

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}:[\mathrm{Xe}] 4 f^{7}
$$

$$
l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

$l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

$l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3$
$S=7 / 2$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

$l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3$
$S=7 / 2 \quad L=0$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

$l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3$
$S=7 / 2 \quad L=0 \quad J=7 / 2$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

$l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3$
$S=7 / 2 \quad L=0 \quad J=7 / 2$

Magnetism in materials originates from partially filled electron shells.

$$
\mathrm{Gd}^{3+}: \quad[\mathrm{Xe}] 4 f^{7}
$$

$l_{z}=-3 \quad l_{z}=-2 \quad l_{z}=-1 \quad l_{z}=0 \quad l_{z}=1 \quad l_{z}=2 \quad l_{z}=3$

$$
S=7 / 2 \quad L=0 \quad J=7 / 2
$$

$$
H=\frac{1}{2} \sum_{\vec{r}, \vec{r}^{\prime}} J_{\vec{r}, \vec{r}^{\prime}} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}^{\prime}}
$$

$$
H=\frac{1}{2} \sum_{\vec{r}, \vec{r}^{\prime}} J_{\vec{r}, \vec{r}} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}^{\prime}}
$$

$$
J_{\vec{r}, \vec{r}^{\prime}}<0 \text { : Ferromagnetic }
$$

$J_{\vec{r}, \vec{r}^{\prime}}>0$: Antiferromagnetic

Square lattice with nearest neighbour interactions.

Ferromagnetic
Antiferromagnetic

Conventional magnets usually order below a critical temperature.

Ferromagnet

Paramagnet

Conventional magnets usually order below a critical temperature.

Ferromagnet

Paramagnet

"Spin gas"

Conventional magnets usually order below a critical temperature.

Ferromagnet

Paramagnet

$$
T_{c} \quad \text { "Spin gas" }
$$

Conventional magnets usually order below a critical temperature.

Ferromagnet

Paramagnet

Frustrated magnets cannot satisfy all interactions simultaneously.

Simplest example: Ising antiferromagnet on a triangle

Frustrated magnets cannot satisfy all interactions simultaneously.

Simplest example: Ising antiferromagnet on a triangle

Frustrated magnets cannot satisfy all interactions simultaneously.

Simplest example: Ising antiferromagnet on a triangle

Frustrated magnets cannot satisfy all interactions simultaneously.

Simplest example: Ising antiferromagnet on a triangle

Frustrated magnets cannot satisfy all interactions simultaneously.

Simplest example: Ising antiferromagnet on a triangle

Frustrated magnets cannot satisfy all interactions simultaneously.

Simplest example: Ising antiferromagnet on a triangle

Frustrated magnets often have an extensive ground state degeneracy.

Ising model on triangular lattice...

Lack of ordering leads to a strongly correlated spin liquid.

Spin liquid

NO SYMMETRY BREAKING
Paramagnet

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$
H=\frac{1}{2} \sum_{\vec{r}, \vec{r}^{\prime}} J_{\vec{r}, \vec{r}^{\prime}} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}^{\prime}} \quad J_{\vec{q}}=\frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i \vec{q} \cdot \vec{r}} ; \quad S_{\vec{q}}=\frac{1}{\sqrt{V}} \sum_{\vec{r}} S_{\vec{r}} e^{-i \vec{q} \cdot \vec{r}}
$$

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$
H=\sum_{\vec{q}} J_{\vec{q}}\left|\vec{S}_{\vec{q}}\right|^{2}
$$

$$
J_{\bar{q}}=\frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i \vec{q} \cdot \vec{r}} ; \quad S_{\bar{q}}=\frac{1}{\sqrt{V}} \sum_{\vec{r}} s_{\vec{r}} e^{-i \bar{q} \cdot \vec{r}}
$$

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$
\begin{array}{lc}
H=\sum_{\vec{q}} J_{\vec{q}}\left|\vec{S}_{\vec{q}}\right|^{2} \quad J_{\bar{q}}=\frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i \bar{q} \cdot \vec{r}} ; & S_{\vec{q}}=\frac{1}{\sqrt{V}} \sum_{\vec{r}} s_{\vec{r}} e^{-i \vec{q} \vec{r}} \\
\vec{S}_{\vec{r}}(\vec{Q})=\vec{u} \cos (\vec{Q} \cdot \vec{r})+\vec{v} \sin (\vec{Q} \cdot \vec{r}) & \vec{u} \perp \vec{v}
\end{array} \vec{u}^{2}=\vec{v}^{2}=1
$$

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$
H=\sum_{\vec{q}} J_{\vec{q}}\left|\vec{S}_{\vec{q}}\right|^{2}
$$

$$
J_{\bar{q}}=\frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i \vec{q} \cdot \vec{r}} ; \quad S_{\bar{q}}=\frac{1}{\sqrt{V}} \sum_{\vec{r}} S_{\vec{r}} e^{-i \bar{q} \cdot \vec{r}}
$$

$$
\vec{S}_{\vec{r}}(\vec{Q})=\vec{u} \cos (\vec{Q} \cdot \vec{r})+\vec{v} \sin (\vec{Q} \cdot \vec{r}) \quad \vec{u} \perp \vec{v} \quad \vec{u}^{2}=\vec{v}^{2}=1
$$

The Heisenberg model on the triangular lattice orders in a 120 degree phase.

