High-Energy Neutrinos

. Michael Kachelrieß

NTNU, Trondheim

Introduction

- IceCube events
 - properties
 - implications
- Astrophysical sources
 - point sources versus diffuse flux
 - Galactic sources versus extragalactic
- PeV dark matter
- Summary

∃ ▶ ∢

- Introduction
- IceCube events
 - properties
 - implications
 - or better speculations...
- Astrophysical sources
 - point sources versus diffuse flux
 - Galactic sources versus extragalactic
- PeV dark matter
- Summary

∃ > .

- Introduction
- IceCube events
 - properties
 - implications
 - or better speculations...
- Astrophysical sources
 - point sources versus diffuse flux
 - Galactic sources versus extragalactic
- PeV dark matter
- Summary

3

- Introduction
- IceCube events
 - properties
 - implications
 - or better speculations...
- Astrophysical sources
 - point sources versus diffuse flux
 - Galactic sources versus extragalactic
- PeV dark matter
- Summary

∃ >

- Introduction
- IceCube events
 - properties
 - implications
 - or better speculations...
- Astrophysical sources
 - point sources versus diffuse flux
 - Galactic sources versus extragalactic
- PeV dark matter

Summary

∃ >

1912: Victor Hess discovers cosmic rays

"The results are most easily explained by the assumption that radiation with very high penetrating power enters the atmosphere from above; the Sun can hardly be considered as the source."

Hess' and Kolhoerster's results:

Michael Kachelrieß (NTNU Trondheim)

1912: Victor Hess discovers cosmic rays

Two main questions

- what are they?
- what are their sources?

Image: A matrix

• = •

Hess' and Kolhoerster's results:

What do we know 100 years later?

What do we know 100 years later?

HE neutrinos and photons are unavoidable byproducts of HECRs

- astrophysical models, cosmogenic flux:
 - ▶ ratio I_{ν}/I_p determined by nuclear composition of UHECRs and source evolution
 - ratio I_{ν}/I_{γ} determined by isospin

(3)

HE neutrinos and photons are unavoidable byproducts of HECRs

- astrophysical models, cosmogenic flux:
 - \blacktriangleright ratio I_{ν}/I_{p} determined by nuclear composition of UHECRs and source evolution
 - ratio I_{ν}/I_{γ} determined by isospin
- astrophysical models, direct flux:
 - model dependent fluxes: \propto target density, ...

(3)

HE neutrinos and photons are unavoidable byproducts of HECRs

- astrophysical models, cosmogenic flux:
 - \blacktriangleright ratio I_{ν}/I_{p} determined by nuclear composition of UHECRs and source evolution
 - ratio I_{ν}/I_{γ} determined by isospin
- astrophysical models, direct flux:
 - model dependent fluxes: \propto target density, . . .
- top-down DM models:
 - large fluxes with $I_{\nu} \gg I_p$
 - ratio I_{ν}/I_p fixed by fragmentation

A B A A B A

HE neutrinos and photons are unavoidable byproducts of HECRs

- astrophysical models, cosmogenic flux:
 - \blacktriangleright ratio I_{ν}/I_{p} determined by nuclear composition of UHECRs and source evolution
 - ratio I_{ν}/I_{γ} determined by isospin
- astrophysical models, direct flux:
 - \blacktriangleright model dependent fluxes: \propto target density, \ldots
- top-down DM models:
 - large fluxes with $I_{\nu} \gg I_p$
 - ratio I_{ν}/I_p fixed by fragmentation
- prizes to win:
 - astronomy above 100 TeV
 - identification of CR sources
 - determination galactic–extragalactic transition of CRs
 - test/discover new particle physics

▲日▼ ▲圖▼ ▲国▼ ▲国▼

What is the bonus of HE neutrino astronomy?

• astronomy with VHE photons restricted to few Mpc:

What is the bonus of HE neutrino astronomy?

• astronomy with VHE photons restricted to few Mpc:

HE neutrino astronomy vs UHECRs?

HE neutrino astronomy vs UHECRs?

What is the bonus of HE neutrino astronomy?

