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Slip out the back, Jack
Make a new plan, Stan
You don’t need to be coy, Roy
Just listen to me
Hop on the bus, Gus
You don’t need to discuss much
Just drop off the key, Lee
And get yourself free
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1. How to extract the most physics from our data 

2. The curse of dimensionality 

3. Faster computations: surrogate models 

4. More useful parameter space exploration 

5. Better use of scan results
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1. How to extract the most 
physics from our data
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Easy! Construct a physics model, test it against data, 
repeat as needed… 

• But what is a model? 

• And how to test it against data?
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But what is a model? 
A joint probability distribution for the data

<latexit sha1_base64="f0p6nlj9KJ/EzzF9/jKznRV3YYI=">AAACInicbVDLSgMxFM34rPU16tJNsAgtSpkRnwtBdONKFOwDOqXcSTM1mGTGJCMtxW9x46+4caGoK8GPMa1FtPXAhZNz7uXmnjDhTBvP+3DGxicmp6YzM9nZufmFRXdpuazjVBFaIjGPVTUETTmTtGSY4bSaKAoi5LQSXp/0/MotVZrF8tJ0EloX0JIsYgSMlRruQZRvF/AhhjbewKGtgCaa8Vhu4uAmhebPGweaCXyW9zYtaQkoNNycV/T6wKPEH5AcGuC84b4FzZikgkpDOGhd873E1LugDCOc3mWDVNMEyDW0aM1SCYLqerd/4h1et0oTR7GyJQ3uq78nuiC07ojQdgowV3rY64n/ebXURPv1LpNJaqgk34uilGMT415euMkUJYZ3LAGimP0rJleggBibataG4A+fPErKW0V/t7hzsZ07Oh7EkUGraA3lkY/20BE6ReeohAi6R4/oGb04D86T8+q8f7eOOYOZFfQHzucXOumhGA==</latexit>

f(x) = ax+ b+ ✏, ✏ ⇠ N(0,�)

<latexit sha1_base64="/0XpFflaXDyvhaxIvjkhj9uEtAo="></latexit>

p(y1, y2, . . . |x1, x2, . . . , a, b,�) = N(f(x1; a, b),�)N(f(x2; a, b),�) . . .



<latexit sha1_base64="QrPBBsAor5Sis1I0nxLsEELpW4I="></latexit>

p(n1, n2, . . . |✓) = Pois(�1(✓)) Pois(�2(✓)) . . .

<latexit sha1_base64="dwEdtsu22ZBm0Omhc/9wqiqIB6g="></latexit>

Pois(�(✓)) =
�(✓)ne��(✓)

n!

<latexit sha1_base64="R0l++e2X4Ep1vytozK2RXnUfQmc="></latexit>

�(✓)
• QFT: differential cross-sections, decay probabilities, …

• Simulate particle interactions (events)

• Simulate detector effects

• Mimic the experiment’s data selection procedure

• …   

<latexit sha1_base64="3c4VCJwXjtdkZXUgb8gKDk7YMbQ="></latexit>

✓
• Lagrangian parameters

• Experiment parameters

• Expected background rates

• …
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<latexit sha1_base64="j5wsfMibBr/0bd2htaRQqdY7EkY="></latexit>

p(✓|Dobs) =
p(Dobs|✓) p(✓)

p(Dobs)

<latexit sha1_base64="2Wdp+gP7PdNqInGw59+GLcmdeos="></latexit>

p(✓|Dobs) =
L(✓)⇡(✓)

Z

<latexit sha1_base64="s85UD0fRiMa9DMCbtSx0kINEeVw="></latexit>

p(Dobs|✓) ⌘ L(✓)

How to test your model against data? 
The likelihood is key!

<latexit sha1_base64="GUM2zcBPGdrok8oP6snp+CwGo4M="></latexit>

p(Dobs|✓)

+ assumptions/simulations 
of hypothetical data 

Bayesian frequentist
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• Explore the model parameter space (θ1, θ2, θ3, …)


• At every point θ: compute all predictions(θ) → evaluate likelihood L(θ) 

• Region of highest L(θ) or lnL(θ): model’s best simultaneous fit to all data 
(but not necessarily a good fit, or the most probable θ…)
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LHC: 

inv. H
 decays D

irect detection

Indirect detection
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GAMBIT: The Global And Modular BSM Inference Tool
gambit.hepforge.org          github.com/GambitBSM EPJC 77 (2017) 784          arXiv:1705.07908

