power-law over 12 energy decades.
- Observed at energy higher than terrestrial laboratories!



- Almost a perfect power-law over 12 energy decades.
- Observed at energy higher than terrestrial laboratories!
- Direct measurements versus air-cascade reconstructions.



- Almost a perfect power-law over 12 energy decades.
- Observed at energy higher than terrestrial laboratories!
- Direct measurements versus air-cascade reconstructions.
- Anti-matter component.



- Almost a perfect power-law over 12 energy decades.
- Observed at energy higher than terrestrial laboratories!
- Direct measurements versus air-cascade reconstructions.
- Anti-matter component.
- Transition from galactic to extra-galactic?



- Almost a perfect power-law over 12 energy decades.
- Observed at energy higher than terrestrial laboratories!
- Direct measurements versus air-cascade reconstructions.
- Anti-matter component.
- Transition from galactic to extra-galactic?
- Energy density in equipartition with starlight, turbulent gas motions and magnetic fields.



# The SN paradigm



Aharonian et al., Nature, 2007

 $L_{\rm SN} \sim R_{\rm SN} E_{\rm kin} \sim 3 \times 10^{41} \, {\rm erg/s}$ 

hadronic:  $p \, p_{\rm ISM} \to \pi^0 \to \gamma \gamma$ or leptonic:  $e^- \gamma_{\rm ISRF} \to e^- \gamma$ 



Fritz Zwicky

### The pion-bump as hadronic signature



### The pion-bump as hadronic signature



## Cosmic-ray composition



### Cosmic-ray clocks



# Galactic Propagation



### L = 1 - 10 kpc

# Galactic Propagation



### L = 1-10 kpc

#### The diffusion equation:

$$\frac{\partial N^{i}}{\partial t} - \nabla \cdot (D\nabla - v_{c})N^{i} + \frac{\partial}{\partial p} \left( \dot{p} - \frac{p}{3} \nabla \cdot v_{c} \right) N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{N^{i}}{p^{2}} = Q^{i}(p, r, z) + \sum_{j > i} c \beta n_{gas}(r, z) \sigma_{ij} N^{j} - c \beta n_{gas} \sigma_{in}(E_{k}) N^{i}$$

#### Source term:

- Assumed to trace the SNR in the Galaxy
- Assumed the same power-law everywhere

#### The diffusion equation:

$$\frac{\partial N^{i}}{\partial t} - \nabla \cdot (D\nabla - v_{c})N^{i} + \frac{\partial}{\partial p} \left( \dot{p} - \frac{p}{3} \nabla \cdot v_{c} \right) N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{N^{i}}{p^{2}} = Q^{i}(p, r, z) + \sum_{j > i} c \beta n_{gas}(r, z) \sigma_{ij} N^{j} - c \beta n_{gas} \sigma_{in}(E_{k}) N^{i}$$

Spallation cross-section:
appearance of nucleus i due to spallation of nucleus j

#### The diffusion equation:

$$\frac{\partial N^{i}}{\partial t} - \nabla \cdot (D\nabla - v_{c})N^{i} + \frac{\partial}{\partial p} \left( \dot{p} - \frac{p}{3} \nabla \cdot v_{c} \right) N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{N^{i}}{p^{2}} = Q^{i}(p, r, z) + \sum_{j > i} c \beta n_{gas}(r, z) \sigma_{ij} N^{j} - c \beta n_{gas} \sigma_{in}(E_{k}) N^{i}$$

#### Spallation cross-section:

- appearance of nucleus i due to spallation of nucleus j
- total inelastic cross-section: disappearance of nucleus i

The diffusion equation:

$$\frac{\partial N^{i}}{\partial t} \underbrace{\nabla \cdot (D\nabla - v_{c})N^{i} + \frac{\partial}{\partial p} \left(\dot{p} - \frac{p}{3} \nabla \cdot v_{c}\right)N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{N^{i}}{p^{2}}}{Q^{i}(p, r, z) + \sum_{j > i} c \beta n_{gas}(r, z) \sigma_{ij} N^{j} - c \beta n_{gas} \sigma_{in}(E_{k}) N^{i}}$$