The Heisenberg model on the triangular lattice orders in a 120 degree phase.

The Heisenberg model on the triangular lattice orders in a 120 degree phase.

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra or equivalently
face centered cubic (fcc) lattice with 4 sublattices

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra or equivalently
face centered cubic (fcc) lattice with 4 sublattices

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra or equivalently
face centered cubic (fcc) lattice with 4 sublattices

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra or equivalently
face centered cubic (fcc) lattice with 4 sublattices

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra
or equivalently
face centered cubic (fcc) lattice with 4 sublattices

$$
H=J_{1} \sum_{\left\langle\vec{r}, \vec{r}^{\prime}\right\rangle} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}^{\prime}}
$$

J. N. Reimers, Phys. Rev. B 45, 7287 (1992).
R. Moessner and J. T. Chalker, Phys. Rev. Lett. 80, 2929 (1998).

Paramagnet

$$
H=J_{1} \sum_{\left\langle\vec{R} i, \vec{R}^{\prime} j\right\rangle} \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j}
$$

Phys. Rev. B 108, 014413 (2023)

$$
\begin{gathered}
H=J_{1} \sum_{\left\langle\vec{R} i, \vec{R}^{\prime} j\right\rangle} \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j} \\
\vec{S}_{\vec{R}, i}=\vec{u}_{i} \cos \left(\vec{Q}_{i} \cdot \vec{R}\right)+\vec{v}_{i} \sin \left(\vec{Q}_{i} \cdot \vec{R}\right)
\end{gathered}
$$

$$
\begin{gathered}
H=J_{1} \sum_{\langle\vec{R} i, \vec{R} j\rangle} \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j} \\
\vec{S}_{\vec{R}, i}=\vec{u}_{i} \cos \left(\vec{Q}_{i} \cdot \vec{R}\right)+\vec{v}_{i} \sin \left(\vec{Q}_{i} \cdot \vec{R}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \vec{S}_{\vec{R}^{0},}=\vec{u} \cos \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right)+\vec{v} \sin \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right) \quad \vec{S}_{\vec{R}, 1}=-\vec{S}_{\vec{R}, 0} \\
& \vec{S}_{\vec{R}, 2}=\vec{w} \cos \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right)+\vec{z} \sin \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right) \quad \vec{S}_{\vec{R}, 3}=-\vec{S}_{\vec{R}, 2}
\end{aligned}
$$

$$
\begin{gathered}
H=J_{1} \sum_{\left\langle\vec{R} i, \vec{R}^{\prime} j\right\rangle} \vec{S}_{\vec{R}_{, i}} \cdot \vec{S}_{\vec{R}^{\prime}, j} \\
\vec{S}_{\vec{R}, i}=\vec{u}_{i} \cos \left(\vec{Q}_{i} \cdot \vec{R}\right)+\vec{v}_{i} \sin \left(\vec{Q}_{i} \cdot \vec{R}^{\text {sublattice pairing states: }} \begin{array}{l}
\text { two and two sublattices } \\
\text { form antiparallel spirals }
\end{array}\right. \\
\vec{S}_{\vec{R}, 0}=\vec{u} \cos \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right)+\vec{v} \sin \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right) \quad \vec{S}_{\vec{R}, 1}=-\vec{S}_{\vec{R}, 0} \\
\vec{S}_{\vec{R}, 2}=\vec{w} \cos \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right)+\vec{z} \sin \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right) \quad \vec{S}_{\vec{R}, 3}=-\vec{S}_{\vec{R}, 2}
\end{gathered}
$$

$$
\begin{gathered}
H=J_{1} \sum_{\langle\vec{R} i, \vec{R} j\rangle\rangle} \vec{S}_{\vec{R}^{\prime}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j} \\
\vec{S}_{\vec{R}, i}=\vec{u}_{i} \cos \left(\vec{Q}_{i} \cdot \vec{R}\right)+\vec{v}_{i} \sin \left(\vec{Q}_{i} \cdot \vec{R}\right) \\
\vec{Q}_{(i, j)} \cdot\left(\vec{a}_{i}-\vec{a}_{j}\right)=2 \pi n \quad \begin{array}{l}
\text { Sublattice pairing states: } \\
\text { two and two sublattices } \\
\text { form antiparallel spirals }
\end{array} \\
\vec{S}_{\vec{R}, 0}=\vec{u} \cos \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right)+\vec{v} \sin \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right) \quad \vec{S}_{\vec{R}, 1}=-\vec{S}_{\vec{R}, 0}=0 \\
\vec{S}_{\vec{R}, 2}=\vec{w} \cos \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right)+\vec{z} \sin \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right) \quad \vec{S}_{\vec{R}, 3}=-\vec{S}_{\vec{R}, 2}=0
\end{gathered}
$$

