Beyond the Standard Model with global fits: then, now and tomorrow

Pat Scott

Imperial College London

Imperial College London

Outline

The problem

- Introduction
- Global fits
- Including astroparticle observables

The current state of the game

- Present limits
- Coverage
- Scanning challenges

Future challenges

- Respectable LHC likelihoods
- Parameter space Theory space

Imperial College London

Introduction Global fits Including astroparticle observables

Outline

Imperial College London

Introduction Global fits Including astroparticle observables

The Standard Model of particle physics

Imperial College London

Introduction Global fits Including astroparticle observables

The Standard Model of particle physics

Imperial College London

Introduction Global fits Including astroparticle observables

The Standard Model of particle physics

19 free parameters: (10 masses, 3 force strengths, 4 quark mixing parameters, 2 'vacuumy things')

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

The problem Future challenges Introduction

The Standard Model of particle physics

and friends++

Imperial College

London

19 free parameters: (10 masses, 3 force strengths, 4 guark mixing parameters, 2 'vacuumy things')

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

The problem Future challenges Introduction

The Standard Model of particle physics

19 free parameters: (10 masses, 3 force strengths, 4 guark mixing parameters, 2 'vacuumy things') ロト (同) (三) (三) 三 三 の ()

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

The problem Future challenges Introduction

The Standard Model of particle physics

19 free parameters: (10 masses, 3 force strengths, 4 quark mixing parameters, 2 'vacuumy things')

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

Introduction

The Standard Model of particle physics

19 free parameters: (10 masses, 3 force strengths, 4 guark mixing parameters, 2 'vacuumy things')

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

Introduction

The Standard Model of particle physics

19 free parameters: (10 masses, 3 force strengths, 4 guark mixing parameters, 2 'vacuumy things')

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

Introduction Global fits Including astroparticle observables

Searching for new physics

Many reasons to look for physics Beyond the Standard Model (BSM):

- Higgs mass (hierarchy problem + vacuum stability)
- Dark matter exists
- Baryon asymmetry
- Neutrino masses and mixings

Imperial College

Introduction Global fits Including astroparticle observables

Searching for new physics

Many reasons to look for physics Beyond the Standard Model (BSM):

- Higgs mass (hierarchy problem + vacuum stability)
- Dark matter exists
- Baryon asymmetry
- Neutrino masses and mixings

So what do we do about it?

- Make new particles at high-E colliders
- Study rare processes at high-L colliders
- Hunt for dark matter (direct + indirect detection)
- Look at cosmological observables (CMB, reionisation, etc)
- Look for impacts of unexpected or missing neutrinos Imperial College London

Introduction Global fits Including astroparticle observables

Searching for new physics

Many reasons to look for physics Beyond the Standard Model (BSM):

- Higgs mass (hierarchy problem + vacuum stability)
- Dark matter exists
- Baryon asymmetry
- Neutrino masses and mixings

So what do we do about it?

- Make new particles at high-E colliders
- Study rare processes at high-L colliders
- Hunt for dark matter (direct + indirect detection)
- Look at cosmological observables (CMB, reionisation, etc)
- Look for impacts of unexpected or missing neutrinos Imperial College London

Introduction Global fits Including astroparticle observables

Combining searches I

Question

How do we know which models are in and which are out?

Introduction Global fits Including astroparticle observables

Combining searches I

Question

How do we know which models are in and which are out?

Answer

Combine the results from different searches

- Simplest method: take different exclusions, overplot them, conclude things are "allowed" or "excluded"
- Simplest BSM example: the scalar singlet model

(Cline, Kainulainen, PS & Weniger, PRD, 1306.4710)

Introduction Global fits Including astroparticle observables

Combining searches II

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many different constraints?

Introduction Global fits Including astroparticle observables

Combining searches II

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many different constraints?

Introduction Global fits Including astroparticle observables

Combining searches III

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many parameters?

Introduction Global fits Including astroparticle observables

Combining searches III

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many parameters?