• Extensive model database, beyond SUSY
• Fast definition of new datasets, theories
• Extensive observable/data libraries 
• Plug&play scanning/physics/likelihood 

packages
• Various statistical options 

(frequentist /Bayesian)
• Fast LHC likelihood calculator
• Massively parallel
• Fully open-source
Members of: ATLAS, Belle-II, CLiC, CMS, 
CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON
Authors of: BubbleProfiler, Capt'n General, Contur, 
DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, 
EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, 
HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, 
Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, 
WIMPSim

Recent collaborators: P Athron, C Balázs, A Beniwal, S 
Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C 
Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J 
Edsjö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S 
Hoof, F Kahlhoefer, A Kvellestad, P Jackson, D Jacob, C Lin, 
N Mahmoudi, G Martinez, MT Prim, A Raklev, C Rogan, R 
Ruiz, P Scott, N Serra, P Stöcker , W. Su, A Vincent, C 
Weniger, M White, Y Zhang, ++

70+ participants in many experiments and numerous major theory codes
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Fig. 3: Left: Joint profile likelihoods in the µ–M1 (top) and M2–m
f̃

planes (bottom). Stars indicate the point of highest likelihood
in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m

2
f̃

at the input scale
(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = MSUSY, which splits
m

2
f̃

into individual soft masses, is generally subdomi-
nant.

In the tree-level stop mass matrix the o�-
diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃1 is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —

(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

f̃
parameter explains why the sbottom co-annihilation

region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.

EWMSSM: 1809.02097

MSSM7: 1705.07917 
GUT-scale SUSY: 1705.07935

Vector and fermion Higgs  
portal DM: 1808.10465

Scalar Higgs portal DM:   
1705.07931

Right-handed neutrinos: 
1908.02302

Scalar Higgs portal DM w/ 
vac. stability: 1806.11281

Axion-like particles: 
1810.07192

Flavour EFT: 2006.03489

More axion-like particles: 
2006.03489

Neutrinos and cosmo: 
2009.03287

Dark matter EFTs: 
2106.02056

Cosmo ALPs:  
2205.13549
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2. The curse of dimensionality



16

Detailed model → many parameters → high-dimensional parameter space

High-dimensional spaces are exponentially tricky to explore…


• For given sample density, the number of required samples increases exponentially

• 0.01 resolution for a 1D unit interval: 100 points

• 0.01 resolution for a 10D unit cube: 10010 = 1020 points   

• The volume of any interesting region decreases exponentially fast with D 

• A uniformly sampled point is «always» near at least one of the walls…


• …and it’s also «always» the surface of a sphere with radius sqrt(D/3)


• Relative differences in distances between points vanish («loss of contrast»)
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Detailed model → many parameters → high-dimensional parameter space

High-dimensional spaces are exponentially tricky to explore…


• For given sample density, the number of required samples increases exponentially

• 0.01 resolution for a 1D unit interval: 100 points

• 0.01 resolution for a 10D unit cube: 10010 = 1020 points   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• …and it’s also «always» the surface of a sphere with radius sqrt(D/3)


• Relative differences in distances between points vanish («loss of contrast»)

lim
D!1

Vinteresting

Vtotal
= 0

…
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Detailed model → many parameters → high-dimensional parameter space

High-dimensional spaces are exponentially tricky to explore…


• For given sample density, the number of required samples increases exponentially

• 0.01 resolution for a 1D unit interval: 100 points

• 0.01 resolution for a 10D unit cube: 10010 = 1020 points   

• The volume of any interesting region decreases exponentially fast with D 

• A uniformly sampled point is «always» near at least one of the walls…


• …and it’s also «always» the surface of a sphere with radius sqrt(D/3)


• Relative differences in distances between points vanish («loss of contrast»)

…
p

~x = (x1, x2, . . . , xD) xi ⇠ U(0, 1)

0 1

(

P (boundary) = 1� P (not boundary) = 1� pD
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Detailed model → many parameters → high-dimensional parameter space
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1

⇥
[large number of observables]

⇥

⇡
[huge number of points required to explore parameter space]

[long calculation time per observable per parameter point]

Consequence:  
Detailed physics models → huge computational challenge
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So we must: 

• speed up our physics computations where we can


• pick our parameter samples wisely


• maximise the usefulness of the CPU hours we spend
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3. Faster computations: 
surrogate models
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Example of CPU-expensive physics computation:  
Higher-order production cross-sections for LHC 
predictions 

• Evaluation time for single parameter point: minutes/hours 

• The same theory predictions are needed every time the 
given model is studied


• Strategy: Train a fast and general surrogate model, use 
this during large scans


• Important requirement: Surrogate model must provide 
uncertainty estimate  

• …This sounds like a task for good ol’ Rev. Bayes!
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Gaussian processes regression 

• Gaussian process: effectively a pdf on function space


• GP regression: Use probabilistic inference to  
learn a function from data in an interpretable,  
yet non-parametric framework