$$
H=J_{1} \sum_{\left\langle\vec{R} i, \vec{R}^{\prime} j\right\rangle} \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j}
$$

$$
\vec{S}_{\vec{R}, i}=\vec{u}_{i} \cos \left(\vec{Q}_{i} \cdot \vec{R}\right)+\vec{v}_{i} \sin \left(\vec{Q}_{i} \cdot \vec{R}\right)
$$

$$
\vec{Q}_{(i, j)} \cdot\left(\vec{a}_{i}-\vec{a}_{j}\right)=2 \pi n
$$

Sublattice pairing states: two and two sublattices form antiparallel spirals

$$
\begin{array}{ll}
\vec{S}_{\vec{R}, 0}=\vec{u} \cos \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right)+\vec{v} \sin \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right) & \vec{S}_{\vec{R}, 1}=-\vec{S}_{\vec{R}, 0} \\
\vec{S}_{\vec{R}, 2}=\vec{w} \cos \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right)+\vec{z} \sin \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right) & \vec{S}_{\vec{R}, 3}=-\vec{S}_{\vec{R}, 2}
\end{array}
$$

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states minimise the J_{1} and $J_{3 b}$ couplings simultaneously.

$$
H=\frac{1}{2} \sum_{\vec{R}, \vec{R}^{\prime}} \sum_{i, j} J_{i j}\left(\overrightarrow{R^{\prime}}-\vec{R}\right) \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j}
$$

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states minimise the J_{1} and $J_{3 b}$ couplings simultaneously.

$$
H=\frac{1}{2} \sum_{\vec{R}, \vec{R}^{\prime}} \sum_{i, j} J_{i j}\left(\overrightarrow{R^{\prime}}-\vec{R}\right) \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j}
$$

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states minimise the J_{1} and $J_{3 b}$ couplings simultaneously.

$$
H=\frac{1}{2} \sum_{\vec{R}, \vec{R}^{\prime}} \sum_{i, j} J_{i j}\left(\overrightarrow{R^{\prime}}-\vec{R}\right) \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j}
$$

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states minimise the J_{1} and $J_{3 b}$ couplings simultaneously.

$$
H=\frac{1}{2} \sum_{\vec{R}, \vec{R}^{\prime}} \sum_{i, j} J_{i j}\left(\overrightarrow{R^{\prime}}-\vec{R}\right) \vec{S}_{\vec{R}, i} \cdot \vec{S}_{\vec{R}^{\prime}, j}
$$

Phys. Rev. B 108, 014413 (2023)

The $J_{1}-J_{3 b}$ model orders in sublattice pairing states (SLP).

$$
J_{1}=1
$$

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states (SLP) are stable when adding small J_{2}.

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states (SLP) are stable when adding small J_{2}.

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states (SLP) are stable when adding small J_{2}.

Phys. Rev. B 108, 014413 (2023)

The sublattice pairing state (SLP) is realised at low temperatures in a large region of exchange coupling space.

Phys. Rev. B 108, 014413 (2023)

SMALL FURTHER-NEIGHBOUR COUPLINGS DESTABILISE THE SPIN LIQUID ON THE CLASSICAL PYROCHLORE HEISENBERG MODEL $J_{3 b} \longrightarrow$ SUBLATTICE PAIRING STATES

$$
\begin{array}{ll}
\vec{S}_{\vec{R}, 0}=\vec{u} \cos \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right)+\vec{v} \sin \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right) & \vec{S}_{\vec{R}, 1}=-\vec{S}_{\vec{R}, 0} \\
\vec{S}_{\vec{R}, 2}=\vec{w} \cos \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right)+\vec{z} \sin \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right) & \vec{S}_{\vec{R}, 3}=-\vec{S}_{\vec{R}, 2}
\end{array}
$$

$/ / \int \begin{aligned} & \text { AKER } \\ & \text { SCHO }\end{aligned}$
SCHOLARSHIP
Phys. Rev. B 108, 014413 (2023)

SMALL FURTHER-NEIGHBOUR COUPLINGS DESTABILISE THE SPINLIQUID ON THE CLASSICAL PYROCHLORE HEISENBERG MODEL $J_{3 b} \longrightarrow$ SUBLATTICE PAIRING STATES

$$
\begin{array}{ll}
\vec{S}_{\vec{R}, 0}=\vec{u} \cos \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right)+\vec{v} \sin \left(\vec{Q}_{(0,1)} \cdot \vec{R}\right) & \vec{S}_{\vec{R}, 1}=-\vec{S}_{\vec{R}, 0} \\
\vec{S}_{\vec{R}, 2}=\vec{w} \cos \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right)+\vec{z} \sin \left(\vec{Q}_{(2,3)} \cdot \vec{R}\right) & \vec{S}_{\vec{R}, 3}=-\vec{S}_{\vec{R}, 2}
\end{array}
$$

THANK YOU FOR YOUR ATTENTION!

