PLUMBIN'

- Developing solvents for unclogging the calculational bottleneck in high-energy physics

Are Raklev

Forskningsrådet

The problem

How do you test your fancy new theoretical model?

The problem

How do you test your fancy new theoretical model?
You compare it to the data

The problem

How do you test your fancy new theoretical model?
You compare it to the data

What can you test in a physics model?

The problem

How do you test your fancy new theoretical model?
You compare it to the data

What can you test in a physics model?
best-fit parameters

The problem

How do you test your fancy new theoretical model?
You compare it to the data

What can you test in a physics model?
best-fit parameters

What parameters ϑ in
my model fit the data?

The problem

How do you test your fancy new theoretical model?
You compare it to the data

What can you test in a physics model?
best-fit parameters

The problem

How do you test your fancy new theoretical model?
You compare it to the data

What can you test in a physics model?
goodness-of-fit best-fit parameters

The problem

How do you test your fancy new theoretical model?
You compare it to the data

What can you test in a physics model?
goodness-of-fit best-fit parameters

How probable is my model given the data?
(How probable is my model compared to another model?)

The problem

How do you test your fancy new theoretical model?

You compare it to the data

What can you test in a physics model?
goodness-of-fit best-fit parameters

How probable is my model given the data?
(How probable is my model compared to another model?)

The focus here is always on dis-proving the model or the values of the parameters

The problem

How do you test your fancy new theoretical model?

WIETMTCMUTED:M

You compare it to the data

How do you compare to data: the (global) likelihood

$$
\mathscr{L}=\mathscr{L}_{\text {Collider }} \mathscr{L}_{\text {Higgs }} \mathscr{L}_{\text {Flavour }} \mathscr{L}_{\text {DM }} \mathscr{L}_{\text {Precision }} \ldots
$$

What can you test in a physics model?
goodness-of-fit best-fit parameters

How probable is my model given the data?
(How probable is my model compared to another model?)

The focus here is always on dis-proving the model or the values of the parameters

The problem with parameters

The problem with parameters

The problem with parameters

$$
p=\frac{1}{2}
$$

The problem with parameters

The problem with parameters

the unit hypercube

$$
N=10^{2} \quad N=10^{n}
$$

The problem with parameters

The problem with parameters

The curse of dimensionality

The problem with parameters

The curse of dimensionality

Using likelihoods

Bayes' theorem

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

 $M r$. Bayes, F, R. commumicated by $M r$. Price, in a Letter to John Canton, A. M. F. R.S.

Read Dec. 23, Now fend you an efflay which I have ceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved Experimental philofophy, you will find, is nearly inered in the fubject of it; and on this account there ems to be particular reafon for thinking that a comproper.
He had, you know, the honour of being a member of that illuftrious Society, and was much efteemintroduction which he has writ to this Effiay, he fays, that his defign at firf in thinking on the fubject of it was, to find out a method by which we might judge concerning the probability that an event has to hapknow nothing concerning it but that, under the fame

Using likelihoods

Bayes' theorem

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \longleftarrow \begin{gathered}
\text { the prior } \\
\pi(\theta)=P(\theta)
\end{gathered}
$$

Using likelihoods

Bayes' theorem

$$
\begin{aligned}
& \qquad P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \quad \begin{array}{c}
\text { the prior } \\
\\
\text { he } \\
\text { terior } \\
= \\
P(\theta)=P(\theta)
\end{array}
\end{aligned}
$$

Using likelihoods

Bayes' theorem

T. Bayes, An Essay towards solving a Problem in the Doctrine of Chances,

Philosophical Transactions of the Royal Society of London 53 (1763) 370-418

Using likelihoods

Bayes' theorem

The likelihood

$$
\mathscr{L}(\theta)=P(D \mid \theta)
$$

Using likelihoods

Bayes' theorem

The likelihood

$$
\mathscr{L}(\theta)=P(D \mid \theta)
$$

The likelihood can maximised wrt. to the parameters to find the best-fit region.