• A major advantage: probabilistic framework  
→ regression uncertainties 


• Main drawback: N data points  
→ training scales as N3 

→ memory scales as N2  
→ can’t use too large datasets  

• Standard reference: Rasmussen & Williams, Gaussian Processes 
for Machine Learning
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xsec: the cross-section evaluation code 
• Pre-trained GPs for SUSY production cross-sections at NLO 

(hours → fractions of a second)

• All strong SUSY cross-sections in MSSM-24 for LHC @ 13 TeV

• Provides pdf, scale, αs and regression uncertainties 

• Need more of this! (Work in progress…) 

A. Buckley, A. Raklev, P Scott, J.V. Sparre,  
J. Van den Abeele, I. A. Vazquez-Holm, AK 
arXiv:2006.16273 
github.com/jeriek/xsec
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Continual learning
• Continual learning (online learning, incremental learning,  

on-the-fly regression, online emulation, online surrogate models)


• Learn an approximation for an function by training on a 
continual stream of data points


• Much studied in robotics, control systems (sensor data)


• GAMBIT case:  
stream of input points is decided by the scanner


• Use an «emulator-in-the-middle» approach  
→ independent of scanning algorithm


• Potential gains: 

• Speedup during scan

• Speedup for subsequent scans: less CPU resources wasted  

on «known» parameter regions

• Can release trained emulators along with scan results

Emulator: f’(x) ± Δf

Scanner

True function: f(x)

x f or f’

x f
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Dividing Local Gaussian Processes  
(A. Lederer et al, arxiv:2006.09446)
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Dividing Local Gaussian Processes  
(A. Lederer et al, arxiv:2006.09446)



31

Work in progress: 
  
GPTreeO: a Gaussian Process Tree for Online learning   
(Riccardo De Bin, Timo Lohrmann, AK)


• Extension of DLGP approach, tailored for GAMBIT-type applications

• Key difference from robotics: much lower data rate → more time to train GPs 

• Open-source package for R(!) soon ready 

• Next steps: 

• write C++/Python version

• explore as alternative for offline learning w/ large data sets

• connect to GAMBIT
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Example emulating a GAMBIT case: 

• Differential evolution sampler set to explore 4D Rosenbrock function (the «likelihood»)

• For every point, evaluate 4D Eggholder function (the «expensive physics computation») 

• GPTreeO configuration: N=1000, Matern(3/2)

2D Rosenbrock function 2D Eggholder function
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4. More useful parameter 
space exploration
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Fig. 1: Profile likelihood in the (mV , ⁄hV ) plane for vector DM. Contour lines show the 1 and 2‡ confidence regions. The left panel
gives an enhanced view of the resonance region around mV ≥ mh/2. The right panel shows the full parameter space explored in our
fits. The greyed out region shows points that do not satisfy Eq. (30), the white star shows the best-fit point, and the edges of the
preferred parameter space along which the model reproduces the entire observed relic density are indicated with orange annotations.

∆ ln L
Log-likelihood contribution Ideal Vµ Vµ + RD ‰ ‰ + RD Â Â + RD
Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.109
Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000
“ rays (Fermi-LAT dwarfs) ≠33.244 0.105 0.105 0.102 0.120 0.129 0.136
LUX 2016 (Run II) ≠1.467 0.003 0.003 0.020 0.000 0.028 0.033
PandaX 2016 ≠1.886 0.002 0.002 0.013 0.000 0.018 0.021
PandaX 2017 ≠1.550 0.004 0.004 0.028 0.000 0.039 0.046
XENON1T 2018 ≠3.440 0.208 0.208 0.143 0.211 0.087 0.072
CDMSlite ≠16.678 0.000 0.000 0.000 0.000 0.000 0.000
CRESST-II ≠27.224 0.000 0.000 0.000 0.000 0.000 0.000
PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DarkSide-50 2018 ≠0.090 0.000 0.000 0.002 0.000 0.005 0.006
IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001
Hadronic elements ‡s, ‡l ≠6.625 0.000 0.000 0.000 0.000 0.000 0.004
Local DM density fl0 1.142 0.000 0.000 0.000 0.000 0.000 0.001
Most probable DM speed vpeak ≠2.998 0.000 0.000 0.000 0.000 0.000 0.003
Galactic escape speed vesc ≠4.382 0.000 0.000 0.000 0.000 0.000 0.001
–s 5.894 0.000 0.000 0.000 0.000 0.000 0.001
Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000
Total ≠86.051 0.322 0.428 0.308 0.439 0.307 0.434

Table 6: Contributions to the delta log-likelihood (∆ ln L) at the best-fit point for the vector, Majorana and Dirac DM, compared
to an ‘ideal’ case, both with and without the requirement of saturating the observed relic density (RD). Here ‘ideal’ is defined
as the central observed value for detections, and the background-only likelihood for exclusions. Note that many likelihoods are
dimensionful, so their absolute values are less meaningful than any o�set with respect to another point (for more details, see Sec.
8.3 of Ref. [81]).

