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The dark matter hypothesis

DM is made of new particles that do not emit
electromagnetic radiation at a significant level.
Until now, DM is evident only by its gravitational influence
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he “standard model” of structure formation

The particle DM hypothesis is the cornerstone of the current
theory of the formation and evolution of galaxies
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The “standard model” of structure formation

formation of a DM halo

cosmological initial and boundary conditions

i

Fig. from Mo, Mao and White, 2010
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The CDM hypothesis

In the Cold Dark Matter (CDM) model,
DM is a new cold and collisionless particle

In CDM, galaxies form in a purely gravitational
DM background, i.e., the nature of DM as a particle
s irrelevant for galaxy formation and evolution

There is however, no strong evidence
to support this strong hypothesis

A less stringent hypothesis preserves the
success of CDM at large scales and predicts
a distinct DM phase-space structure at smaller scales

Although there is no indisputable evidence
that the CDM model is wrong, there are reasonable
physical motivations to consider alternatives



Beyond CDM:

motivation for additional (i.e. non-gravitational)
DM physics in structure formation



Fig. from Buchmduller 12

DM nature in the early Universe
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Fig. from Buchmuller 12

DM nature in the early Universe
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DM nature and the first cosmic structures

Is the minimum scale for
galaxy formation set by the

DM nature (decoupling)

Early Universe

halo mass seed ? DM nature or by gas physics
(or by both)?




DM nature and the first cosmic structures

Is the minimum scale for
galaxy formation set by the

DM nature (decoupling)

Early Universe

halo mass seed ? DM nature or by gas physics
(or by both)?

Credit: Max Tegmark
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Structure formation and DM interactions

Onset of structure formation

hal DM nature Are non-gravitational DM
—- interactions irrelevant for

DM interactions ? galaxy formation?




Structure formation and DM interactions

Are non-gravitational DM interactions irrelevant for galaxy formation?
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Structure formation and DM interactions

Onset of structure formation

DM nature Are non-gravitational DM
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DM particle (weak) interactions hoped by most detection efforts!!
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Structure formation and DM interactions

Onset of structure formation

DM nature Are non-gravitational DM

halo mass — interactions irrelevant for
seed DM interactions ?

galaxy formation?

Does it interact with itself (collisions)?

Credit: John Wise / KIPAC
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Structure formation and DM interactions

Onset of structure formation

DM nature
halo mass —
seed DM interactions ?

Does it interact with itself (collisions)?
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Structure formation and DM interactions

Onset of structure formation

hal DM nature Are non-gravitational DM
alo mass — interactions irrelevant for
seed DM interactions ? galaxy formation?
Does it interact with itself (collisions)? Dwarf MW Cluster
constraints allow nucleon-nucleon elastic scattering:
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Structure formation and DM interactions

Onset of structure formation

hal DM nature Are non-gravitational DM
alo m;ss —- interactions irrelevant for
see DM interactions ? galaxy formation?
Does it interact with itself (collisions)? Dwarf MW Cluster
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Beyond CDM:

from a purely phenomenological
perspective, the CDM hypothesis is just a
restricted case of allowed DM microphysics



Clues of new DM physics from dwarf galaxies?
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Theoretical modelling of the galaxy population

Fig. from Mo, Mao and White, 2010
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Observed abundance of isolated dwarf galaxies
M, ~4x10"°Ms,, (~dwarf scale)
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~ enclosed DM mass

The “too big to fail” problem

MW-size halo D‘Meoniy
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Clues of new DM physics from dwarf galaxies?

pposs @ ¢ Fomaxdsph

* The dwarf-scale challenges could be related to:

* Misinterpretation of observational data (e.g. incomplete reconstruction of
the phase-space distribution,...)

* Incomplete knowledge of galaxy formation (e.g. Indirect energy injection
into the DM halo by supernovae,...)

« New DM physics: DM might be collisional: SIDM (e.g. hidden sector DM)



Towards an effective theory of
structure formation
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Proof of concept to avoid CDM challenges:
(i) abundance of dwarfs in the field
(if) too big to fail problem
(ifi) core-cusp problem

DM interactions with relativistic particles in
the early Universe

+

DM-DM self-scattering in the late Universe



A richer growth of DM perturbations

Interactions between DM and relativistic
particles (e.g. dark radiation) in the early Universe
introduce collisional damping and
“dark” acoustic oscillations (DAOs) to the linear
growth of primordial DM perturbations
(phenomena analogous to that of the photon-baryon plasma)

Cyr-Racine+13
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A richer growth of DM perturbations
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DM self-scattering:
forming a core through collisions
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N-body simulations with DM collisions:
Self-Interacting DM (SIDM)

Probabilistic method for elastic scattering on top of code for gravitational interactions

Milky-Way-size halo: Vogelsberger, Zavala & Loeb 2012
T . CDM s 8 SIDM10

DM-DM
elastic scattering
. =10 cm?/gr

DM collisions (~ a few per particle in a Hubble time in the denser regions)
create density cores and isotropize the orbits



Inner structure of SIDM dark satellites

» Allowed elastic SIDM models significantly reduce the structure CDM problems:
(Vogelsberger, Zavala & Loeb 2012)

 Elastic SIDM only works as a distinct DM-only alternative to CDM
if 0.6 cm?/gr <s / m <1 cm?gr or velocity-dependent (MW-halo-mass-dependent)
(Zavala, Vogelsberger & Walker 2013)

SIDM can avoid the too big to fail problem SIDM predicts sizeable DM cores
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Galaxies in a SIDM Universe

How does galaxy formation occurs in SIDM? Will the coupling of baryonic physics

and DM collisionality help (or hinder) constrain SIDM models?
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Galaxies in a SIDM Universe

First hydrodynamical simulation of a galaxy in a SIDM cosmology
Vogelsbeger, Zavala+14

* baryonic physics implementation (lllustris):
hydrodynamics, star formation, SNe feedback

Stellar cores tied to SIDM cores in
DM-dominated systems
(signature of DM collisions)
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Concluding remarks

An effective (more generic) theory of structure formation must consider a
broader range of allowed DM phenomenology (DM interactions, different P(k)...)
coupled with our developing knowledge of galaxy formation/evolution

First highlights of the effective theory:

* it preserves the large-scale successes of CDM and “naturally” avoids most
of its small-scale (dwarf galaxies) challenges (partially proof of concept only)

e first hydro simulations in SIDM indicate that galaxy formation and evolution
proceeds in a similar way as in CDM (nothing catastrophic!)

 the effect of DM collisions might be imprinted in the phase-space
distribution of stars in dwarf galaxies at an observable level:

dwarf galaxies might hide a clue of a fundamental guiding principle
for a complete DM theory

Possible degeneracies in observational comparisons, albeit undesirable,

reflect our current incomplete knowledge of the DM nature and galaxy
formation/evolution



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