Neutrino astronomy: small $\sigma_{\nu N}$

• large λ_{ν} but also "large" uncertainty $\langle \delta \vartheta \rangle \gtrsim 0.1^{\circ} - 1^{\circ}$

(日) (同) (三) (三)

What is the bonus of HE neutrino astronomy?

Neutrino astronomy: small $\sigma_{\nu N}$

- large λ_{ν} but also "large" uncertainty $\langle \delta \vartheta \rangle \gtrsim 0.1^{\circ} 1^{\circ}$
- \bullet small event numbers: $\sim 1/{\rm yr}$ for PAO or ICECUBE

 \Rightarrow identification of steady sources challenging

What is the bonus of HE neutrino astronomy?

Neutrino astronomy: small $\sigma_{\nu N}$

- large λ_{ν} but also "large" uncertainty $\langle \delta \vartheta \rangle \gtrsim 0.1^{\circ} 1^{\circ}$
- \bullet small event numbers: $\sim 1/{\rm yr}$ for PAO or ICECUBE

- \Rightarrow identification of steady sources challenging
 - correlation with AGN flares, GRBs
 - diffuse flux detected first

IceCube

・ロト ・聞ト ・ヨト ・ヨト

Michael Kachelrieß (NTNU Trondheim)

Michael Kachelrieß (NTNU Trondheim)

990

Icecube: 2 events presented at Neutrino 2012

• 2 cascade events close to $E_{\rm min} = 10^{15} \, {\rm eV}$, bg = 0.14

Two events passed the selection criteria

2 events / 672.7 days - background (atm. μ + conventional atm. ν) expectation 0.14 events preliminary p-value: 0.0094 (2.36 σ)

Michael Kachelrieß (NTNU Trondheim)

Oslo 2014 11 / 33

Icecube: prompt neutrino analysis

Conventional, prompt and astrophysical neutrinos can't be decoupled and need to be looked at together in a HE neutrino analysis.

୍ର <u>୬</u> ବ ବ

36 events with ~ 14 bg: flukes are possible. . .

36 events with ~ 14 bg: flukes are possible...

anisotropies

- event cluster around GC
- enhancement close to Galactic plane?

IceCube events: 2 vears 28 events

IceCube events: 3 years 36 events

・ロト ・聞ト ・ヨト ・ヨト

KS test for ansiotropy in RA

KS test for ansiotropy in RA

• p=20% for 2 yr, p=8% for 3 yr data set

36 events with ~ 14 bg: flukes are possible...

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?

36 events with ~ 14 bg: flukes are possible...

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?
- flux is large, close to
 - Waxman-Bahcall estimate
 - ▶ cascade limit: slope "is steepening", $\alpha \sim 2.3 2.5$, conflict?

36 events with ~ 14 bg: flukes are possible. . .

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?
- flux is large, close to
 - Waxman-Bahcall estimate
 - cascade limit: slope "is steepening", $\alpha \sim 2.3 2.5$, conflict?
- CR energies $E_p \sim 20 E_\nu \Rightarrow$ up to few $\times 10^{16}$ eV,
 - high for Galactic CRs
 - Iowish for cosmogenic, AGN, GRB
IceCube events: specifications for candidate sources

36 events with ~ 14 bg: flukes are possible...

- anisotropies
 - event cluster around GC
 - enhancement close to Galactic plane gone?
- flux is large, close to
 - Waxman-Bahcall estimate
 - cascade limit: slope "is steepening", $\alpha \sim 2.3 2.5$, conflict?
- CR energies $E_p \sim 20 E_\nu \Rightarrow$ up to few $\times 10^{16} \, {\rm eV}$,
 - high for Galactic CRs
 - Iowish for cosmogenic, AGN, GRB
- initial flavor ratio consistent with 1:1:1?

Flavour ratio

- ratio $R = N_{\rm sh}/N_{\rm tr} \sim (N_e + N_{\tau})/N_{\mu} \sim 21/7$ consistent with 1:1:1
- including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent '14]

Image: Image:

Flavour ratio

- ratio $R = N_{\rm sh}/N_{\rm tr} \sim (N_e + N_{\tau})/N_{\mu} \sim 21/7$ consistent with 1:1:1
- including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent '14]

(3)

Sources of high-energy neutrinos

Galactic sources:

- Galactic plane and bulge
- SNR
- hypernova, GRB
- micro-quasar, ...