5 Results

5.1 Profile likelihoods

In this section, we present profile likelihoods from the
combination of all Diver and T-Walk scans for the vec-
tor, Majorana and Dirac models. Profile likelihoods
in the vector model parameters are shown in Fig. 1,
with key observables rescaled to the predicted DM relic
abundance in Fig. 2. Majorana model parameter profile

likelihoods are shown in Figs. 3 and 4, with observables
in Fig. 5. For the Dirac model, we simply show the
mass-coupling plane in Fig. 6, as the relevant physics
and results are virtually identical to the Majorana case.

5.1.1 Vector model

Fig. 1 shows that the resonance region is tightly con-
strained by the Higgs invisible width from the upper-left
when mV < mh/2, by the relic density constraint from
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Fig. 7: Marginalised posterior distributions in the (mV , ⁄hV ) plane for vector DM. Contour lines show the 1 and 2‡ credible
regions. The left panel gives the result of a scan restricted to the resonance region around mV ≥ mh/2. The right panel shows
a full-range parameter scan. The low-mass mode is su�ciently disfavoured in the full-range scan that it does not appear in the
righthand panel. The greyed out region shows points that do not satisfy Eq. (30). The posterior mean is shown by a white circle,
while the maximum likelihood point is shown as a white star. The edges of the preferred parameter space along which the model
reproduces the entire observed relic density are indicated with orange annotations.

to be within 1‡ of the Planck value, the p-value be-
comes p ¥ 0.35–0.65. For both the Majorana and Dirac
fermion models, we also find p ¥ 0.4–0.7, falling to 0.35–
0.65 with the relic density requirement. All of these are
completely acceptable p-values.

5.2 Marginal posteriors

The marginal posterior automatically penalises fine-
tuning, as upon integration of the posterior, regions
with a limited ‘volume of support’ over the parameters
that were integrated over are suppressed.11 As usual,
the marginal posteriors depend upon the choice of priors
for the free model parameters, which are summarised in
Tables 3 and 4. We choose flat priors where parameters
are strongly restricted to a particular scale, such as the
mixing parameter and the DM mass in scans restricted
to the low-mass region. For other parameters, in order
to avoid favouring a particular scale we employ logarith-
mic priors. Note that in this treatment for the fermionic
DM models we have not chosen priors that favour the
CP-conserving case. We instead present posteriors for
this well motivated case separately, and later in section
6 we perform a Bayesian model comparison between a
CP-conserving fermionic DM model and the full model
considered here.

11By ‘volume of support’, we mean the regions of the parameter
space that have a non-negligible likelihood times prior density.

5.2.1 Vector model

To obtain the marginal posterior distributions, we per-
form separate T-Walk scans for the low and high mass
regimes, shown in Fig. 7. Within each region we plot
the relative posterior probability across the parameter
ranges of interest.

In the left panel of Fig. 7, the scan of the resonance
region shows that the neck region is disfavoured after
marginalising over the nuisance parameters, particularly
mh, which sets the width of the neck. This dilutes the
allowed region due to volume e�ects.

In the full-mass-range scan, the fine-tuned nature
of the resonance region is clearly evident. Although
the best-fit point in the profile likelihood lies in the
resonance region, the posterior mass is so small in the
entire resonance region that it drops out of the global
2‡ credible interval.

5.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case
of Majorana fermion DM, the presence of the mixing
parameter › leads to a substantial increase in the pre-
ferred parameter region (see Fig. 8). In the resonance
region (left panel), there is now a thin neck-like region
at m‰ ¥ mh/2. This neck region is the same one seen
in both the scalar and vector profile likelihoods, but
falls within the 2‡ credible region of the Majorana pos-
terior, as the admittance of › reduces direct detection
constraints (Eq. 25), softening the penalisation from in-

arxiv:1808.10465
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• Plenty of sampling algorithms exist for producing Bayesian posteriors  
(MCMC, nested sampling, …)


• But, there are no(?) sampling algorithms designed for profile likelihood analyses


• A correct profile likelihood construction require

• identification of global best-fit point


• detailed exploration of all parameter regions with likelihood close to best-fit likelihood


• Current solution: 
• use an algorithm for global optimisation (e.g. differential evolution)