Diffusion tensor:

 $D(E) = D_0 (\rho/\rho_0)^{\delta} \exp(z/z_t)$ 

The diffusion equation:

$$\frac{\partial N^{i}}{\partial t} - \nabla \cdot (D\nabla - v_{c})N^{i} + \frac{\partial}{\partial p} \left( p - \frac{p}{3} \nabla \cdot v_{c} \right) N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial}{\partial p} \frac{N^{i}}{p^{2}} = Q^{i}(p, r, z) + \sum_{i > i} c \beta n_{gas}(r, z) \sigma_{ij} N^{j} - c \beta n_{gas} \sigma_{in}(E_{k}) N^{i}$$

Energy losses:

- ionization, Coulomb, synchrotron
- adiabatic convection

The diffusion equation:

$$\frac{\partial N^{i}}{\partial t} - \nabla \cdot (D\nabla - v_{c})N^{i} + \frac{\partial}{\partial p} \left( \dot{p} - \frac{p}{3} \nabla \cdot v_{c} \right) N^{i} - \frac{\partial}{\partial p} p^{2} D_{pp} \frac{\partial N^{i}}{\partial p p^{2}} = Q^{i}(p, r, z) + \sum_{j > i} c \beta n_{gas}(r, z) \sigma_{ij} N^{j} - c \beta n_{gas} \sigma_{in}(E_{k}) N^{i}$$

Reacceleration:  $D_{pp} \propto \frac{p^2 v_A^2}{D}$ 

### Fitting local observables



$$D(E) = \frac{D_0 (E/E_0)^{\delta} \exp(z/z_t)}{\delta}$$

The best constraints on the halo scale height (L > 2 kpc) are obtained from the galactic diffuse synchrotron emission (G.Di Bernardo, CE, et al., JCAP, 2013)

### Fitting local observables



$$D(E) = \frac{D_0 (E/E_0)^{\delta} \exp(z/z_t)}{\delta}$$

The best constraints on the halo scale height (L > 2 kpc) are obtained from the galactic diffuse synchrotron emission (G.Di Bernardo, CE, et al., JCAP, 2013)

### Fitting local observables



$$D(E) = \frac{D_0 (E/E_0)^{\delta} \exp(z/z_t)}{\delta}$$

The best constraints on the halo scale height (L > 2 kpc) are obtained from the galactic diffuse synchrotron emission (G.Di Bernardo, CE, et al., JCAP, 2013)

# AMS-02 (2011-2021)





### Is it possible being not-local?

- we can measure the anisotropy:
- we can observe diffuse emissions:



 $\delta \propto \nabla n_{\rm cr}$ 



## The anisotropy problem

Macro Collaboration, PRD, 2003; Super-Kamiokande Collaboration, PRD, 2007



## The gradient problem

Strong & Mattox, A&A, 1996; Strong et al., ApJ, 2000



 CR distribution inferred from gamma-ray data (method goes back to SAS-2/COS-B era) is **flatter** than that computed assuming the observed **SNR** (source) profile.

# FERMI (2008-2018)



## The gradient problem in the FERMI era

• The extremely accurate gamma ray maps that Fermi is providing are useful to trace the CR distribution throughout all the Galaxy!



### The gradient problem in the FERMI era

Fermi Collaboration, ApJ, 2011



FERMI detected **more** γ's than a prediction based on SNR distribution and standard CR halo: more CR sources, more "dark gas" or larger CR halo?

## Diffusion is more complicate than that!

How do the diffusion coefficient depends on turbulence?