Extragalactic sources:

- diffuse flux from normal/starburst galaxies
- cosmogenic neutrinos
- diffuse flux from AGN
- GRB
- single AGN, ...

Dark matter decays, topological defects

Neutrinos from Galactic Sea CRs: "Hillas" $X = 30 \text{ g/cm}^2$

Neutrinos from Galactic Sea CRs: "escape" $X = 30 \text{ g/cm}^2$

Neutrinos from Galactic Sea CRs: $X = 30 \text{ g/cm}^2$

Neutrinos from Galactic Sea CRs: $X = 30 \text{ g/cm}^2$

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

- τ_{pp} is too small even towards GC
- gas is concentrated as $n(z) \sim n_0 \exp[-(z|/z_{12})^2]$ with $z_{12} \sim 0.2 \, {\rm kpc}$

results apply also to other normal galaxies as starburst galaxies:

→ 3 → 4 3

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

- au_{pp} is too small even towards GC
- gas is concentrated as $n(z) \sim n_0 \exp[-(z|/z_{12})^2]$ with $z_{12} \sim 0.2 \, {\rm kpc}$

results apply also to other normal galaxies as starburst galaxies:

• magnetic fields factor 100 higher:

A B F A B F

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

- au_{pp} is too small even towards GC
- gas is concentrated as $n(z) \sim n_0 \exp[-(z|/z_{12})^2]$ with $z_{12} \sim 0.2 \, {\rm kpc}$

results apply also to other normal galaxies as starburst galaxies:

- magnetic fields factor 100 higher:
- if knee is caused by
 - diffusion: $E_{\rm cr} \sim B$, neutrino knee at few $\times 10^{16} \, {\rm eV}$
 - ▶ source: $E_{\rm max} \sim B_{\rm CR}$, neutrino knee at few $\times 10^{14} \, {\rm eV}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• at low energies:

many sources, large confinement times

• = • •

• at low energies:

- many sources, large confinement times
- \Rightarrow average CR sea plus few recent sources

∃ >

- at low energies:
 - many sources, large confinement times
 - \Rightarrow average CR sea plus few recent sources

• close to the knee:

- CRs in PeV range spread fast
- few extreme sources

- at low energies:
 - many sources, large confinement times
 - \Rightarrow average CR sea plus few recent sources

close to the knee:

- CRs in PeV range spread fast
- few extreme sources
- \Rightarrow inhomogenous CR sea, extended sources
- ⇒ no clear distinction between point sources vs. Galactic bulge + plane cases

Point source in gamma-ray

• source HESS J1825-137 [Neronov, Semikoz, Tchernin '13] 0.00660 Cygnus region 0.00500 0.00450 Crab o 0.00400 0.00350 HESS J1825 region 225.000 0.00300 **Salactic Center** 0.00250 Vela region HESS J1632 region 0.00200 Kookaburra region 0.00150

・ロト ・聞ト ・ヨト ・ヨト

Gamma-ray point sources

• flux from HESS J1825-137, GC and GP

(3)

(Isotropic) photon limits

[Ahlers, Murase '13]

Diffuse ν flux from normal and starburst galaxies

Diffuse ν flux from normal and starburst galaxies

[Loeb, Waxman '06]

- too optimistic?
 - fraction of starbust galaxies?
 - all calorimetric?

Reminder: The photon horizon

Michael Kachelrieß (NTNU Trondheim)

Development of the elmag. cascade:

-

Development of the elmag. cascade:

• analytical estimate:

[Strong '74, Berezinsky, Smirnov '75]

$$J_{\gamma}(E) = \begin{cases} K(E/\varepsilon_{\rm X})^{-3/2} & \text{ at } E \leq \varepsilon_{\rm X} \\ K(E/\varepsilon_{\rm X})^{-2} & \text{ at } \varepsilon_{\rm X} \leq E \leq \varepsilon_{\rm a} \\ 0 & \text{ at } E > \varepsilon_{\rm a} \end{cases}$$

- three regimes:
 - Thomson cooling:

