

$$Gd^{3+}: [Xe]4f^{7}$$

 $l_z = -3$ $l_z = -2$ $l_z = -1$ $l_z = 0$ $l_z = 1$ $l_z = 2$ $l_z = 3$

$$Gd^{3+}: [Xe]4f^{7}$$

$$S = 7/2$$

$$Gd^{3+}: [Xe]4f^{7}$$

$$S = 7/2$$
 $L = 0$

$$Gd^{3+}: [Xe]4f^{7}$$

$$S = 7/2$$
 $L = 0$ $J = 7/2$

$$S = 7/2$$
 $L = 0$ $J = 7/2$

$$S = 7/2$$
 $L = 0$ $J = 7/2$

$$H = \frac{1}{2} \sum_{\vec{r}, \vec{r}'} J_{\vec{r}, \vec{r}'} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}'}$$

$$H = \frac{1}{2} \sum_{\vec{r}, \vec{r}'} J_{\vec{r}, \vec{r}'} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}'}$$

 $J_{\vec{r},\vec{r}'} < 0$: Ferromagnetic

 $J_{\vec{r},\vec{r}'} > 0$: Antiferromagnetic

Square lattice with nearest neighbour interactions.

Ferromagnetic

Antiferromagnetic

Frustrated magnets often have an extensive ground state degeneracy.

Lack of ordering leads to a strongly correlated spin liquid.

Spin liquid

NO SYMMETRY BREAKING

Paramagnet

STRONG CORRELATIONS

NO CORRELATIONS

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$H = \frac{1}{2} \sum_{\vec{r}, \vec{r}'} J_{\vec{r}, \vec{r}'} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}'} \qquad J_{\vec{q}} = \frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i\vec{q}\cdot\vec{r}} ; \quad S_{\vec{q}} = \frac{1}{\sqrt{V}} \sum_{\vec{r}} S_{\vec{r}} e^{-i\vec{q}\cdot\vec{r}}$$

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$H = \sum_{\vec{q}} J_{\vec{q}} |\vec{S}_{\vec{q}}|^2 \qquad J_{\vec{q}} = \frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i\vec{q}\cdot\vec{r}}; \quad S_{\vec{q}} = \frac{1}{\sqrt{V}} \sum_{\vec{r}} S_{\vec{r}} e^{-i\vec{q}\cdot\vec{r}}$$

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$H = \sum_{\vec{q}} J_{\vec{q}} |\vec{S}_{\vec{q}}|^2 \qquad J_{\vec{q}} = \frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i\vec{q}\cdot\vec{r}}; \quad S_{\vec{q}} = \frac{1}{\sqrt{V}} \sum_{\vec{r}} S_{\vec{r}} e^{-i\vec{q}\cdot\vec{r}}$$

$$\vec{S}_{\vec{r}}(\vec{Q}) = \vec{u}\cos(\vec{Q}\cdot\vec{r}) + \vec{v}\sin(\vec{Q}\cdot\vec{r}) \qquad \vec{u}\perp\vec{v} \qquad \vec{u}^2 = \vec{v}^2 = 1$$

The single- \vec{q} ground states of the classical Heisenberg model are spiral states.

$$H = \sum_{\vec{q}} J_{\vec{q}} |\vec{S}_{\vec{q}}|^2$$

$$J_{\vec{q}} = \frac{1}{2} \sum_{\vec{r}} J_{\vec{r}} e^{i\vec{q}\cdot\vec{r}} ; \quad S_{\vec{q}} = \frac{1}{\sqrt{V}} \sum_{\vec{r}} S_{\vec{r}} e^{-i\vec{q}\cdot\vec{r}}$$

$$\vec{S}_{\vec{r}}(\vec{Q}) = \vec{u}\cos(\vec{Q}\cdot\vec{r}) + \vec{v}\sin(\vec{Q}\cdot\vec{r}) \qquad \vec{u}\perp\vec{v} \qquad \vec{u}^2 = \vec{v}^2 = 1$$

$$\vec{u} \perp \vec{v}$$

$$\vec{u}^2 = \vec{v}^2 = 1$$

The Heisenberg model on the triangular lattice orders in a 120 degree phase.

$$\vec{S}_{\vec{r}}(\vec{Q}) = \vec{u}\cos(\vec{Q}\cdot\vec{r}) + \vec{v}\sin(\vec{Q}\cdot\vec{r})$$

The Heisenberg model on the triangular lattice orders in a 120 degree phase.

$$\vec{S}_{\vec{r}}(\vec{Q}) = \vec{u}\cos(\vec{Q}\cdot\vec{r}) + \vec{v}\sin(\vec{Q}\cdot\vec{r}) \qquad \vec{Q} = (4\pi/3, 0)$$

