
PLUMBIN'

 

—  Developing solvents for unclogging the 
calculational bottleneck in high-energy physics
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What can you test in a physics model?
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How probable is my 
model given the data?
(How probable is my 
model compared to 

another model?)

What parameters 𝜗 in 
my model fit the data?

You compare it to the data

The focus here is always on 
dis-proving the model or the 

values of the parameters

ℒ = ℒColliderℒHiggsℒFlavourℒDMℒPrecision…

How do you compare to data: the (global) likelihood

G AM B I There be dragons!
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This depends on unknown scales 𝜇F and 𝜇R which can be taken to represent the 
uncertainty from higher order corrections.

parton distribution 
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Event simulation

To find the efficiency 𝜀 you need to perform expensive repeated 
Monte Carlo simulations of collisions for each choice of parameters 𝜗

One of the most expensive parts is the 
reconstruction of hadronic jets, where the 
cost for n final state particles is 𝒪(n ln n).


(however, in practise 𝒪(n2) for n < 104 )

As a rule of thumb the error on your efficiency goes as 1/√N, where N 
is the number of events generated
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Financing
• Funder: Research Council of Norway (RCN) & UiO joint 

FRIPRO “Fellesløftet” funding 2021


• Project duration: 01.08.2022 to 31.07.2028


• One five year researcher position (Anders Kvellestad)


• Three PhD-positions:

- 2022-2026: Tore Klungland (DP)

- 2024-2027: NN (DM)

- 2025-2028: NN (DP)


• Two two-year postdoc positions

- 2023-2025: NN (DP)

- 2024-2026: NN (DM)


• Money for travel and HPC computing (sigma2 resources)


• Relevant master thesis projects.



Our goals
• Create an open-source machine-learning based regression tool for 

fast numerical evaluation of quantum field theory calculations.


• Develop a framework and tool for reliable probabilistic modelling of 
uncertainties from higher-order quantum field theory contributions.


• Develop a continual learning framework to speed up global scans, 
e.g. by fast evaluation of the joint likelihood from past data.


• Develop a fast pseudo-likelihood approach for reliable extraction of 
best-fit confidence regions.


• Find corrections to existing test-statistics to make goodness-of-fit 
evaluation in global fits computationally feasible.


• Perform a number of global fits of new physics models utilising 
these developments.



Preliminary conclusions
• Lots of exciting physics/statistics/computational problems 

to solve!


• I’m not allowed to apply for more RCN projects ❤ 
(until 2028)


• Potential master student projects with Anders, Lasse, Tore 
and myself as supervisors.


• Future PhD & postdoc positions here and at DM.