Answer

Need to

- scan the parameter space (smart numerics)
- interpret the combined results (Bayesian / frequentist)
- project down to parameter planes of interest (marginalise / profile)

\rightarrow global fits

llege

Introduction Global fits Including astroparticle observables

Beyond-the-Standard-Model Scanning

Goals:

- Given a particular theory, determine which parameter combinations fit all experiments, and how well
- Given multiple theories, determine which fit the data better, and quantify how much better

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

Introduction Global fits Including astroparticle observables

 \implies parameter estimation

Beyond-the-Standard-Model Scanning

Goals:

- Given a particular theory, determine which parameter combinations fit all experiments, and how well
- Given multiple theories, determine which fit the data better, and quantify how much better \implies model comparison

Introduction Global fits Including astroparticle observables

 \implies parameter estimation

Beyond-the-Standard-Model Scanning

Goals:

- Given a particular theory, determine which parameter combinations fit all experiments, and how well
- Given multiple theories, determine which fit the data better, and quantify how much better \implies model comparison

Why simple IN/OUT analyses are not enough...

- Only partial goodness of fit, no measure of convergence, no idea how to generalise to regions or whole space.
- Frequency/density of models in IN/OUT scans is not proportional to probability

 means nothing.

Introduction Global fits Including astroparticle observables

Know your (supersymmetric) parameter scans

Global fits:

Quantitative? per-point: always overall: always

Strege et al JCAP, 1212.2636

MasterCode, EPJC, 1207.7315

10

Not global fits:

Quantitative? per-point: sometimes overall: never

10

Introduction Global fits Including astroparticle observables

Know your (supersymmetric) parameter scans

Global fits:

Quantitative? per-point: always overall: always

Strege et al JCAP, 1212.2636

MasterCode, EPJC, 1207.7315

Not global fits:

Quantitative? per-point: sometimes overall: never

Cahill-Rowley et al, 1307.8444

Introduction Global fits Including astroparticle observables

Know your (supersymmetric) parameter scans

Global fits:

Quantitative? per-point: always overall: always

Strege et al JCAP, 1212.2636

MasterCode, EPJC, 1207.7315

Not global fits:

Quantitative? per-point: sometimes overall: never

Introduction Global fits Including astroparticle observables

Another example

"Values are possible"

"Values are probable"

Imperial College London

Introduction Global fits Including astroparticle observables

Another example

Imperial College London

Introduction Global fits Including astroparticle observables

Another example

Berger, Gainer, Hewett & Rizzo, JHEP 2009

"Values are probable"

Imperial College London

Introduction Global fits Including astroparticle observables

Putting it all together

Issue 1: Combining fits to different experiments Relatively easy – composite likelihood ($\mathcal{L}_1 \times \mathcal{L}_2 \equiv \chi_1^2 + \chi_2^2$ for simplest \mathcal{L})

- dark matter relic density from WMAP/Planck
- precision electroweak tests at LEP
- LEP limits on new particle particle masses
- *B*-factory data (rare decays, $b \rightarrow s\gamma$)
- muon anomalous magnetic moment
- LHC searches, direct detection

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

Introduction Global fits Including astroparticle observables

Putting it all together: global fits

Issue 2: Including the effects of uncertainties in input data Easy – treat them as *nuisance parameters* and profile/marginalise

Issue 3: Finding the points with the best likelihoods Tough – MCMCs, nested sampling, genetic algorithms, etc

Issue 4: Comparing theories Depends – Bayesian model comparison, p values (*TS* distribution? \rightarrow coverage???)