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\rm bb} E_e^2}{m_e^2} \approx 100 \,\,\mathrm{MeV} \,\,\left(\frac{E_e}{1 \,\mathrm{TeV}}\right)^2$$

- plateau region: ICS $E_{\gamma} \sim E_e$
- above pair-creation threshold $s_{\min} = 4E_{\gamma}\varepsilon_{bb} = 4m_e^2$: flux exponentially suppressed

Fermi limit for cosmogenic neutrinos:

[Berezinsky et al. '10]

Cascade limit: $\alpha = 2.1$

(4) (5) (4) (5)

47

Cascade limit: $\alpha = 2.3$

- 4 同 6 4 日 6 4 日 6

Cascade limit: $\alpha = 2.5$

- 4 @ > - 4 @ > - 4 @ >

IceCube limit on GRBs

• 215 optically detected GRBs stacked

• = • •

IceCube limit on GRBs

• 215 optically detected GRBs stacked

re-incarnation of SHDM idea for AGASA excess:

- non-hermal DM
- avoids cascacde limit
- Galactic anisotropy
- \bullet some option to move initial flavor ration 1:2:0 towards 1:0:0

re-incarnation of SHDM idea for AGASA excess:

- non-hermal DM
- avoids cascacde limit
- Galactic anisotropy
- \bullet some option to move initial flavor ration 1:2:0 towards 1:0:0

re-incarnation of SHDM idea for AGASA excess:

- non-hermal DM
- avoids cascacde limit
- Galactic anisotropy
- \bullet some option to move initial flavor ration 1:2:0 towards 1:0:0

[Esmaili, Serpico '13]

Summary

- excess towards GC, consistent (?) with γ -ray data
- \Rightarrow partly Galactic origin
- Ino enhancement towards Galactic plane:
 - gas too narrow, flux too low
- Some tension with (Northern) γ -ray limits
- extragalactic:
 - dominant isotropic component
 - diffuse, difficult to identify
 - spectrum $\alpha = -2.45$: cascade limit?
- Sev dark matter: angular distibution follows DM profile

Summary

- excess towards GC, consistent (?) with γ -ray data
- \Rightarrow partly Galactic origin
- Ino enhancement towards Galactic plane:
 - gas too narrow, flux too low
- Some tension with (Northern) γ -ray limits
- extragalactic:
 - dominant isotropic component
 - diffuse, difficult to identify
 - spectrum $\alpha = -2.45$: cascade limit?
- Sev dark matter: angular distibution follows DM profile
- excess towards GC, consistent (?) with γ -ray data
- \Rightarrow partly Galactic origin
- Ino enhancement towards Galactic plane:
 - gas too narrow, flux too low
- Some tension with (Northern) γ -ray limits
- extragalactic:
 - dominant isotropic component
 - diffuse, difficult to identify
 - spectrum $\alpha = -2.45$: cascade limit?
- PeV dark matter: angular distibution follows DM profile

- excess towards GC, consistent (?) with γ -ray data
- \Rightarrow partly Galactic origin
- Ino enhancement towards Galactic plane:
 - gas too narrow, flux too low
- Some tension with (Northern) γ -ray limits
- extragalactic:
 - dominant isotropic component
 - diffuse, difficult to identify
 - spectrum $\alpha = -2.45$: cascade limit?
- Sev dark matter: angular distibution follows DM profile

- excess towards GC, consistent (?) with γ -ray data
- \Rightarrow partly Galactic origin
- Ino enhancement towards Galactic plane:
 - gas too narrow, flux too low
- Some tension with (Northern) γ -ray limits

extragalactic:

- dominant isotropic component
- diffuse, difficult to identify
- spectrum $\alpha = -2.45$: cascade limit?
- Sev dark matter: angular distibution follows DM profile

- excess towards GC, consistent (?) with γ -ray data
- \Rightarrow partly Galactic origin
- Ino enhancement towards Galactic plane:
 - gas too narrow, flux too low
- Some tension with (Northern) γ -ray limits
- extragalactic:
 - dominant isotropic component
 - diffuse, difficult to identify
 - spectrum $\alpha = -2.45$: cascade limit?

S PeV dark matter: angular distibution follows DM profile