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Antiferromagnetic

Square lattice with nearest neighbour interactions.

Ferromagnetic
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Frustrated magnets cannot satisfy all interactions simultaneously.
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Simplest example: Ising antiferromagnet on a triangle



Frustrated magnets often have an extensive ground state 
degeneracy.
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Spin liquid Paramagnet

Lack of ordering leads to a strongly correlated spin liquid.
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J. N. Reimers, Phys. Rev. B 45, 7287 (1992).

R. Moessner and J. T. Chalker, Phys. Rev. Lett. 80, 2929 (1998).
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The      -        model orders in sublattice pairing states (SLP).
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The sublattice pairing state (SLP) is realised at low 
temperatures in a large region of exchange coupling space.
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