> Imperial College London

Introduction Global fits Including astroparticle observables

Progress including searches for dark matter

The problem Introduction The current state of the game Global fits Future challenges Including astroparticle observables

Progress including searches for dark matter

 Direct detection – nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streege et al JCAP, 1212.2636

The problem Introduction The current state of the game Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)

Imperial College

The problem Introduction The current state of the game Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

The problem Introduction The current state of the game Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing
 - gamma-rays Fermi, HESS, CTA (yes: Fermi, HESS dwarfs)

PS, Conrad et al *JCÁP*, 0909.3300 Ripken, Conrad & PS *JCAP*, 1012.3939

Imperial College
The problem Introduction The current state of the game Global fits Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing
 - gamma-rays Fermi, HESS, CTA (yes: Fermi, HESS dwarfs)
 - anti-protons PAMELA, AMS (not yet)

PS, Conrad et al *JCAP*, 0909.3300 Ripken, Conrad & PS *JCAP*, 1012.3939

Imperial College

The problem Introduction The current state of the game Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing
 - gamma-rays Fermi, HESS, CTA (yes: Fermi, HESS dwarfs)
 - anti-protons PAMELA, AMS (not yet)

PS, Conrad et al *JCAP*, 0909.3300 Ripken, Conrad & PS *JCAP*, 1012.3939

Imperial College

• anti-deuterons – GAPS (not yet)

The problem Introduction The current state of the game Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing
 - gamma-rays Fermi, HESS, CTA (yes: Fermi, HESS dwarfs)
 - anti-protons PAMELA, AMS (not yet)

PS, Conrad et al *JCAP*, 0909.3300 Ripken, Conrad & PS *JCAP*, 1012.3939

- anti-deuterons GAPS (not yet)
- neutrinos IceCube, ANTARES (yes: IceCube 22-string)

PS, Savage, Edsjö & The IceCube Collab. *JCAP*, 1207.0810 Silverwood, PS et al *JCAP*, 1210.0844

> Imperial College London

The problem Introduction The current state of the game Global fits Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing
 - gamma-rays Fermi, HESS, CTA (yes: Fermi, HESS dwarfs)
 PS. Conrad et al JCAP. 0909.3300
 - anti-protons PAMELA, AMS (not yet)
 - anti-deuterons GAPS (not yet)
 - neutrinos IceCube, ANTARES (yes: IceCube 22-string)
 - e^+e^- PAMELA, *Fermi*, ATIC, AMS (not yet)

PS, Savage, Edsjö & The IceCube Collab. *JCAP*, 1207.0810 Silverwood, PS et al *JCAP*, 1210.0844

Ripken, Conrad & PS JCAP, 1012.3939

Imperial College London

The problem Introduction The current state of the game Future challenges Including astroparticle observables

Progress including searches for dark matter

- Direct detection nuclear collisions and recoils (yes: XENON100 approximate likelihoods) Streee et al. JCAP. 1212.2636
- Direct production missing *E*_T or otherwise LHC, Tevatron (not really yet)
- Indirect detection annihilations producing
 - gamma-rays Fermi, HESS, CTA (yes: Fermi, HESS dwarfs)
 - anti-protons PAMELA, AMS (not yet)

PS, Conrad et al *JCAP*, 0909.3300 Ripken, Conrad & PS *JCAP*, 1012.3939

- anti-deuterons GAPS (not yet)
- neutrinos IceCube, ANTARES (yes: IceCube 22-string)
- e⁺e⁻ PAMELA, Fermi, ATIC, AMS (not yet) PS, Savage, Edsjö & The IceCube Collab. JCAP, 1207.0810
- secondary impacts on the CMB (yes: WMAP5)^{Silverwood, PS et al JCAP, 1210.0844}

Cline & PS JCAP, 1301.5908

Present limits Coverage Scanning challenges

Outline

2

- Introduction
- Global fits
- Including astroparticle observables
- The current state of the game
 - Present limits
 - Coverage
 - Scanning challenges
- Future challenges
 - Respectable LHC likelihoods
 - Parameter space → Theory space

Imperial College London

Present limits Coverage Scanning challenges

Current constraints: CMSSM $\pm \epsilon$

- CMSSM, profile likelihoods
- HiggsSignals + resimulation of LHC CMSSM limits
- ATLAS 0-lepton SUSY searches, 20.3 fb⁻¹, 8 TeV

