# on the quantum statistical physics of dark matter freeze-out <sup>1</sup>

mikko laine

aec, itp, u. bern

 $<sup>^{\</sup>mathrm{1}}$  supported by snf under grant 200020B-188712

## there is "dark matter"



<sup>2</sup> D. Clowe et al, A direct empirical proof of the existence of DM, astro-ph/0608407

## what is dark matter?

#### yet to be discovered particles? basic requirements:

- not visible ⇒ electrically neutral
- around long ago & still today ⇒ stable or very long-lived
- correct structure formation long ago ⇒ rather heavy

known particles fail to satisfy these requirements

candidates from https://xkcd.com/2035/:



#### in this talk: "wimp paradigm"

postulate the existence of weakly interacting massive particles ("heavy neutrinos") which cannot decay and are thus stable

"indirect detection" from galactic center:

DM DM'

"direct detection" by nuclear recoil:



"collider search" through missing energy:



# text-book wimp is in trouble

#### lee-weinberg equation (n = number density, H = Hubble rate)

linearize around equilibrium:

$$n = n_{\rm eq} + \delta n$$
 ,  $n^2 - n_{\rm eq}^2 \approx 2n_{\rm eq}\delta n$ 

parametrize cross section:

$$\langle \sigma v_{
m rel} 
angle \equiv rac{lpha^2}{M^2} \ , \quad M \equiv M_{
m DM}$$

<sup>&</sup>lt;sup>3</sup> B.W. Lee and S. Weinberg, Cosmological Lower Bound..., Phys. Rev. Lett. 39 (77) 165

$$\Rightarrow \left| \; (\partial_t + 3H) n \approx - \frac{2\alpha^2 n_{\,\mathrm{eq}}}{M^2} \, \delta n \; \right|$$

equilibrium number density is a known function of T, M:

$$n_{\rm eq} \propto \int \frac{{
m d}^3 {f p}}{(2\pi)^3} \frac{1}{e^{\sqrt{p^2 + M^2}/T} + 1} pprox \left(\frac{MT}{2\pi}\right)^{3/2} e^{-M/T}$$

the right-hand side becomes very small if  $\alpha^2 n_{\rm eq}/M^2 \ll H$ 

#### indeed a numerical solution shows a "freeze-out" $(Y \equiv n/s)$ :



 $\Rightarrow$  final energy density  $(e \equiv Mn)$  grows faster than  $\sim M$ :



null searches at LHC push up M, so danger of "overclosure"

# could increased $\langle \sigma v_{\rm rel} \rangle$ help?

#### large cross sections could originate via "resonant" effects



#### simplest t-channel enhancement: sommerfeld effect sommerfeld effect



for attractive Coulomb-like interaction:

$$S(v_{\rm rel}) \sim \frac{\alpha}{v_{\rm rel}} \quad {\rm for} \quad v_{\rm rel} \lesssim \alpha$$

<sup>&</sup>lt;sup>4</sup> e.g. J. Hisano *et al, Non-perturbative effect on ... dark matter,* hep-ph/0610249

 $<sup>^{5}</sup>$  e.g. L.D. Landau and E.M. Lifshitz,  $\mathit{Quantum\ Mechanics},\ \mathsf{Third\ Edition},\ \S136$ 

#### in similar spirit but more recent: 6 bound states



$$M_{\rm bound} = 2M - \Delta E \implies e^{-M_{\rm bound}/T} > e^{-2M/T}$$

this is quantum mechanics in a statistical background

(typically the dark sector contains several species, DM and DM', and perhaps only one of them forms bound states)

<sup>&</sup>lt;sup>6</sup> e.g. B. von Harling and K. Petraki, Bound-state formation for ..., 1407.7874

# some quantum statistical physics

#### physical picture of the decay



energy released in the inelastic reaction is  $2M\gg T\Rightarrow$  the "hard" annihilation process is effectively local  $^{7,8}$ 

<sup>&</sup>lt;sup>7</sup> G.T. Bodwin *et al, Rigorous QCD analysis of ... annihilation ...,* hep-ph/9407339

 $<sup>^{8}</sup>$  e.g. L.S. Brown and R.F. Sawyer,  $Nuclear\ reaction\ rates\ in\ a\ plasma,\ {\rm astro-ph/9610256}$ 

#### but there are also soft effects

before annihilation there's plenty of time for interactions:9



⇒ "debye screening", "landau damping", "salpeter correction"

plot from S. Biondini and ML, Re-derived overclosure bound..., 1706.01894

#### definition of thermally averaged sommerfeld factor

if  $\theta,\eta$  annihilate DM and DM, then the simplest annihilation operator is the "s-wave" or "singlet-channel" one:

$$\frac{1}{M^2} \frac{1}{\mathcal{Z}} \sum_{m \neq 0} e^{-E_m/T} \underbrace{\langle m | \theta^{\dagger} \eta^{\dagger} \eta \theta | m \rangle}_{\sum_{n} \langle m | \theta^{\dagger} \eta^{\dagger} | n \rangle \langle n | \eta \theta | m \rangle} \equiv \langle \mathcal{O}_s \rangle_T$$

denote by  $\bar{S}_i$  enhancement factor over tree-level

$$ar{S}_i \; \equiv \; rac{\langle \mathcal{O}_i 
angle_T / \langle \mathcal{O}_i 
angle_{T,\, ext{tree}}}{n_{\, ext{eq}}^2 / (n_{\, ext{eq}}^2)_{\, ext{tree}}}$$