• adjust settings for more emphasis on exploration


• run many repeated runs to collect more samples
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Fig. 7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner
with a selection of di�erence tolerances (tol) and numbers of live points (nlive). The maximum likelihood point is shown by a
white star.
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Fig. 8: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using the
MultiNest scanner with a selection of di�erence tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly
only applies to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at the edge of the 1‡ credible region, and
so on). The posterior mean is shown with a grey bullet point.
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Fig. 9: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with
a selection of di�erence convergence thresholds (convthresh) and population sizes (NP). The maximum likelihood point is shown by
a white star.

the NP parameter, and the threshold for convergence is
controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000,
10 000 and 20 000, and convthresh values of 10≠4, 10≠3,
10≠2 and 10≠1. Although these parameters have di�er-
ent definitions to nlive and tol in MultiNest, we take
advantage of the similarity in the appropriate ranges for
these and plot the scan results on the same axes in Figs.
5 and 6. We see that a convthresh value of less than 10≠3

gives consistent results for the best-fit log-likelihood at
all values of NP.

In two dimensions, both MultiNest and Diver are able
to find roughly the same or equivalently good best-fit
points. The di�erences in the algorithms become evident
in seven and fifteen dimensions however, where Diver

consistently outperform MultiNest for equivalent param-
eter values. This is somewhat expected, given that Diver

is designed as an optimisation routine, whereas Multi-

Nest is intended to compute the Bayesian evidence and
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Fig. 7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner
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Fig. 8: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using the
MultiNest scanner with a selection of di�erence tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly
only applies to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at the edge of the 1‡ credible region, and
so on). The posterior mean is shown with a grey bullet point.
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Fig. 9: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with
a selection of di�erence convergence thresholds (convthresh) and population sizes (NP). The maximum likelihood point is shown by
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the NP parameter, and the threshold for convergence is
controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000,
10 000 and 20 000, and convthresh values of 10≠4, 10≠3,
10≠2 and 10≠1. Although these parameters have di�er-
ent definitions to nlive and tol in MultiNest, we take
advantage of the similarity in the appropriate ranges for
these and plot the scan results on the same axes in Figs.
5 and 6. We see that a convthresh value of less than 10≠3

gives consistent results for the best-fit log-likelihood at
all values of NP.

In two dimensions, both MultiNest and Diver are able
to find roughly the same or equivalently good best-fit
points. The di�erences in the algorithms become evident
in seven and fifteen dimensions however, where Diver

consistently outperform MultiNest for equivalent param-
eter values. This is somewhat expected, given that Diver

is designed as an optimisation routine, whereas Multi-

Nest is intended to compute the Bayesian evidence and

For comparisons of sampling algorithms, see arxiv:1705.07959 and arxiv:2101.04525

Mostly used in GAMBIT: differential evolution (Diver), nested sampling (MultiNest, PolyChord)
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Work in progress: 
  
A diff. evo. algorithm tailored for profile likelihood applications?


• Two populations 
• pop1: aggressive optimisation

• pop2: exploration


• One-way communication:  
pop1 can use individuals from pop2 to construct new proposals
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Map out the discoverable collider physics

• Modify search algorithm to focus effort on 
discoverable scenarios


• Example: Add likelihood penalty for low 
production cross-sections → avoid spending CPU 
hours on exploring large parameter volumes of 
decoupled scenarios


• Don’t just simulate existing LHC searches, also 
simulate thousands of general baseline event 
selections → help design new LHC searches 
sensitive to large theory space volumes!
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5. Better use of scan results
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arxiv:2304.xxxxx

θ1

θ2

θ3

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ)

• L(θ)

• L(θ) • L(θ)• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ) • L(θ)• L(θ)
vs

Dimensionality reduction for optimisation of LHC searches
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Main idea: 
• Use global fits/scans in high-dim parameter space 

to identify interesting subspaces

• still viable low-mass scenarios, 

• regions that fit LHC excesses

• regions that explain other observations    

• Use dimensionality reduction technique to map 
onto 2D space


• Use this 2D space (rather than a simplified model 
2D space) to optimise LHC searches


• Goal: LHC searches that probe larger and more 
interesting volumes of theory space


• Suggested tool: Variational Autoencoder (VAE)
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Example: 

• We pick four benchmark points in the latent 
space


• Design an analysis (one SR) that could have 
excluded all four points with 36 fb-1 of data


• Points escaped existing LHC analyses 
because signal is less simple/clean than in 
the scenarios assumed by ATLAS/CMS


• Example: cut on hadronic activity rather than 
strictly requiring 0 jets → sensitivity to larger 
volume of theory space 
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arxiv:1508.05951

Goodness-of-fit assessment for entire theory

Want to determine if the best-fit point is actually a bad fit — if so the entire theory is bad!


• Have test statistic, but don’t know its distribution!


• Analytical approach: can we find approximations for the pdf of our test statistic?