- Fittino (PoS EPS-HEP 2013)
- → stau coannihilation + all else decoupled

Pat Scott - Oct 29 - Oslo Theory Seminar

- MasterCode (EPJC 74:2922)

Present limits Coverage Scanning challenges

Current constraints: CMSSM $\pm \epsilon$

- CMSSM, profile likelihoods
- HiggsSignals + resimulation of LHC CMSSM limits
- ATLAS 0-lepton SUSY searches, 20.3 fb⁻¹, 8 TeV

What gives? Probably FeynHiggs v2.9 vs 2.10. Maybe also g - 2 calculation and DD likelihood.

Imperial College London

Pat Scott - Oct 29 - Oslo Theory Seminar

Present limits Coverage Scanning challenges

Current constraints: low-scale MSSM

- SuperBayeS (1405.0622)
- 15-parameter weak-scale MSSM
- profile likelihood
- latest *B*/*D* and DM constraints
- 'tall poppy' analysis: post-processed tiny subset of best points with collider limits
- ATLAS 0 and 3-lepton SUSY searches, 4.7 fb⁻¹, 7 TeV

Present limits Coverage Scanning challenges

Current issues: Coverage

Test statistic: a measure on data used to construct statistical tests (e.g. χ^2 , In \mathcal{L} , etc.) **Coverage**: the percentage of the time that a supposed '*x*%' confidence region actually contains the true value

- Distribution of the test statistic and design of the test it's used in determine coverage.
- *p*-value calculation *requires* the test statistic distribution to be well known.

We don't **really** usually know the distribution of our test statistic in BSM global fits, as it is too expensive to Monte Carlo

 coverage is rarely spot-on unless mapping from parameters to data-space is linear

(Akrami, Savage, PS et al JCAP, 1011.4297, Bridges et al JHEP, 1011.4306, Strege et al PRD, 1201.3631)

p-value assessments of goodness of fit should be viewed with serious scepticism (→MasterCode)
 Imperial College

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

London

Present limits Coverage Scanning challenges

Current issues: Coverage

Test statistic: a measure on data L **Coverage**: the percentage of the tir actually contains the true value

- Distribution of the test statistic coverage.
- p-value calculation requires tl

We don't **really** usually k statistic in BSM global fits,

 coverage is rarely spot-on data-space is linear
 (Akrami, Savage, PS et al JCAP, 1011.

Fittino, arXiv:1410.6035

London

Present limits Coverage Scanning challenges

Current issues: Scanning algorithms

Convergence remains an issue, especially for profile likelihood Messy likelihood \implies best-fit point can be (and often is) easily

missed (Akrami, PS et al JHEP, 0910.3950, Feroz et al JHEP, 1101.3296)

- frequentist CLs are off, as isolikelihood levels are chosen incorrectly
- can impact coverage (overcoverage, or masking of undercoverage due to non- χ^2 *TS* distribution)
- need to use multiple priors and scanning algorithms (one optimised for profile likelihoods?)

Respectable LHC likelihoods $^{
m Parameter}$ space ightarrow Theory space

Outline

Respectable LHC likelihoods Parameter space \rightarrow Theory space

The LHC likelihood monster

Time per point:

 $\mathcal{O}(minute)$ in best cases

Respectable LHC likelihoods Parameter space → Theory space

The LHC likelihood monster

Time per point:

 $\mathcal{O}(\textit{minute})$ in **best** cases

Time per point for global fits to converge:

 $\mathcal{O}(seconds)$ in worst cases

Respectable LHC likelihoods Parameter space → Theory space

The LHC likelihood monster

Time per point:

 $\mathcal{O}(\textit{minute})$ in **best** cases

Time per point for global fits to converge:

 $\mathcal{O}(seconds)$ in worst cases

Challenge:

About 2 orders of magnitude too slow to actually include LHC data in global fits properly

Imperial College London

Respectable LHC likelihoods Parameter space → Theory space

Taming the LHC monster

Zeroth Order Response:

"Just use the published limits and ignore the dependence on other parameters"

Imperial College London

Respectable LHC likelihoods Parameter space \rightarrow Theory space

Taming the LHC monster

Zeroth Order Response:

"Just use the published limits and ignore the dependence on other parameters"

Obviously naughty – plotted limits assume CMSSM, and fix two of the parameters

- Don't really know dependence on other parameters
- Don't have a likelihood function, just a line
- Can't use this at all for non-CMSSM global fits e.g. MSSM-25

Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

London

Respectable LHC likelihoods Parameter space → Theory space

Taming the LHC monster

First Order Response:

"Test if things depend on the other parameters (hope not), re-simulate published exclusion curve"

Imperial College London

Respectable LHC likelihoods Parameter space \rightarrow Theory space

Taming the LHC monster

First Order Response:

"Test if things depend on the other parameters (hope not), re-simulate published exclusion curve"

Not that great, but OK in some cases

- At least have some sort of likelihood this time
- Still a bit screwed if things do depend a lot on other parameters, but
- allows (potentially shaky) extrapolation, also to non-CMSSM models

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Imperial College

London

Respectable LHC likelihoods Parameter space → Theory space

Taming the LHC monster

Second Order Response:

"That's ridiculous. I've never met a calculation I can't speed up. There must be some way to have my cake and eat it too"

> Imperial College London

Respectable LHC likelihoods Parameter space \rightarrow Theory space

Taming the LHC monster

Second Order Response:

"That's ridiculous. I've never met a calculation I can't speed up. There must be some way to have my cake and eat it too"

Maybe – this is the challenge.

- Interpolated likelihoods (how to choose nodes?)
- Neural network functional approximation (how to train accurately?)
- Some sort of smart reduction based on event topology?
- Something else?

Balázs, Buckley, Farmer, White et al (1106.4613, 1205.1568); GAMBIT

Pat Scott – Oct 29 – Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Respectable LHC likelihoods Parameter space \rightarrow Theory space

CMSSM, SMS \neq BSM

(SMS = Simplified Model Spectrum)

Want to do model comparison to actually work out which theory is right...

Challenge:

How do I easily adapt a global fit to different BSM theories?

Imperial College London

Respectable LHC likelihoods Parameter space \rightarrow Theory space

CMSSM, SMS \neq BSM

(SMS = Simplified Model Spectrum)

Want to do model comparison to actually work out which theory is right...

Challenge:

How do I easily adapt a global fit to different BSM theories?

Somehow, we must recast things quickly to a new theory

- data
- likelihood functions
- scanning code 'housekeeping'
- even predictions
- \Rightarrow a new, very abstract global fitting framework

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Respectable LHC likelihoods Parameter space \rightarrow Theory space

Hitting the wall

Issues with current global fit codes:

- Strongly wedded to a few theories (e.g. constrained MSSM / mSUGRA)
- Strongly wedded to a few theory calculators
- All datasets and observables basically hardcoded
- Rough or non-existent treatment of most experiments (astroparticle + collider especially)
- Sub-optimal statistical methods / search algorithms
- ⇒ already hitting the wall on theories, data & computational methods

GAMBIT: a second-generation global fit code

GAMBIT: Global And Modular BSM Inference Tool

Overriding principles of GAMBIT: flexibility and modularity

- General enough to allow fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- Extensive model database not just small modifications to constrained MSSM (NUHM, etc), and not just SUSY!
- Extensive observable/data libraries (likelihood modules)
- Many statistical options Bayesian/frequentist, likelihood definitions, scanning algorithms
- A smart and fast LHC likelihood calculator
- Massively parallel
- Full open-source code release