The Heisenberg model on the triangular lattice orders in a 120 degree phase.

$$\vec{S}_{\vec{r}}(\vec{Q}) = \vec{u}\cos(\vec{Q}\cdot\vec{r}) + \vec{v}\sin(\vec{Q}\cdot\vec{r}) \qquad \vec{Q} = (4\pi/3, 0)$$

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra or equivalently

The highly frustrated pyrochlore lattice:

corner sharing tetrahedra

$$H = J_1 \sum_{\langle \vec{r}, \vec{r}' \rangle} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}'}$$

$$H = J_1 \sum_{\langle \vec{r}, \vec{r}' \rangle} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}'}$$

J. N. Reimers, Phys. Rev. B 45, 7287 (1992).

R. Moessner and J. T. Chalker, Phys. Rev. Lett. 80, 2929 (1998).

Spin liquid

Paramagnet

$$H = J_1 \sum_{\langle \overrightarrow{R}i, \overrightarrow{R}'j \rangle} \overrightarrow{S}_{\overrightarrow{R},i} \cdot \overrightarrow{S}_{\overrightarrow{R}',j}$$

$$\sum_{i} \overrightarrow{S}_{\overrightarrow{R},i} = 0$$

$$\sum_{i} \overrightarrow{S}_{\overrightarrow{R},i} = 0$$

$$H = J_1 \sum_{\langle \overrightarrow{R}i, \overrightarrow{R}'j \rangle} \overrightarrow{S}_{\overrightarrow{R},i} \cdot \overrightarrow{S}_{\overrightarrow{R}',j}$$

$$\sum_{i} \overrightarrow{S}_{\overrightarrow{R},i} = 0$$

$$\overrightarrow{S}_{\overrightarrow{R},i} = \overrightarrow{u}_i \cos(\overrightarrow{Q}_i \cdot \overrightarrow{R}) + \overrightarrow{v}_i \sin(\overrightarrow{Q}_i \cdot \overrightarrow{R})$$

$$H = J_1 \sum_{\langle \overrightarrow{R}i, \overrightarrow{R}'j \rangle} \vec{S}_{\overrightarrow{R},i} \cdot \vec{S}_{\overrightarrow{R}',j}$$

$$\sum_{i} \vec{S}_{\overrightarrow{R}-\vec{a},i} = 0$$

$$\vec{S}_{\overrightarrow{R},i} = \vec{u}_i \cos(\overrightarrow{Q}_i \cdot \overrightarrow{R}) + \vec{v}_i \sin(\overrightarrow{Q}_i \cdot \overrightarrow{R})$$

$$\vec{S}_{\overrightarrow{R},0} = \vec{u}\cos(\vec{Q}_{(0,1)} \cdot \vec{R}) + \vec{v}\sin(\vec{Q}_{(0,1)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},1} = -\vec{S}_{\overrightarrow{R},0}$$

$$\vec{S}_{\overrightarrow{R},2} = \vec{w}\cos(\vec{Q}_{(2,3)} \cdot \vec{R}) + \vec{z}\sin(\vec{Q}_{(2,3)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},3} = -\vec{S}_{\overrightarrow{R},2}$$

$$\vec{S}_{\vec{R},i} = \vec{u}_i \cos(\vec{Q}_i \cdot \vec{R}) + \vec{v}_i \sin(\vec{Q}_i \cdot \vec{R})$$

Sublattice pairing states: two and two sublattices form antiparallel spirals

$$\vec{S}_{\overrightarrow{R},0} = \vec{u}\cos(\vec{Q}_{(0,1)} \cdot \vec{R}) + \vec{v}\sin(\vec{Q}_{(0,1)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},1} = -\vec{S}_{\overrightarrow{R},0}$$

$$\vec{S}_{\overrightarrow{R},2} = \vec{w}\cos(\vec{Q}_{(2,3)} \cdot \vec{R}) + \vec{z}\sin(\vec{Q}_{(2,3)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},3} = -\vec{S}_{\overrightarrow{R},2}$$

$$H = J_1 \sum_{\langle \overrightarrow{R}i, \overrightarrow{R}'j \rangle} \overrightarrow{S}_{\overrightarrow{R},i} \cdot \overrightarrow{S}_{\overrightarrow{R}',j}$$

$$\vec{S}_{\overrightarrow{R},i} = \vec{u}_i \cos(\overrightarrow{Q}_i \cdot \overrightarrow{R}) + \vec{v}_i \sin(\overrightarrow{Q}_i \cdot \overrightarrow{R})$$

$$\overrightarrow{Q}_{(i,j)} \cdot (\overrightarrow{a}_i - \overrightarrow{a}_j) = 2\pi n$$