• Numerical approach: can we use a continual learning surrogate to make repeated fits feasible?
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Summary
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• Detailed physics models → high-dimensional parameter spaces


• Extracting physics from data means fighting the curse of dimensionality


• Need a combination of strategies:


• speed up physics computations where possible


• more economical parameter space sampling


• maximise the usefulness of global fit results 

• GAMBIT + PLUMBIN’ can hopefully be of some help :)  
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Bonus tracks



Anders Kvellestad

x

53

f(x)
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f(x)

x

?
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f(x)

x

?
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f(x)

x

?
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• Need to make an educated guess for the unknown f at any given x 
• Being sensible Bayesians, we know we should quantify our beliefs 

about f using probabilities 
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f(x)

x

? ??

x1 x2 x3

Consider three unknown function values: f1, f2, f3
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f(x)

xx1 x2 x3

p(f1)

p(f2) p(f3)

Could formulate three independent prior beliefs…
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f(x)

xx1 x2 x3

p(f1)

p(f2) p(f3)

f1

…but then learning what f1 is won’t tell us anything about f2 or f3
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f(x)

xx1 x2 x3

p(f1, f2, f3)

Need a joint prior → includes our belief about how f1, f2 and f3 are correlated



Anders Kvellestad 62

f(x)

xx1 x2 x3

p(f1, f2, f3) → p(f2, f3 | f1)

f1

Now learning f1 tells us something about probable values for f2 and f3
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f(x)

xx1 x2 x3

p(f1, f2, f3, …)

Limit of Δx → 0: joint prior p(f1, f2, f3, …) → a prior on function space

…
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f(x)

xx1 x2 x3

p(f1, f2, f3, …)

Limit of Δx → 0: joint prior p(f1, f2, f3, …) → a prior on function space

…
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The ideal solution: 

• Incorporate all our prior knowledge about the problem in a joint prior  
p(f1, f2, f3, …) of any form we choose 


• Perform the full, expensive calculation of f(x) for some of the x-values


• For any other x-value x’: obtain our best guess for the corresponding f’  
in the form of the posterior p(f’ | f1, f2, …) 

But doing this with arbitrary prior pdfs is not practically feasible… 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Gaussian processes 

• Gaussian process: an infinite set of variables such that for any finite collection of these 
variables, the joint pdf is a multivariate Gaussian distribution 


• Defined by a mean and a covariance matrix 


• The multivariate Gaussian has some very important properties:


• marginalising (intergrating) out some variables gives another Gaussian


• conditioning on some variables gives another Gaussian 

What this means for regression 

• Start from joint Gaussian prior  


• Generally intractable pdf calculations now reduce to analytical expressions 
for a new mean and a new covariance matrix 


• In particular: simple, closed-form expression to get the posterior from the prior,  
p(f1, f2, …, f’) → p(f’ | f1, f2, …)



GAMBIT@UiO

• UiO researchers central in starting GAMBIT in 2012,  
have taken leading role in development 

• UiO activity mostly financed through two RCN FRIPRO 
grants and support from MN Faculty (KD, Endringsmiljø) 

• Most recently a FRIPRO Fellesløft grant for 
interdisciplinary research across physics & statistics: 
 
PLUMBIN’ (Physics Learning Using Machines and 
Bayesian INference) 

• …and a PhD position from MN Faculty to work on disease 
modelling for UN sustainability goals, together with the 
National Institute of Public Health (FHI)
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GAMBIT members @ UiO: 
Torsten Bringmann, 
Lasse Braseth, 
Are Raklev, 
Anders Kvellestad 
Formerly @ UiO:  
T. Gonzalo, L. Dal, A. Krislock



68

• Have used > 200M CPU hours on HPC systems to date 

• Large grants through EU PRACE Project Access 

• Have run GAMBIT on: Joliot-Curie (France), Marconi (Italy), 
MareNostrum (Spain), Cartesius (Netherlands), Prometheus 
(Poland), DiRAC (UK), Gadi (Australia), Saga (Norway), LUMI 
(Finland),  

• Ongoing collaboration on code optimisation with the Pawsey Centre 
for Extreme Scale Readiness (PaCER) in Australia 

• dScience IT support for research initiative →  collaboration  
on GAMBIT-light with USIT (Maiken Pedersen and Marcin 
Krotkiewski), funded through Sigma2 Advanced User Support.