Respectable LHC likelihoods Parameter space \rightarrow Theory space

The GAMBIT Collaboration

26 Members, 15 institutions, 9 countries 8 Experiments, 4 major theory codes

Fermi-LAT	J. Conrad, J. Edsjö, G. Martinez, P. Scott (leader)
СТА	C. Balázs, T. Bringmann, J. Conrad, M. White (dep. leader)
HESS	J. Conrad
ATLAS	A. Buckley, P. Jackson, C. Rogan, A. Saavedra, M. White
LHCb	M. Chrząszcz, N. Serra
IceCube	J. Edsjö, C. Savage, P. Scott
AMS-02	A. Putze
CDMS, DM-ICE	L. Hsu
DARWIN, XENON	J. Conrad
Theory	P. Athron, C. Balázs, T. Bringmann, J. Cornell, LA. Dal, J. Edsjö
	B. Farmer, A. Krislock, A. Kvellestad, N. Mahmoudi, M. Pato
	A. Raklev, C. Savage, P. Scott, C. Weniger, M. Whitendon

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(\sim) Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PQMSSM, effective operators, iDM, XDM, ADM, UED, Higgs portals/extended Higgs sectors	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	Event-level: IceCube, Fermi, LUX, XENON, CDMS, DM-ICE. Basic: Ω_{DM} , AMS-02, COUPP, KIMS, CRESST, CoGeNT, SIMPLE, PAMELA, Planck, HESS. Predictions: CTA, DARWIN, GAPS	Basic: Ω_{DM} , LUX, XENON	$\begin{array}{lll} \text{Basic:} & \Omega_{DM}, \\ \text{Fermi,} \\ \text{IceCube,} \\ \text{XENON} \end{array}$	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S II$ and $B \rightarrow K^* II$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	m_t , m_Z ,	$m_t, m_b,$	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$\begin{array}{cc} \alpha_{ m s}, & \alpha_{ m EM}, \\ { m DM} & { m halo}, \\ { m hadronic} \end{array}$	ln Lo	nperial College ondon
	nisation, coalescence and p'gation.	ments	matrix elems.	► ★ E ► ★ E	 単目 うへの

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(\sim) Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PQMSSM, effective operators, iDM, XDM, ADM, UED, Higgs portals/extended Higgs sectors	$CMSSM\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	Event-level: IceCube, Fermi, LUX, XENON, CDMS, DM-ICE. Basic: Ω_{DM} , AMS-02, COUPP, KIMS, CRESST, CoGeNT, SIMPLE, PAMELA, Planck, HESS. Predictions: CTA, DARWIN, GAPS	Basic: Ω _{DM} , LUX, XENON	$\begin{array}{lll} \text{Basic:} & \Omega_{DM}, \\ \text{Fermi,} \\ \text{IceCube,} \\ \text{XENON} \end{array}$	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S II$ and $B \rightarrow K^* II$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	m _t , m _Z ,	$m_t, m_b,$	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$lpha_{ m s}, \qquad lpha_{ m EM}, \ {\sf DM} \qquad {\sf halo}, \ {\sf hadronic}$	ln Lo	nperial College ondon
	nisation, coalescence and p'gation.	ments	matrix elems.	▶ ★ ■ ▶ ★ ■	 単目 うへの

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(∼)Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PCMSSM, effective operators, iDM, XDM, ADM, UED, Higas portals/extended Higas sectors	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	Event-level: IceCube, Fermi, LUX, XENON, CDMS, DM-ICE. Basic: Ω_{DM} , AMS-02, COUPP, KIMS, CRESST, CoGeNT, SIMPLE, PAMELA, Planck, HESS. Predictions: CTA, DARWIN, GAPS	Basic: Ω_{DM} , LUX, XENON	Basic: Ω _{DM} , Fermi, IceCube, XENON	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S II$ and $B \rightarrow K^* II$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	m_t , m_Z ,	m _t , m _b ,	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$\begin{array}{cc} \alpha_{ m s}, & \alpha_{ m EM}, \\ { m DM} & { m halo}, \\ { m hadronic} \end{array}$	ln Lo	n <mark>perial College</mark> ondon
	nisation, coalescence and p'gation.	ments	matrix elems.	A ≥ A ≥	▶ ΞΙΞ • • • • • •

