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Empirical view of geometry in physics: Einstein’s Practical
geometry.

Limitations of practical geometry at small scales.

Rethinking geometry for the quantum realm.
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The Emergence of Practical Geometry

Riemann’s lecture ”On the Hypotheses Which Lie at the
Foundation of Geometry” [8]:

Understanding geometry through physical experiences,
challenging the reliance on ancient Euclidean texts.

Influenced Einstein’s perspective on geometry and the
development of relativity theories.

Marked the beginning of ”Practical Geometry.”
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Einstein’s Empiricism and the Emergence of Practical
Geometry

Einstein held a strong commitment to empiricism.

He criticized philosophers’ dependence on a priori knowledge
(e.g., Kant’s view on Euclidean geometry).

Einstein emphasized the importance of linking geometry with
physical experiments.
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The birth of practical geometry: Riemann and Einstein

”I am convinced that the philosophers have had a harmful
effect upon the progress of scientific thinking in removing
certain fundamental concepts from the domain of empiri-
cism, where they are under our control, to the intangible
heights of the a priori. This is particularly true of our
concepts of time and space, which physicists have been
obliged by the facts to bring down from the Olympus of
the a priori in order to adjust them and put them in a ser-
viceable condition.” (Einstein,”The meaning of relativity”
[4])
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Mathematician vs.Physicist view on geometry

Criterion of truth in mathematics: Logical consistency.

Criterion of truth in physics: Prediction of phenomena.

Einstein applied the physicist’s criterion of truth to evaluate
geometric theorems.

Einstein advocated associating fundamental geometric
concepts with physical objects and testing geometric theorems
empirically based on the behavior of these objects.

In this sense, geometry is a natural science, which Einstein
called practical geometry.
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Practical geometry

” One is ordinarily accustomed to study geometry divorced
from any relation between its concepts and experience.
There are advantages in isolating that which is purely log-
ical and independent of what is, in principle, incomplete
empiricism. This is satisfactory to the pure mathemati-
cian. He is satisfied if he can deduce his theorems from
axioms correctly, that is, without errors of logic. The ques-
tions as to whether Euclidean geometry is true or not does
not concern him. But for our purpose it is necessary to
associate the fundamental concepts of geometry with
natural objects; without such an association geometry is
worthless for the physicist. The physicist is concerned with
the question as to whether the theorems of geometry are
true or not. ” (Einstein, ”The meaning of relativity” [4])
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Geometry as the oldest branch of physics

”Geometry thus completed is evidently a natural science;
we may in fact regard it as the most ancient branch of
physics. Its affirmations rest essentially on induction from
experience, but not on logical inferences only. We will
call this completed geometry ”practical geometry”, and
shall distinguish it in what follows from ”purely axiomatic
geometry.” (Einstein, ”Geometry and experience” [3])
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Practical geometry and small scale

Riemannian geometry: distance as the ”building block of
geometry”.

”The whole of geometry may be founded upon this con-
ception of distance. In the present treatment, geometry
is related to actual things (rigid bodies), and its theo-
rems are statements concerning the behaviour of these
things, which may prove to be true or false.” (Einstein,
”The meaning of relativity”)

Not only did Riemannian geometry play a basic role in the
development of general relativity but it became the central
paradigm of geometry in the XXth century.
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Riemann’s Perspective on Distance Measurement

Let’s first remind the Riemanian paradigm and his conception
of distance.

Gauss’s discovery of the intrinsic geometry of surfaces allowed
Riemann to extend geometry beyond spaces admitting
symmetries to define the congruence of segments.

In these general spaces, geometric shapes like triangles cannot
generally be moved without deformation, i.e., altering the
lengths of its sides or its angles.

Riemann’s key idea: Even if we can’t move shapes without
squishing them, we can still measure tiny distances using a
small standard length (a ”rigid body” in practical geometry).
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Riemannian paradigm and the concept of distance

The distance d(x , y) between two points x and y is computed
by summing the lengths of the small intervals ds along a path
between x and y, and then finding the smallest such length.

d(x , y) = Inf
{∫

γ ds | γ is a path between x and y}
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Invalidity of Riemanian paradigm of geometry in the small
scale

The question that arises is : Would this paradigm of
geometry survives in the quantum scale?

The answer is NO:

1 At quantum scales: The concept of a spatial rigid body (and
light rays) become invalid ⇒ Line element ds is empirically
ill-defined.