Using likelihoods

Bayes' theorem

T. Bayes, An Essay towards solving a Problem in the Doctrine of Chances, Philosophical Transactions of the Royal Society of London 53 (1763) 370-418

$$
\mathscr{L}(\theta)=P(D \mid \theta)
$$

The likelihood can maximised wrt. to the parameters to find the best-fit region.
In practice one uses the test statistic q to set confidence regions on some of the parameters ϑ ignoring others v

$$
q(\theta)=-2 \ln \frac{\mathscr{L}(\theta, \hat{\hat{\nu}})}{\mathscr{L}(\hat{\theta}, \hat{\nu})}
$$

Using likelihoods

Bayes' theorem

T. Bayes, An Essay towards solving a Problem in the Doctrine of Chances, Philosophical Transactions of the Royal Society of London 53 (1763) 370-418

$$
\mathscr{L}(\theta)=P(D \mid \theta)
$$

The likelihood can maximised wrt. to the parameters to find the best-fit region.
In practice one uses the test statistic q to set confidence regions on some of the parameters ϑ ignoring others v

$$
q(\theta)=-2 \ln \frac{\mathscr{L}(\theta, \hat{\hat{\nu}})}{\mathscr{L}(\hat{\theta}, \hat{\nu})} \longleftarrow \text { the maximum }
$$

Using likelihoods

Bayes' theorem

T. Bayes, An Essay towards solving a Problem in the Doctrine of Chances,

Philosophical Transactions of the Royal Society of London 53 (1763) 370-418

$$
\mathscr{L}(\theta)=P(D \mid \theta)
$$

The likelihood can maximised wrt. to the parameters to find the best-fit region.
In practice one uses the test statistic q to set confidence regions on some of the parameters ϑ ignoring others v

$$
q(\theta)=-2 \ln \frac{\mathscr{L}(\theta, \hat{\hat{\nu}})}{\mathscr{L}(\hat{\theta}, \hat{\nu})} \longleftarrow \text { profiling } v
$$

Using likelihoods

Bayes' theorem

T. Bayes, An Essay towards solving a Problem in the Doctrine of Chances,

Philosophical Transactions of the Royal Society of London 53 (1763) 370-418

$$
\mathscr{L}(\theta)=P(D \mid \theta)
$$

The likelihood can maximised wrt. to the parameters to find the best-fit region.
In practice one uses the test statistic q to set confidence regions on some of the parameters ϑ ignoring others v

Wilks' theorem: q is χ^{2} distributed

$$
q(\theta)=-2 \ln \frac{\mathscr{L}(\theta, \hat{\hat{\nu}})}{\mathscr{L}(\hat{\theta}, \hat{\nu})} \longleftarrow \text { profiling } v
$$

The LHC likelihood

The central equation of particle physics

$$
s=\mathscr{L} \sigma \epsilon
$$

The LHC likelihood

The central equation of particle physics

$$
s=\mathscr{L} \sigma \epsilon
$$

predicted number of
events in model,
compare to data

The LHC likelihood

The central equation of particle physics

integrated luminosity, total amount of data taken

The LHC likelihood

The central equation of particle physics

integrated luminosity, total amount of data taken

The LHC likelihood

The central equation of particle physics

integrated luminosity, total amount of data taken

The LHC likelihood

The central equation of particle physics

integrated luminosity, total amount of data taken

The LHC likelihood

$$
\mathscr{L}(n \mid s, b)=\frac{e^{-(s+b)}(s+b)^{n}}{n!}
$$

The LHC likelihood

The central equation of particle physics

The LHC likelihood

The central equation of particle physics

The LHC likelihood

The central equation of particle physics

The LHC likelihood

The central equation of particle physics

The LHC likelihood

The central equation of particle physics

The LHC likelihood

The central equation of particle physics
predicted number of events in model, compare to data
efficiency of experiment to identify single event

both depend on parameters ϑ, v of model
background, e.g. the SM

The LHC likelihood
integrated luminosity, total amount of data taken

LHC likelihood including uncertainties

$$
\begin{aligned}
\mathscr{L}(n \mid s, b) & =\int_{0}^{\infty} \frac{e^{-\xi(s+b)}[\xi(s+b)]^{n}}{n!} P(\xi) d \xi \\
P(\xi) & =\frac{1}{2 \pi \sigma_{\xi}} \frac{1}{\xi} \exp \left[-\frac{1}{2}\left(\frac{\ln \xi}{\sigma_{\xi}}\right)^{2}\right] \quad \sigma_{\xi}=\frac{\left(\sigma_{s}^{2}+\sigma_{b}^{2}\right)}{(s+b)^{2}}
\end{aligned}
$$

number of measured events (data)

Cross sections

Cross sections

The parton level cross section in QFT

$$
\hat{\sigma}=\alpha^{2} \hat{\sigma}_{\mathrm{LO}}+\alpha^{4} \hat{\sigma}_{\mathrm{NLO}}+\alpha^{6} \hat{\sigma}_{\mathrm{NNLO}}+\ldots
$$

Cross sections

The parton level cross section in QFT

$$
\hat{\sigma}=\alpha^{2} \hat{\sigma}_{\mathrm{LO}}+\alpha^{4} \hat{\sigma}_{\mathrm{NLO}}+\alpha^{6} \hat{\sigma}_{\mathrm{NNLO}}+\ldots
$$

The number of Feynman diagrams to be evaluated increases dramatically with the order of the coupling α. Must be re-evaluated for every choice of ϑ.