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(∼)Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±ε, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, POMSSM, effective operators, iDM, XDM, ADM, UED, Higas portals/extended Higas sectors	$CMSSM \pm \epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	Event-level: IceCube, Fermi, LUX, XENON, CDMS, DM-ICE. Basic: Ω_{DM} , AMS-02, COUPP, KIMS, CRESST, CoGeNT, SIMPLE, PAMELA, Planck, HESS. Predictions: CTA, DARWIN, GAPS	Basic: Ω _{DM} , LUX, XENON	Basic: Ω _{DM} , Fermi, IceCube, XENON	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S II$ and $B \rightarrow K^* II$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	$m_t, m_b, \alpha_s, \alpha_{\rm EM}$, DM halo, hadronic	m_t , m_Z ,	$m_t, m_b,$	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$lpha_{ m s}, \qquad lpha_{ m EM}, \ {\sf DM} \qquad {\sf halo}, \ {\sf hadronic}$	ln Lo	perial College ondon
	nisation, coalescence and p'gation.	ments	matrix elems.	▶ ★ ■ ▶ ★ ■	 単同うみの

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(∼)Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, oradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PCMSSM, effective operators, iDM, XDM, ADM, UED, Higas portals/extended Higas sectors	$CMSSM\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	Event-level: IceCube, Fermi, LUX, XENON, CDMS, DM-ICE. Basic: Ω_{DM} , AMS-02, COUPP, KIMS, CRESST, CoGeNT, SIMPLE, PAMELA, Planck, HESS. Predictions: CTA, DARWIN, GAPS	Basic: Ω _{DM} , LUX, XENON	Basic: Ω _{DM} , Fermi, IceCube, XENON	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S II$ and $B \rightarrow K^* II$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	m_t , m_Z ,	m_t , m_b ,	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$lpha_{ m s}, \qquad lpha_{ m EM}, \ {\sf DM} \qquad {\sf halo}, \ {\sf hadronic}$	ln Lo	nperial College ondon
	nisation, coalescence and p'gation.	ments	matrix elems.	I → A ≡ → A ≡	 三日 うへで

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(\sim) Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PQMSSM, effective operators, iDM, XDM, ADM, UED, Higgs portals/extended Higgs sectors	$CMSSM\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM} \pm \epsilon$	(p)MSSM-19
Astroparticle	$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	Basic: Ω _{DM} , LUX, XENON	Basic: Ω _{DM} , Fermi, IceCube, XENON	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S \parallel$ and $B \rightarrow K^* \parallel$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	m_t , m_Z ,	m _t , m _b ,	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$lpha_{ m s}, \qquad lpha_{ m EM}, \ { m DM} \qquad { m halo}, \ { m hadronic}$	ln Lo	nperial College ondon
	nisation, coalescence and p'gation.	ments	matrix elems.	▶ < E > < E	国目 のへで

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(∼)Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PQMSSM, effective operators, iDM, XDM, ADM, UED, Higgs portals/extended Higgs sectors	$CMSSM\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	Event-level: IceCube, Fermi, LUX, XENON, CDMS, DM-ICE. Basic: Ω_{DM} , AMS-02, COUPP, KIMS, CRESST, CoGeNT, SIMPLE, PAMELA, Planck, HESS. Predictions: CTA, DARWIN, GAPS	Basic: Ω _{DM} , LUX, XENON	$\begin{array}{lll} \text{Basic:} & \Omega_{DM}, \\ \text{Fermi,} \\ \text{IceCube,} \\ \text{XENON} \end{array}$	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S \parallel$ and $B \rightarrow K^* \parallel$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	$m_t, m_Z,$	m _t , m _b ,	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro-	$lpha_{ m EM},$ hadronic matrix ele-	$lpha_{ m s}, \qquad lpha_{ m EM}, \ { m DM} \qquad { m halo}, \ { m hadronic}$	lm Lo	nperial College
	nisation, coalescence and p'gation.	ments	matrix elems.	▶ < ≣ > < ≣	▶ ≣I≡ ୬٩0

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

So what's so much better about GAMBIT?