2 There is no concept of ”path” or ”trajectory” ⇒ No empirical
definition of spatial distance

3 ⇒ Einstein’s practical geometry cannot be maintained as the
geometrical framework in quantum scale.
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Invalidity of Riemanian paradigm of geometry in the small
scale

”Complications may arise in case the line element is not
representable, as has been premised, by the square root of
a differential expression of the second degree. Now, how-
ever, the empirical notions on which spatial measurements
are based appear to lose their validity when applied to the
indefinitely small, namely the concept of a rigid body and
that of a light-ray; accordingly it is entirely conceivable
that in the indefinitely small, the spatial relations are not
in accord with the postulates of geometry(...) The ques-
tion of the validity of the postulates of geometry in the
indefinitely small is involved in the question concerning
the ultimate basis of relations in space (...)” (Riemann,
”On the Hypotheses Which Lie at the Foundation of Ge-
ometry” 1854 [8])
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The breakdown of Reimannian paradigm in small scales

”It is true that this proposed physical interpretation of ge-
ometry breaks down when applied immediately to spaces
of sub-molecular order of magnitude. (...) Success alone
can decide as to the justification of such an attempt, which
postulates physical reality for the fundamental principles of
Riemann’s geometry outside of the domain of their physical
definitions. It might possibly turn out that this extrapo-
lation has no better warrant than the extrapolation of the
idea of temperature to parts of a body of molecular order
of magnitude.”(Einstein, ”Geometry and experience” [3])
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Limitations of Riemannian Geometry at Quantum Scales

Question: What could serve as a practical geometry for the
quantum scale?

1 First, we need to determine a conceptual geometric framework
for quantum scale.

2 Then find a practical geometry that corresponds to it. (work
in progress).
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Supremacy of spectral over spatial quantities in quantum
realm

How to proceed to develop a conceptual geometrical
framework for quantum realm ?

In quantum mechanics: Only Spectral quantities are
fundamental

No link between spectral and spatial quantities.

Hint toward → Change of Paradigm of Geometry from spatial
to spectral geometry
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Heisenberg’s Seminal Paper

Figure: Werner Heisenberg
(1901-1976)

Figure: Heisenberg Seminal 1925
paper [5]
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From Bohr to Heisenberg

Bohr Old quantum theory: Maintain a spatial trajectory of
electron + an ad hoc quantization rule (Bohr-sommerfeld
quantization rule).

Bohr: Keep the link between spatial (electron trajectory) and
spectral quantities (frequency, intensity etc.. of radiated light)

Heisenberg (1925): Break the link between spatial and
spectral quantities: Only spectral quantities are fundamental.
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From Classical to Quantum Frequencies

Classical Theory of the atom:

Fourier Series Representation for a periodic trajectory of the
electron:

x(t) =
∞∑
n=1

an cos(nωt)

Classical theory connects: Kinematical properties (spatial) of
the electron ↔ Spectral properties of light (frequency,
intensity etc.)
Kinematical (spatial) frequencies coincide with spectral
frequencies.
Spectral lines predicted to be equidistant:

ωn = nω

ω1 ω2 ω3

Classical Spectral Lines
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Quantum Frequencies and New Mechanics

Observed atomic spectral lines do not match classical
predictions (not equidistant).

Quantum Spectral Lines

Quantum Frequencies: Follow the Rydberg-Ritz combination
rule:

ωnk + ωkm = ωnm

Heisenberg proposed a new ”quantum kinematics” (while
keeping classical dynamics).

Redefined position as a spectral quantity, not a spatial one.
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Heisenberg Spatial to Spectral Quantities

Spatial Concept: Trajectory

x(n, t) =
∑

α aα(n)e
iαω(n)t

Spectral Concept: Set of Transition Components

x →
{
a(n, n − α)e iω(n,n−α)t

}
Figure: Transition from Spatial to Spectral Concepts
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Matrix Mechanics and Spectral Geometry

Heisenberg (1925): Replaced classical Fourier components
with quantum transitions.

Heisenberg kinematical elements: Shift from spatial to
spectral elements.

Spectral quantities became the primary entities.

There is no possible link between spatial and spectral
quantities (as was the case in classical theory)
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Change of Paradigm

Return to our question : How can we develop a conceptual
geometrical framework for the quantum realm?

There are no spatial elements in quantum mechanics, only
spectral elements → Change the paradigm of geometry from a
spatial geometry to a spectral geometry.
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Can we hear the shape of a drum?

Spectral Geometry is well-illustrated by the question: ”Can we
hear the shape of a drum ?” (M.Kac (1966) [6])

By answering this question, we pursue a change of paradigm
for geometry. Geometry becomes spectral.

Let’s take the simple and classical example of a compact
Riemannian manifold (M, g).

Goal: Recover geometry by analyzing vibrations/waves in the
space.

Helmholtz equation: ∆Mu = k2u. ∆M is the
Laplace-Beltrami operator on the manifold (M, g), u is a
scalar field representing the wave, and k is the wave number.
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Disk

Figure: Spectral data from the disc [9]
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Square

Figure: Spectral data from the square [9]
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Retrieving geometrical properties from the spectrum

By analyzing the spectrum, we can deduce if the shape is a
disc or a square.