Cross sections

The parton level cross section in QFT

$$
\hat{\sigma}=\alpha^{2} \hat{\sigma}_{\mathrm{LO}}+\alpha^{4} \hat{\sigma}_{\mathrm{NLO}}+\alpha^{6} \hat{\sigma}_{\mathrm{NNLO}}+\ldots
$$

The number of Feynman diagrams to be evaluated increases dramatically with the order of the coupling α. Must be re-evaluated for every choice of ϑ.

The proton-proton cross section

$$
\sigma_{p p \rightarrow X Y}=\sum_{i, j} \int_{0}^{1} \int_{0}^{1} d x_{1} d x_{2} f_{i}^{p}\left(x_{1}, \mu_{F}^{2}\right) f_{j}^{p}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{i j \rightarrow X Y}\left(x_{1}, x_{2}, \mu_{R}^{2}\right)
$$

Cross sections

The parton level cross section in QFT

$$
\hat{\sigma}=\alpha^{2} \hat{\sigma}_{\mathrm{LO}}+\alpha^{4} \hat{\sigma}_{\mathrm{NLO}}+\alpha^{6} \hat{\sigma}_{\mathrm{NNLO}}+\ldots
$$

The number of Feynman diagrams to be evaluated increases dramatically with the order of the coupling α. Must be re-evaluated for every choice of ϑ.

The proton-proton cross section

> parton distribution
$\sigma_{p p \rightarrow X Y}=\sum_{i, j} \int_{0}^{1} \int_{0}^{1} d x_{1} d x_{2} f_{i}^{p}\left(x_{1}, \mu_{F}^{2}\right) f_{j}^{p}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{i j \rightarrow X Y}\left(x_{1}, x_{2}, \mu_{R}^{2}\right)$

Cross sections

The parton level cross section in QFT

$$
\hat{\sigma}=\alpha^{2} \hat{\sigma}_{\mathrm{LO}}+\alpha^{4} \hat{\sigma}_{\mathrm{NLO}}+\alpha^{6} \hat{\sigma}_{\mathrm{NNLO}}+\ldots
$$

The number of Feynman diagrams to be evaluated increases dramatically with the order of the coupling α. Must be re-evaluated for every choice of ϑ.

The proton-proton cross section
parton distribution
$\sigma_{p p \rightarrow X Y}=\sum_{i, j} \int_{0}^{1} \int_{0}^{1} d x_{1} d x_{2} f_{i}^{p}\left(x_{1}, \mu_{F}^{2}\right) f_{j}^{p}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{i j \rightarrow X Y}\left(x_{1}, x_{2}, \mu_{R}^{2}\right)$
Significant uncertainty from coupling constant α_{s} value, PDFs and higher order contributions.

Cross sections

The parton level cross section in QFT

$$
\hat{\sigma}=\alpha^{2} \hat{\sigma}_{\mathrm{LO}}+\alpha^{4} \hat{\sigma}_{\mathrm{NLO}}+\alpha^{6} \hat{\sigma}_{\mathrm{NNLO}}+\ldots
$$

The number of Feynman diagrams to be evaluated increases dramatically with the order of the coupling α. Must be re-evaluated for every choice of ϑ.

The proton-proton cross section
parton distribution
$\sigma_{p p \rightarrow X Y}=\sum_{i, j} \int_{0}^{1} \int_{0}^{1} d x_{1} d x_{2} f_{i}^{p}\left(x_{1}, \mu_{F}^{2}\right) f_{j}^{p}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{i j \rightarrow X Y}\left(x_{1}, x_{2}, \mu_{R}^{2}\right)$
Significant uncertainty from coupling constant α_{s} value, PDFs and higher order contributions.

This depends on unknown scales μ_{F} and μ_{R} which can be taken to represent the uncertainty from higher order corrections.