#### perturbative evaluation

the 2-body problem can be reduced to a 1-body problem:

$$E_m \quad =: \quad E' + \underbrace{ \left[ 2 M_{\rm rest} + \frac{k^2}{4 M_{\rm kin}} \right]}_{\rm center-of-mass\ energy} \ . \label{eq:energy}$$

converting  $\sum_m$  into integrals over E' and k and carrying out the integral over k we are left with

$$\langle \theta^\dagger \eta^\dagger \, \eta \theta \rangle_T = e^{-2M_{\rm rest}/T} \left( \frac{M_{\rm kin} T}{\pi} \right)^{3/2} \int_{-\Lambda}^{\infty} \frac{{\rm d}E'}{\pi} e^{-E'/T} \rho_s(E')$$

#### how to obtain the "spectral function" $\rho_s(E')$ ?

it comes from a Schrödinger equation for a Green's function:

$$[H_T - i \Gamma_T(r) - E'] G(E'; \mathbf{r}, \mathbf{r}') = \delta^{(3)}(\mathbf{r} - \mathbf{r}') ,$$

$$\lim_{\mathbf{r}, \mathbf{r}' \to \mathbf{0}} \operatorname{Im} G(E'; \mathbf{r}, \mathbf{r}') = \rho(E')$$

here the Hamiltonian has a standard from

$$H_T = -rac{
abla_{\mathbf{r}}^2}{M} + V_T(r) \; , \quad r = |\mathbf{r}| \; ,$$

whereas  $-i\Gamma_T(r)$  accounts for real scatterings with the plasma

#### structures at leading non-trivial order

$$V_T(r) = -\frac{g_s^2 C_{\rm F}}{4\pi} \left[ m_{\rm D} + \frac{\exp(-m_{\rm D} r)}{r} \right]$$
 "salpeter correction" "debye screening"

$$\Gamma_T(r) = \underbrace{\frac{g_s^2 C_{\rm F} T}{2\pi} \int_0^\infty \frac{\mathrm{d}z\,z}{(z^2+1)^2} \big[1 - \frac{\sin(z m_{\rm D} r)}{z m_{\rm D} r}\big]}_{\text{"landau damping"}}$$

# examples of perturbative evaluations of $\rho_{s,p}(E^\prime)^{10}$



 $<sup>^{10}</sup>$  S. Kim and ML,  $\dots$  thermally averaged p-wave Sommerfeld factor, 1904.07882

## comparisons with non-perturbative ${\rm data}^{[10]}$



### relation to observational constraints

#### why is cosmology different from the present day?

long ago:  $t\sim 10^{-12} \ \mathrm{s,} \ T\sim 100 \ \mathrm{GeV}$ 

DM annihilation:

DM' annihilation:





 $DM \leftrightarrow DM'$  is in thermal equilibrium  $\Rightarrow$  annihilation can proceed through the heavier DM' channel if this is more efficient

#### today the DM' channel should not be active any more

present universe:  $t \sim 10^{17} \, \mathrm{s}, \, T \ll \mathrm{eV}$ 

DM annihilation is active in galactic centers, but with a small  $\langle \sigma v_{\rm rel} \rangle$  (e.g. p-wave suppressed)



the heavier DM' decayed long ago, and plays no practical role in cosmology (however it can be searched for at the LHC)

$$\Rightarrow 0 < \frac{M_{\mathrm{DM'}} - M}{M} \ll 1 \ \mathrm{leads} \ \mathrm{to} \ \mathrm{interesting} \ \mathrm{effects}$$

## relation to heavy ion collisions

#### example of T-dependence of a DM' spectral function



#### what are we talking about on the QCD side?

- $\Rightarrow$  charm and bottom quarks at  $T\sim150...450~{
  m MeV}$
- ⇒ non-equilibrium: gluons and light quarks are thermalized, charm and bottom quarks are "probes" in this background
- $\Rightarrow$  bottom quark is non-relativistic ( $m_b \sim 10...30~T$ ), charm quark is a borderline case ( $m_c \sim 2...6~T$ )

#### "melting" of bottomonium resonances can be observed! 11



this follows a general pattern predicted theoretically <sup>12</sup>

 $<sup>^{11}</sup>$  CMS Collaboration, Suppression of excited  $\Upsilon$  states ... , 1105.4894

 $<sup>^{12}</sup>$  e.g. F. Karsch, D. Kharzeev and H. Satz, ...  $charmonium\ dissociation,\ hep-ph/0512239$ 

recap: what did we learn for cosmology?

#### if $\Delta M \equiv M_{\, {\rm DM'}} - M$ is too small, late times problematic



#### keeping $\Delta M/M$ non-zero, large M is indeed possible



## summary

- ⇒ apart from model uncertainties, generic dark matter studies contain theoretical ones
- $\Rightarrow$  both quantum-mechanical effects (bound states, multiple interactions) and statistical physics phenomena (debye screening,  $2 \to 2$  scatterings on plasma particles) may play a role
- $\Rightarrow$  a strongly interacting DM' may increase  $\langle \sigma v_{\rm rel} \rangle$
- ⇒ model-specific studies are needed for definite conclusions