We can do much more than that. Let’s talk a bit about the
birth of spectral geometry.
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Weyl’s law and quantum mechanics

In late October 1910, H. A. Lorentz visited Göttingen to present a
series of lectures. His series of five talks was titled “Old and new
problems of physics.” In the concluding remarks of his fourth
lecture, Lorentz introduced a mathematical problem inspired by
Jeans’s radiation theory:

In conclusion, there is a mathematical problem which per-
haps will arouse the interest of mathematicians who are
present (...) to prove that the number of sufficiently high
overtones which lie between ν and ν + dν is independent
of the shape of the enclosure, and is simply proportional
to its volume. For many shapes for which calculations can
be carried out, this theorem has been verified. There is
no doubt that it holds in general even for multiply con-
nected regions. Similar theorems for other vibrating struc-
tures, like membranes, air masses, etc., should also hold.
(Lorentz ”Old and new problems of physics” [7])
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Weyl’s law : history

Hilbert was not very optimistic to see a solution in his lifetime.
But Hermann Weyl, his bright student, settled this conjecture of
Lorentz and announced a proof within a year (in 1911).
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Weyl’s Law

Weyl’s Law [10]: We can also gain information about
geometrical properties by analyzing the spectrum of Laplace
operator:

N(k) ∼ Vol(M)

(2π)n
kn,

where N(k) is the number of eigenvalues of the Laplace
operator ∆M that are less than or equal to k , n is the
dimension of the manifold, and Vol(M) is the volume of the
manifold.
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Dirac operator as line element

Spectral geometry: Framework where geometrical properties
are encoded in a spectral manner.

What would replace the line element ds in spectral geometry?

Alain Connes [2]: Dirac operator can be seen as an adequate
replacement of the line element: ds = D−1.
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Dirac Operator and Spectral Geometry

Paul Dirac introduced the ”square-root” of the Laplace
operator, so a first order differential operator whose
eigenvalues are linearly related to the wave numbers, k :

Dψ = kψ

In the realm of spectral geometry, the Dirac operator encodes
geometrical properties of a space through its spectrum.

Examples: Topological invariants: Certain global properties
of the space (topological properties) can be encoded in the
spectrum of the Dirac operator.
Local geometry: Dirac operator is connected with the
curvature of space through the Atiyah-Singer index theorem.
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Spectral Practical geometry

Work in progress: Make clear physical sense of this result i.e.
find a consistent ”Spectral practical geometry”.

In contrast to Einstein’s practical geometry, which utilized
rods and clocks to probe geometry encoded in line element
ds, spectral geometry uses the Dirac operator as a the
equivalent of a line element, which is inherently linked to the
fundamental interactions within a space.

Interestingly, Riemann had a similar idea:

Amine Rusi Rethinking Geometry in Physics



References

Spectral Practical geometry

Work in progress: Make clear physical sense of this result i.e.
find a consistent ”Spectral practical geometry”.

In contrast to Einstein’s practical geometry, which utilized
rods and clocks to probe geometry encoded in line element
ds, spectral geometry uses the Dirac operator as a the
equivalent of a line element, which is inherently linked to the
fundamental interactions within a space.

Interestingly, Riemann had a similar idea:

Amine Rusi Rethinking Geometry in Physics



References

Spectral Practical geometry

Work in progress: Make clear physical sense of this result i.e.
find a consistent ”Spectral practical geometry”.

In contrast to Einstein’s practical geometry, which utilized
rods and clocks to probe geometry encoded in line element
ds, spectral geometry uses the Dirac operator as a the
equivalent of a line element, which is inherently linked to the
fundamental interactions within a space.

Interestingly, Riemann had a similar idea:
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Riemann

”While in a discrete manifold the principle of metric rela-
tions is implicit in the notion of this manifold, it must come
from somewhere else in the case of a continuous manifold.
Either therefore the reality which underlies space must be
discrete, or we must seek the foundation of its metric rela-
tions outside it, in binding forces which act upon it. This
path leads out into the domain of another science, into
the realm of physics, into which the nature of this present
occasion forbids us to penetrate. [8]”
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Spectral geometry is not enough

Spectral geometry is not the only change of paradigm in
geometry.

Heisenberg kinematical elements do not commute.

Non-commutativity cannot be incorporated in classical
manifold picture.

Mathematical speculation: Let’s try to extend the duality
(Alain Connes):
”Geometric Space ⇐⇒ Commutative Algebra”.
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The interplay between algebra and geometry

”Algebra is but written geometry and geometry is but fig-
ured algebra.” - Sophie Germain(1776-1831)

Manifold M

(Commutative) Algebra of Functions C∞(M)

All Geometric Objects: Vector Fields, Riemannian metric, etc.