GAMBIT & HPC
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Models Core ScannerBit

External physics codes  
(C, C++, Fortran, Python, Mathematica)

Collection of sampling and 
optimisation algorithmsDarkBit

How GAMBIT works

ColliderBit …
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• Collection of state-of-the-art sampling algorithms as plug-ins 
(e.g. evolutionary algorithms, nested sampling, …) 

• Model-agnostic core framework 

• Run configuration through YAML input file 

• Can use detailed likelihoods or full statistical models
θ1

θ2

θ3

•L(θ)

•L(θ)

•L(θ)

•L(θ)

•L(θ)

•L(θ)
•L(θ)

•L(θ)

•L(θ)

•L(θ)

•L(θ)

•L(θ)

•L(θ)
•L(θ)

•L(θ)•L(θ)

•L(θ)

•L(θ)

•L(θ) •L(θ)•L(θ)
•L(θ)

•L(θ)•L(θ)

•L(θ) •L(θ)•L(θ)

• Dynamic dependency resolution: order of computations not hard-
coded, decided at run time, optimising for speed 

• Fast theory calculations using ML regression (Gaussian processes) 

• Fast parallel Monte Carlo simulations of experiments (e.g. LHC)

Technical features
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CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
Type: double

Function: example_lnL
Module: ExampleBit_B

LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A

G A M B I T

Fig. 5: An example dependency tree generated in the initial-
isation stage of a GAMBIT scan. Each block corresponds to a
single module function, with the red text indicating its capa-
bility. Arrows indicate resolution of dependencies of di�erent
module functions with the results of others. The functions se-
lected by the dependency resolver to provide the observables
and likelihoods requested in the ObsLikes section of the scan’s
input YAML file are shaded in green. Module functions shown
shaded in purple are nested module functions. These run
in an automatically-parallelised loop managed by a loop man-
ager function, which is shown shaded in blue. This example
is included in the GAMBIT distribution as spartan.yaml; see
Sec. 12.1 for more details. Figures like this can be generated
for any scan by following the instructions provided after calling
GAMBIT with the -d switch; see Sec. 6.1 for details.

6. Adopt the Rules specified in the initialisation file (see
Sec. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list,
resolve the quantity requested by the target function
with the capability provided by that module function.
This automatically connects the pipe of the target
function to the result of the resolving function.

8. If the resolving function was not already activated
for the scan, activate it and add its dependencies to
the dependency queue (with the resolving function
as new target function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-
tions, the dependency resolver determines the initial
runtime ordering of its chosen module functions. An
obvious minimal requirement is that if the output of

module function A is required by module function B, A
is evaluated before B. We do this by topologically sort-
ing the directed dependency tree, using graph-theoretic
methods from the Boost Graph Library18.

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sec. 6.4)
remains unconstrained by the topological sorting. The
dependency resolver first orders the likelihoods by es-
timating the expected evaluation time for each one,
including all dependent module functions, along with
the probability that each likelihood will invalidate a
point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-
tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is in-
validated is minimised. In practice this means that, for
instance, the relatively fast checks for consistency of a
model with physicality constraints, such as perturbativ-
ity and the absence of tachyons, would be automatically
performed before the often time-consuming evaluation
of collider constraints. This gives a significant e�ciency
gain in a large scan, because expensive likelihoods are
not even evaluated for points found to be invalid or
su�ciently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to
drive a scan (cf. 6.4) are always calculated after the
likelihood components, as they do not have the power to
completely invalidate a model point. Invalid observable
calculations can still be flagged, but they will not trigger
the termination of all remaining calculations for that
point in the way that an invalid likelihood component
will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot
easier than resolving module function dependencies, in
that backend requirements cannot themselves have ex-
plicit backend requirements or dependencies, so there is
no equivalent of the dependency tree to build. However,
the ability to specify groups of backend functions from
which only one requirement must be resolved, along
with rules that apply to them (Sec. 3.1.3), especially
the declaration that backend requirements that share a
certain tag must be resolved from the same backend —
without necessarily specifying which backend — makes
backend resolution a uniquely challenging problem.

18http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/



Technical features

• Two-level parallelisation:  
• MPI for parameter sampling algorithm 
• OpenMP for per-point model computations 

• Diskless interface to external (physics) codes. C, C++, Fortran, 
Python and Mathematica codes as runtime plug-ins 

• Advanced printer system to store results in different format, with 
buffering and resume ability for aborted scans 

• Logging system for information and debugging 

• GAMBIT Universal Model machine (GUM): code auto-generation 
for new physics models

71

[arxiv:2107.00030]



Current and future developments

• Most GAMBIT developments are related to our physics studies, but GAMBIT can 
be used beyond particle physics  

• GAMBIT-light: a lightweight and physics-free version of GAMBIT (ETA: 2 months) 

• Ability to extend GAMBIT with Python scanners/optimisers (ETA: 1 month) 

• System in GAMBIT for continual learning during scans (ETA: ~1 year) 

• New sampling algorithms tailored for profile likelihood studies (ETA: 1–2 years)  