Event simulation

To find the efficiency ε you need to perform expensive repeated Monte Carlo simulations of collisions for each choice of parameters ϑ

Event simulation

To find the efficiency ε you need to perform expensive repeated Monte Carlo simulations of collisions for each choice of parameters ϑ As a rule of thumb the error on your efficiency goes as $1 / \sqrt{ } N$, where N is the number of events generated

Event simulation

To find the efficiency ε you need to perform expensive repeated Monte Carlo simulations of collisions for each choice of parameters ϑ As a rule of thumb the error on your efficiency goes as $1 / \sqrt{ } N$, where N is the number of events generated

Event simulation

To find the efficiency ε you need to perform expensive repeated Monte Carlo simulations of collisions for each choice of parameters ϑ As a rule of thumb the error on your efficiency goes as $1 / \sqrt{ } N$, where N is the number of events generated

Event simulation

To find the efficiency ε you need to perform expensive repeated Monte Carlo simulations of collisions for each choice of parameters ϑ

As a rule of thumb the error on your efficiency goes as $1 / \sqrt{ } N$, where N is the number of events generated

One of the most expensive parts is the reconstruction of hadronic jets, where the cost for n final state particles is $\mathcal{O}(n \ln n)$.
(however, in practise $\mathcal{O}\left(n^{2}\right)$ for $n<10^{4}$)

Putting it all together

An example of what happens in a simple supersymmetric model (mSUGRA/CMSSM) with four parameters: $\mathrm{m}_{\mathrm{o}}, \mathrm{m}_{1 / 2}, \mathrm{~A}_{\mathrm{o}}, \tan \beta$.

Putting it all together

An example of what happens in a simple supersymmetric model (mSUGRA/CMSSM) with four parameters: $\mathrm{m}_{\mathrm{o}}, \mathrm{m}_{1 / 2}, \mathrm{~A}_{\mathrm{o}}, \tan \beta$.

Putting it all together

An example of what happens in a simple supersymmetric model (mSUGRA/CMSSM) with four parameters: $\mathrm{m}_{\mathrm{o}}, \mathrm{m}_{1 / 2}, \mathrm{~A}_{\mathrm{o}}, \tan \beta$.

The PLUMBIN' Team

Are Raklev

Lasse Braseth

Andrea Jensen Marthinussen

Riccardo De Bin

Timo
Lohrmann
Carl Martin Fevang

Co-Pls

PhD-students

Tore Klungland

Erik Alexander Sandvik

What's in a name?

- We are PLUMBIN'?!?

What's in a name?

- We are PLUMBIN'?!?
- Yes, because we are doing:
- Physics Learning Using Machines and Bayesian INference

What's in a name?

- We are PLUMBIN'?!?
- Yes, because we are doing:
- Physics Learning Using Machines and Bayesian INference
- (sorry!)

What's in a name?

- We are PLUMBIN'?!?
- Yes, because we are doing:
- Physics Learning Using Machines and Bayesian INference
- (sorry!)
- To plumb: make sure something is straight and vertical, or measure the depths of something, or explore in extreme.

What's in a name?

- We are PLUMBIN'?!?
- Yes, because we are doing:
- Physics Learning Using Machines and Bayesian INference
- (sorry!)
- To plumb: make sure something is straight and vertical, or measure the depths of something, or explore in extreme.

Financing

- Funder: Research Council of Norway (RCN) \& UiO joint FRIPRO "Fellesløftet" funding 2021
- Project duration: 01.08.2022 to 31.07.2028
- One five year researcher position (Anders Kvellestad)
- Three PhD-positions:
- 2022-2026: Tore Klungland (DP)
- 2024-2027: NN (DM)
- 2025-2028: NN (DP)
- Two two-year postdoc positions
- 2023-2025: NN (DP)
- 2024-2026: NN (DM)
- Money for travel and HPC computing (sigma2 resources)
- Relevant master thesis projects.

Our goals

- Create an open-source machine-learning based regression tool for fast numerical evaluation of quantum field theory calculations.
- Develop a framework and tool for reliable probabilistic modelling of uncertainties from higher-order quantum field theory contributions.
- Develop a continual learning framework to speed up global scans, e.g. by fast evaluation of the joint likelihood from past data.
- Develop a fast pseudo-likelihood approach for reliable extraction of best-fit confidence regions.
- Find corrections to existing test-statistics to make goodness-of-fit evaluation in global fits computationally feasible.
- Perform a number of global fits of new physics models utilising these developments.

Preliminary conclusions

- Lots of exciting physics/statistics/computational problems to solve!
- I'm not allowed to apply for more RCN projects (until 2028)
- Potential master student projects with Anders, Lasse, Tore and myself as supervisors.
- Future PhD \& postdoc positions here and at DM.