All the differential geometric properties of a manifold M are
encoded in the algebra C(M), the commutative algebra of the
infinitely differentiable functions on M. As soon a one has the
algebra C(M), the manifold M itself becomes superfluous.
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Non-Commutative case

Figure: Extending the duality Geometry - Algebra to non-commutative
case [1]
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Spectral triple

Alain Connes proposed a unified geometrical framework to
geometries in very general spaces beyond the Riemannian
paradigm.

This framework is represented by ”The spectral triple
(A,H,D)”

In a physical context:

1 The Hilbert space H represents the space of quantum states.
2 The algebra of operators A encodes physical observables.
3 The Dirac operator D encodes the spectral information of

geometry.
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Noncommutative Geometry: Measuring Distances

How can we define distance in non-commutative spaces?

In noncommutative geometry, distances are no longer
measured by the integral of the line element along arcs.

Instead, distances are measured using the algebraic definition
of distance:

d(x , y) = sup
f ∈A

{|f (x)− f (y)|; ∥[f ,D]∥ ≤ 1}

Physically: A represents the algebra of physical observables,
and the Dirac operator D encodes geometry through its
spectrum.
∥[f ,D]∥ ≤ 1 can be interpreted as a condition on energy of
the physical observables f .
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Some text on spectral distance

d(x , y) = sup
f ∈A

{|f (x)− f (y)|; ∥[f ,D]∥ ≤ 1}

The algebraic distance is a generalization of the classical
notion of distance to the quantum realm.

At small scales, where Riemanian paradigm of geometry stops
making sense, the spectral distance provides a new way to
quantify the concept of ”closeness”.
It is built on physical observables of the quantum system
itself, making it more suitable for describing physics at the
quantum scale from a practical geometry point of view.
The spectral triple (A,H,D) provides a unified framework to
discuss geometry and physics in the quantum realm beyond
the Riemanian paradigm, while ensuring geometrical concepts
has an empirical equivalent within the quantum realm (i.e.
compatible with a practical view of geometry)
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Comparison of Riemannian and Spectral Non-commutative
Geometry

Riemannian Geometry Spectral Non-commutative Geometry
Space: (X, ds2) Spectral triple: (A, H, D)

Line element: ds2 = gµνdx
µdxν Line element: ds = D−1

Distance: d(a, b) = inf
∫
γ

√
gµνdxµdxν Distance: d(a, b) = supf ∈A{|f (x)− f (y)|; ∥[D, f ]∥ ≤ 1}
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Einstein’s Practical Geometry vs. Spectral Practical
Geometry

Einstein’s Practical Geometry Spectral Practical Geometry
Uses rigid rods and clocks to
probe geometry that’s encoded
through the line element ds.

Use fundamental physical interac-
tion to probe geometry that is
encoded in the spectrum of the
Dirac operator. (Work in progress
to make a clearer sense of that)

Riemannian distance valid only on
arc-connected spaces and relies on
the line element ds and commuta-
tive coordinate functions.

Spectral distance works in any
space and is defined using
any physical observable (including
quantum non-commutative ob-
servables).
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Work in progress

Work in progress:

1 Construct concrete physical examples for the application of
algebraic distance both in classical and quantum scales.

2 Construct a consistant ”Practical spectral geometry”, by
deeply understanding the physical meaning of considering
Dirac operator as line element ds = D−1 (Relating it to
fundamental interactions of nature encoded in D.)

3 Understand how the probabilistic framework of quantum
theory could emerge from this spectral framework of geometry.
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Finally

”I want to know God’s thoughts; the rest are details.”
- Albert Einstein

Final words: I deeply believe that the lack of clear
understanding of what is going on in the quantum realm
comes from keeping an a priori way of thinking about the
world as embedded in Riemanian space, and thus using a
practical geometry that is not valid in the quantum realm. I
think we need to adapt our geometrical framework to
comprehend the quantum realm. Spectral geometry gives an
interesting new paradigm of geometry that could guide us
toward knowing god’s thoughts in the quantum scale.
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[3] Albert Einstein. La géométrie et l’expérience.
Gauthier-Villars, 1921.

[4] Albert Einstein. The meaning of relativity. Routledge, 2003.

[5] Werner Heisenberg. “Quantum-theoretical re-interpretation
of kinematic and mechanical relations”. In: Z. Phys 33
(1925), pp. 879–893.

[6] Mark Kac. “Can one hear the shape of a drum?” In: The
american mathematical monthly 73.4P2 (1966), pp. 1–23.

[7] HA Lorentz. “Alte und Neue Probleme der Physik”. In:
Phys. Zeitschr 11 (1910), p. 1234.

Amine Rusi Rethinking Geometry in Physics



References

References II
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