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there is “dark matter”
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2
D. Clowe et al, A direct empirical proof of the existence of DM, astro-ph/0608407
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what is dark matter?
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yet to be discovered particles? basic requirements:

• not visible ⇒ electrically neutral

• around long ago & still today ⇒ stable or very long-lived

• correct structure formation long ago ⇒ rather heavy

known particles fail to satisfy these requirements

candidates from https://xkcd.com/2035/:
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in this talk: “wimp paradigm”

postulate the existence of weakly interacting massive particles

(“heavy neutrinos”) which cannot decay and are thus stable

“indirect detection” from galactic center:

DM

DM

DM
′

“direct detection” by nuclear recoil:

DM DM
′

“collider search” through missing energy:

DM
′

DM
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text-book wimp is in trouble
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lee-weinberg equation3 (n=number density, H=Hubble rate)

(∂t + 3H)n = −〈σv rel〉 (n
2 − n

2
eq)

DM

DM

linearize around equilibrium:

n = n eq + δn , n
2 − n

2
eq ≈ 2n eqδn

parametrize cross section:

〈σv rel〉 ≡ α2

M2
, M ≡ MDM

3
B.W. Lee and S. Weinberg, Cosmological Lower Bound..., Phys. Rev. Lett. 39 (77) 165
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⇒ (∂t + 3H)n ≈ −
2α2n eq

M2
δn

equilibrium number density is a known function of T,M :

n eq ∝
∫

d3
p

(2π)3
1

e
√

p2+M2/T ± 1
≈

(
MT

2π

)3/2

e
−M/T

the right-hand side becomes very small if α2n eq/M
2 ≪ H
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indeed a numerical solution shows a “freeze-out” (Y ≡ n/s):
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⇒ final energy density (e ≡ Mn) grows faster than ∼ M :
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WIMP miracle

overclosure

null searches at LHC push up M , so danger of “overclosure”
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could increased 〈σv
rel
〉 help?
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large cross sections could originate via “resonant” effects

s-channel

t-channel ⇒ this talk
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simplest t-channel enhancement:4 “sommerfeld effect”5

〈σv rel〉 −→ 〈σ tree v rel S(v rel)〉

for attractive Coulomb-like interaction:

S(v rel) ∼ α

v rel

for v rel
<∼α

4
e.g. J. Hisano et al, Non-perturbative effect on ... dark matter, hep-ph/0610249

5
e.g. L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Third Edition, §136
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in similar spirit but more recent:6 bound states

Mbound = 2M − ∆E ⇒ e
−Mbound/T > e

−2M/T

this is quantum mechanics in a statistical background

(typically the dark sector contains several species, DM and DM’,

and perhaps only one of them forms bound states)

6
e.g. B. von Harling and K. Petraki, Bound-state formation for ..., 1407.7874
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some quantum statistical physics
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physical picture of the decay

q̄

q

energy released in the inelastic reaction is 2M ≫ T ⇒ the

“hard” annihilation process is effectively local7,8

7
G.T. Bodwin et al, Rigorous QCD analysis of ... annihilation ..., hep-ph/9407339

8
e.g. L.S. Brown and R.F. Sawyer, Nuclear reaction rates in a plasma, astro-ph/9610256
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but there are also soft effects

before annihilation there’s plenty of time for interactions:9

. . .

soft hard

⇒ “debye screening”, “landau damping”, “salpeter correction”

9
plot from S. Biondini and ML, Re-derived overclosure bound..., 1706.01894
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definition of thermally averaged sommerfeld factor

if θ, η annihilate DM and D̄M , then the simplest annihilation

operator is the “s-wave” or “singlet-channel” one:

1

M2

1

Z
∑

m 6=0

e
−Em/T 〈m|θ†

η
†
ηθ|m〉

︸ ︷︷ ︸
∑

n〈m|θ†η†|n〉〈n|ηθ|m〉

≡ 〈Os〉T

denote by S̄i enhancement factor over tree-level

S̄i ≡
〈Oi〉T/〈Oi〉T, tree

n2
eq/(n

2
eq) tree
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perturbative evaluation

the 2-body problem can be reduced to a 1-body problem:

Em =: E
′
+

[

2M rest +
k2

4Mkin

]

︸ ︷︷ ︸

center-of-mass energy

.

converting
∑

m into integrals over E′ and k and carrying out

the integral over k we are left with

〈θ†
η
†
ηθ〉T = e

−2M rest/T

(
MkinT

π

)3/2 ∫ ∞

−Λ

dE′

π
e
−E′/T

ρs(E
′
)
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how to obtain the “spectral function” ρs(E
′)?

it comes from a Schrödinger equation for a Green’s function:

[HT − iΓT (r) − E
′
]G(E

′
; r, r

′
) = δ

(3)
(r − r

′
) ,

lim
r,r′→0

ImG(E
′
; r, r

′
) = ρ(E

′
)

here the Hamiltonian has a standard from

HT = −∇2
r

M
+ VT (r) , r = |r| ,

whereas −iΓT (r) accounts for real scatterings with the plasma
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structures at leading non-trivial order

VT (r) = − g2
sCF

4π

[
mD

︸ ︷︷ ︸

“salpeter correction”

+
exp(−mDr)

r︸ ︷︷ ︸

“debye screening”

]

ΓT (r) =
g2
sCFT

2π

∫ ∞

0

dz z

(z2 + 1)2

[
1 − sin(zmDr)

zmDr

]

︸ ︷︷ ︸

“landau damping”
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examples of perturbative evaluations of ρs,p(E
′)10
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S. Kim and ML, ... thermally averaged p-wave Sommerfeld factor, 1904.07882
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comparisons with non-perturbative data[10]
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relation to observational constraints
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why is cosmology different from the present day?

long ago: t ∼ 10−12 s, T ∼ 100 GeV

DM annihilation:

DM

DM

DM’ annihilation:

DM
′

DM
′

DM ↔ DM’ is in thermal equilibrium ⇒ annihilation can proceed

through the heavier DM’ channel if this is more efficient
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today the DM’ channel should not be active any more

present universe: t ∼ 1017 s, T ≪ eV

DM annihilation is active in

galactic centers, but with a small

〈σv rel〉 (e.g. p-wave suppressed) DM

DM

the heavier DM’ decayed long ago, and plays no practical role in

cosmology (however it can be searched for at the LHC)

⇒ 0 <
MDM’ − M

M
≪ 1 leads to interesting effects
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relation to heavy ion collisions
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example of T -dependence of a DM’ spectral function
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what are we talking about on the QCD side?

⇒ charm and bottom quarks at T ∼ 150...450 MeV

⇒ non-equilibrium: gluons and light quarks are thermalized,

charm and bottom quarks are “probes” in this background

⇒ bottom quark is non-relativistic (mb ∼ 10...30 T ),

charm quark is a borderline case (mc ∼ 2...6 T )
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“melting” of bottomonium resonances can be observed! 11

this follows a general pattern predicted theoretically 12

11
CMS Collaboration, Suppression of excited Υ states ... , 1105.4894

12
e.g. F. Karsch, D. Kharzeev and H. Satz, ... charmonium dissociation, hep-ph/0512239
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recap: what did we learn for cosmology?
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if ∆M ≡ MDM’ − M is too small, late times problematic
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keeping ∆M/M non-zero, large M is indeed possible
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summary
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⇒ apart from model uncertainties, generic dark matter studies

contain theoretical ones

⇒ both quantum-mechanical effects (bound states, multiple

interactions) and statistical physics phenomena (debye screening,

2 → 2 scatterings on plasma particles) may play a role

⇒ a strongly interacting DM’ may increase 〈σv rel〉

⇒ model-specific studies are needed for definite conclusions
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