If the turbulent field is very low:

If the turbulent component is comparable to the regular field:



• In the inner galaxy, where turbulence is high, the parallel and perp. diffusion are similar values and the perpendicular escape is the dominant one:

$$\frac{T_{\parallel}}{T_{\perp}} \simeq \left(\frac{R_{\rm arm}}{H}\right)^2 \frac{D_{\perp}}{D_{\parallel}} \simeq 4 \times 10^2 \left(\frac{H}{4 \text{ kpc}}\right)^{-2} \frac{D_{\perp}}{D_{\parallel}}$$

### How to solve the gradient problem



• In the regions where CR sources are more abundant turbulence is higher then perpendicular escape is faster, more CR are removed.

### Results

CE, D. Gaggero, D. Grasso & L. Maccione, PRL, 2012



### Anisotropy prediction

CE, D. Gaggero, D. Grasso & L. Maccione, PRL, 2012



### The dark side

# The challenge!



Andromeda : a MW-like galaxy





### The importance of being WIMP



# Why antiprotons?

- we know the background with good accuracy
- in a democratic WIMP model the ratio between DM signal and background from standard astrophysical sources is usually much larger in the antiproton channel with respect to all other indirect detection methods.



## Playing with anti-protons from DM



|       |             |      |                                      |       |                    |           | $dv_c/dz$  | _              | _          |             | _                  | Color    |
|-------|-------------|------|--------------------------------------|-------|--------------------|-----------|------------|----------------|------------|-------------|--------------------|----------|
| Model | $z_t$ (kpc) | δ    | $D_0(10^{28} \text{ cm}^2/\text{s})$ | η     | $v_A \ (\rm km/s)$ | γ         | (km/s/kpc) | $\chi^2_{B/C}$ | $\chi^2_p$ | $\Phi$ (GV) | $\chi^2_{\bar{p}}$ | in Figs. |
| KRA   | 4           | 0.50 | 2.64                                 | -0.39 | 14.2               | 2.35      | 0          | 0.6            | 0.47       | 0.67        | 0.59               | Red      |
| KOL   | 4           | 0.33 | 4.46                                 | 1.    | 36.                | 1.78/2.45 | 0          | 0.4            | 0.3        | 0.36        | 1.84               | Blue     |
| THN   | 0.5         | 0.50 | 0.31                                 | -0.27 | 11.6               | 2.35      | 0          | 0.7            | 0.46       | 0.70        | 0.73               | Green    |
| THK   | 10          | 0.50 | 4.75                                 | -0.15 | 14.1               | 2.35      | 0          | 0.7            | 0.55       | 0.69        | 0.62               | Orange   |
| CON   | 4           | 0.6  | 0.97                                 | 1.    | 38.1               | 1.62/2.35 | 50         | 0.4            | 0.53       | 0.21        | 1.32               | Gray     |

### Varying the halo size in the range 2 - 10 kpc



$$D(E) = \frac{D_0 (E/E_0)^{\delta} \exp(z/z_t)}{\delta}$$

The best constraints on the halo scale height (L > 2 kpc) are obtained from the galactic diffuse synchrotron emission (G.Di Bernardo, CE, D.Gaggero, D.Grasso and L.Maccione, JCAP, 2013)

# Varying the halo size in the range 2 - 10 kpc

CE, I.Cholis, D.Grasso, L.Maccione & P.Ullio, PRD, 2012, 1108.0664



Much larger uncertainty in the DM fluxes!

The ratio of the local flux obtained considering sources with distance smaller than  $R_S$  to that obtained with  $R_S = \infty$  (see also R. Taillet & D. Maurin, A&A, 2003)

### Unavoidable uncertainties?

CE, I.Cholis, D.Grasso, L.Maccione & P.Ullio, PRD, 2012, 1108.0664



Changing diffusion conditions in the inner Galaxy gives significant effect on the DM contribution without affecting the local observables Only a comprehensive study including local and non-local observables may succeed in reducing safely the propagation uncertainties.

### How to bracket the propagation uncertainties?



### How to bracket the propagation uncertainties?





### AMS-02 anomaly?

CE, D.Gaggero & D.Grasso, 1504.05175