• Ongoing science collaboration with nuclear physics group @ UiO and with FHI
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dScience IT support  
for research initiative  
→ USIT + Sigma2 support
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Models Core ScannerBit

Simple C, C++, Fortran, Python 
interface libraries

A single interface module

Your objective function here

GAMBIT-light

Collection of sampling and 
optimisation algorithms
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Particles, pandemics and parameter spaces

Our big ABM at FHI
Individual features
▪ Location
▪ Age
▪ Occupation
▪ Epidemiological status
▪ Hospitalization status
▪ Vaccination status 

(SYSVAK)

kindergartens 
Schools, grades 1-13
Universities

Workplaces

Households

Transmission settings

Households
Synthetic, based on census data

Di Ruscio et al, PNAS 2019 

Community

One beta parameter for each setting

￼

Don’t forget recoveries

Modelling LHC physics 
- Models with many free parameters 
- Non-deterministic dynamics (quantum mechanics) 
- Each prediction requires expensive Monte Carlo simulations 
- Task: estimate model parameters, make robust predictions

Modelling outbreaks of infectious diseases  
- Model with many free parameters 
- Non-deterministic dynamics (people) 
- Each prediction requires expensive Monte Carlo simulations 
- Task: estimate model parameters, make robust predictions
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Statistical fits

Some observable 
Some model

Some other observable 
Some other model

G AM B I T
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Global fits

Many observables 
One theory

G AM B I T
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Parameter space exploration

[arxiv:2012.09874]
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Parameter space exploration

[arxiv:1705.07959]
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• Basic building blocks: module functions 

• A physics module: a collection of module 
functions related to the same physics topic


• Each module function has a single capability 
(what it calculates) 


• A module function can have dependencies on 
the results of other module functions


• A module function can declare which models it 
can work with 

• GAMBIT determines which module functions 
should be run in which order for a given scan 
(dependency resolution) 

Dependency resolution

80
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Dependency resolution
40

CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
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LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A

G A M B I T

Fig. 5: An example dependency tree generated in the initial-
isation stage of a GAMBIT scan. Each block corresponds to a
single module function, with the red text indicating its capa-
bility. Arrows indicate resolution of dependencies of di�erent
module functions with the results of others. The functions se-
lected by the dependency resolver to provide the observables
and likelihoods requested in the ObsLikes section of the scan’s
input YAML file are shaded in green. Module functions shown
shaded in purple are nested module functions. These run
in an automatically-parallelised loop managed by a loop man-
ager function, which is shown shaded in blue. This example
is included in the GAMBIT distribution as spartan.yaml; see
Sec. 12.1 for more details. Figures like this can be generated
for any scan by following the instructions provided after calling
GAMBIT with the -d switch; see Sec. 6.1 for details.

6. Adopt the Rules specified in the initialisation file (see
Sec. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list,
resolve the quantity requested by the target function
with the capability provided by that module function.
This automatically connects the pipe of the target
function to the result of the resolving function.

8. If the resolving function was not already activated
for the scan, activate it and add its dependencies to
the dependency queue (with the resolving function
as new target function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-
tions, the dependency resolver determines the initial
runtime ordering of its chosen module functions. An
obvious minimal requirement is that if the output of

module function A is required by module function B, A
is evaluated before B. We do this by topologically sort-
ing the directed dependency tree, using graph-theoretic
methods from the Boost Graph Library18.

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sec. 6.4)
remains unconstrained by the topological sorting. The
dependency resolver first orders the likelihoods by es-
timating the expected evaluation time for each one,
including all dependent module functions, along with
the probability that each likelihood will invalidate a
point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-
tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is in-
validated is minimised. In practice this means that, for
instance, the relatively fast checks for consistency of a
model with physicality constraints, such as perturbativ-
ity and the absence of tachyons, would be automatically
performed before the often time-consuming evaluation
of collider constraints. This gives a significant e�ciency
gain in a large scan, because expensive likelihoods are
not even evaluated for points found to be invalid or
su�ciently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to
drive a scan (cf. 6.4) are always calculated after the
likelihood components, as they do not have the power to
completely invalidate a model point. Invalid observable
calculations can still be flagged, but they will not trigger
the termination of all remaining calculations for that
point in the way that an invalid likelihood component
will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot
easier than resolving module function dependencies, in
that backend requirements cannot themselves have ex-
plicit backend requirements or dependencies, so there is
no equivalent of the dependency tree to build. However,
the ability to specify groups of backend functions from
which only one requirement must be resolved, along
with rules that apply to them (Sec. 3.1.3), especially
the declaration that backend requirements that share a
certain tag must be resolved from the same backend —
without necessarily specifying which backend — makes
backend resolution a uniquely challenging problem.

18http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/
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