Aspect	GAMBIT	MasterCode	SuperBayeS	Fittino	Rizzo et al.
Design	Modular, Adaptive	Monolithic	Monolithic	(\sim) Monolithic	Monolithic
Statistics	Frequentist, Bayesian	Frequentist	Freq./Bayes.	Frequentist	None
Scanners	Differential evolution, genetic algo- rithms, random forests, t-walk, t- nest, particle swarm, nested sampling, MCMC, gradient descent	Nested sam- pling, MCMC, grad. descent	Nested sam- pling, MCMC	MCMC	None (ran- dom)
Theories	(p)MSSM-25, CMSSM±e, GMSB, AMSB, gaugino mediation, E6MSSM, NMSSM, BMSSM, PQMSSM, effective operators, iDM, XDM, ADM, UED, Higgs portals/extended Higgs sectors	$CMSSM\pm\epsilon$	(p)MSSM-15, CMSSM $\pm\epsilon$, mUED	$ ext{CMSSM}\pm\epsilon$	(p)MSSM-19
Astroparticle	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Basic: Ω _{DM} , LUX, XENON	$\begin{array}{lll} \text{Basic:} & \Omega_{DM}, \\ \text{Fermi,} \\ \text{IceCube,} \\ \text{XENON} \end{array}$	Basic: Ω _{DM} , Fermi, HESS, XENON	Event-level: Fermi. Basic: Ω_{DM} , IceCube, CTA
LHC	ATLAS+CMS multi-analysis with neural net and fast detector simulation. Higgs multi-channel with correlations and no SM assumptions. Full flavour inc. complete $B \rightarrow X_S II$ and $B \rightarrow K^* II$ angular set.	ATLAS resim, HiggsSignals, basic flavour.	ATLAS direct sim, Higgs mass only, basic flavour.	ATLAS resim, HiggsSig- nals, basic flavour.	ATLAS+CMS +Tevatron di- rect sim, ba- sic flavour.
SM, theory	m_t , m_b , α_s , $\alpha_{\rm EM}$, DM halo, hadronic	m _t , m _Z ,	m _t , m _b ,	mt	None
and related uncerts.	matrix elements, detector responses, QCD+EW corrections (LHC+DM sig- nal+BG), astro BGs, cosmic ray hadro- nisation, coalescence and plration	$\alpha_{\rm EM},$ hadronic matrix ele- ments	$\alpha_{s}, \alpha_{EM},$ DM halo, hadronic matrix elems	ln Lo	nperial College

Pat Scott - Oct 29 - Oslo Theory Seminar

Respectable LHC likelihoods Parameter space \rightarrow Theory space

Closing remarks

- Robust analysis of dark matter and BSM physics requires multi-messenger global fits
- GAMBIT is coming:
 - → Lots of interesting particle, astronomical, cosmological and astroparticle observables to include in global fits
 - → Serious theoretical, experimental, statistical and computational detail to work though
 - $\rightarrow~$ Oslo is already in the thick of it

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Backup Slides

Outline

Pat Scott – Oct 29 – Oslo Theory Seminar Beyond the Standard Model global fits: then, now and tomorrow

Backup Slides

GAMBIT: sneak peek

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow

Bayesian & Frequentist terminology [Statistical aside]

Likelihood: probability of obtaining observed data D if model parameters Θ are correct

$$\mathcal{L}(D|\Theta) \tag{1}$$

Profiling: maximising the likelihood over a parameter you are not interested in

Posterior probability: probability of parameters Θ being correct given observed data *D*

$$P(\Theta|D) = \frac{\mathcal{L}(D|\Theta)P(\Theta)}{\mathcal{Z}(D)}$$
(2)

Marginalising: integrating the posterior over a parameter you are not interested in

Pat Scott - Oct 29 - Oslo Theory Seminar

Beyond the Standard Model global fits: then, now and tomorrow