Sublattice pairing states: two and two sublattices form antiparallel spirals

$$\vec{S}_{\overrightarrow{R},0} = \vec{u}\cos(\vec{Q}_{(0,1)} \cdot \vec{R}) + \vec{v}\sin(\vec{Q}_{(0,1)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},1} = -\vec{S}_{\overrightarrow{R},0}$$

$$\vec{S}_{\overrightarrow{R},2} = \vec{w}\cos(\vec{Q}_{(2,3)} \cdot \vec{R}) + \vec{z}\sin(\vec{Q}_{(2,3)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},3} = -\vec{S}_{\overrightarrow{R},2}$$

$$\vec{S}_{\vec{R},i} = \vec{u}_i \cos(\vec{Q}_i \cdot \vec{R}) + \vec{v}_i \sin(\vec{Q}_i \cdot \vec{R})$$

$$\overrightarrow{Q}_{(i,j)} \cdot (\overrightarrow{a}_i - \overrightarrow{a}_j) = 2\pi n$$

Sublattice pairing states: two and two sublattices form antiparallel spirals

$$\vec{S}_{\overrightarrow{R},0} = \vec{u}\cos(\vec{Q}_{(0,1)} \cdot \vec{R}) + \vec{v}\sin(\vec{Q}_{(0,1)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},1} = -\vec{S}_{\overrightarrow{R},0}$$

$$\vec{S}_{\overrightarrow{R},2} = \overrightarrow{w} \cos(\overrightarrow{Q}_{(2,3)} \cdot \overrightarrow{R}) + \overrightarrow{z} \sin(\overrightarrow{Q}_{(2,3)} \cdot \overrightarrow{R}) \qquad \vec{S}_{\overrightarrow{R},3} = -\vec{S}_{\overrightarrow{R},2}$$

Phys. Rev. B 108, 014413 (2023)

Phys. Rev. B 108, 014413 (2023)

Phys. Rev. B 108, 014413 (2023)

Phys. Rev. B 108, 014413 (2023)

The J_1 - J_{3b} model orders in sublattice pairing states (SLP).

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states (SLP) are stable when adding small J_2 .

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states (SLP) are stable when adding small J_2 .

Phys. Rev. B 108, 014413 (2023)

Sublattice pairing states (SLP) are stable when adding small J_2 .

Phys. Rev. B 108, 014413 (2023)

The sublattice pairing state (SLP) is realised at low temperatures in a large region of exchange coupling space.

Phys. Rev. B 108, 014413 (2023)

SMALL FURTHER-NEIGHBOUR COUPLINGS DESTABILISE THE SPIN LIQUID ON THE CLASSICAL PYROCHLORE HEISENBERG MODEL

J_{3b} SUBLATTICE PAIRING STATES

$$\vec{S}_{\vec{R},0} = \vec{u}\cos(\vec{Q}_{(0,1)} \cdot \vec{R}) + \vec{v}\sin(\vec{Q}_{(0,1)} \cdot \vec{R}) \qquad \vec{S}_{\vec{R},1} = -\vec{S}_{\vec{R},0}$$

$$\vec{S}_{\overrightarrow{R},2} = \overrightarrow{w} \cos(\overrightarrow{Q}_{(2,3)} \cdot \overrightarrow{R}) + \overrightarrow{z} \sin(\overrightarrow{Q}_{(2,3)} \cdot \overrightarrow{R}) \qquad \vec{S}_{\overrightarrow{R},3} = - \vec{S}_{\overrightarrow{R},2}$$

SMALL FURTHER-NEIGHBOUR COUPLINGS DESTABILISE THE SPIN LIQUID ON THE CLASSICAL PYROCHLORE HEISENBERG MODEL

J_{3b} SUBLATTICE PAIRING STATES

$$\vec{S}_{\overrightarrow{R},0} = \vec{u}\cos(\vec{Q}_{(0,1)} \cdot \vec{R}) + \vec{v}\sin(\vec{Q}_{(0,1)} \cdot \vec{R}) \qquad \vec{S}_{\overrightarrow{R},1} = -\vec{S}_{\overrightarrow{R},0}$$

$$\vec{S}_{\overrightarrow{R},2} = \overrightarrow{w} \cos(\overrightarrow{Q}_{(2,3)} \cdot \overrightarrow{R}) + \overrightarrow{z} \sin(\overrightarrow{Q}_{(2,3)} \cdot \overrightarrow{R}) \qquad \vec{S}_{\overrightarrow{R},3} = - \vec{S}_{\overrightarrow{R},2}$$

THANK YOU FOR YOUR ATTENTION!

Phys. Rev. B 108, 014413 (2023)