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EFTs: a bottom-up approach
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EFT=Effective Field Theory

Effective description of low-energy
physical phenomena
⇒ Not the whole picture but enough at
low energies

Infinite number of operators but
only a few are relevant at low
energy to a given order in the EFT
expansion

Operators constructed on
symmetry principles

No need to know the UV
completion to compute IR
observables

But is the low-energy EFT causal?

Victor Pozsgay Causality Bounds, Oslo 2023 2 / 22



Causality of the EFT
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Symmetry arguments in the IR are
not sufficient to ensure causality

Causality needs to be imposed (by
hand)

⇓
We get constraints on the Wilson
coefficients of the low-energy EFT
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Imposing IR causality: Positivity bounds
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Well-studied and successful method:
Positivity bounds ⇔ UV Causality ⇔ Analyticity

Compute 2→ 2 scattering
amplitudes

Create positive bounded functions
of these amplitudes

Positivity ⇒ Bounds on the Wilson
coefficients

Extremise these bounds

But they are complicated and
challenging to extend to (massless)
gravitational theories and to
arbitrary-curved backgrounds.
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How to avoid these issues?
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Issue: Many assumptions in the UV
Solution: Impose causality directly at
the level of the IR theory (low energy)
Tool: Time delay
Criterion: No resolvable time advance

Semi-classical (WKB) approximation

Time delay = the delay of a scattered
wave relative to a freely propagating
wave.

Resolvable = measurable within the
low energy EFT
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Causality vs Subluminality

For a generic EFT in Minkowski, the speed of propagation is
modified by higher-derivative operators cS 6= 1.

⇒ Should we impose cs(xµ, ω) ≤ 1?

The answer is NO, this is too restrictive.

Subluminality⇒ Causality but Causality ; Subluminality

∆|x|
t

t→ +∞

xi
xµ = 0

Allowed to propagate
outside the forward
Minkowski lightcone
locally as long as this
violation occurs in small
regions of space.

Causality is ensured as
long as the would-be

violation is not resolvable
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Resolvability

∆|x|
t

t→ +∞

xi
xµ = 0

Is the distance ∆|x|
travelled outside of
the forward Minkowski
lightcone resolvable?

Nature of the probe: wave of momentum k and wavelength λ

Low-energy observer is probing with k � Λ or λ� 1/Λ .

⇒ Resolvable hence means k∆|x| & 1 or ∆|x| & λ.
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Causality criterion

∆T ∼ − 1
ω

r =∞

r =∞

r0

No higher-order

Higher-order operators

So how shall we define resolvability?

Maximal allowed time advance given
by purely classical EFT validity ⇔
Resolvability
⇒ Should we impose ∆T > −1/Λ?
(where Λ is the cut-off)
⇒ No, not Lorentz-invariant...

Causality violation criterion

ω∆T` ' −O(1) .

Causality constraint

ω∆T` > −1 .
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Low energy EFT

For simplicity’s sake, we choose to study a scalar field theory with

Shift symmetry φ→ φ+ c

Up to quartic operators in φ (2→ 2 scattering)

Up to dimension-12 operators

Lagrangian

L =− 1

2
(∂φ)2 − 1

2
m2φ2 +

g8

Λ4
(∂φ)4 +

g10

Λ6
(∂φ)2

[
(φ,µν)2 − (�φ)2

]
+

g12

Λ8
((φ,µν)2)2 − gmatterφJ ,

with

m: mass of the field φ

Λ: cut-off of the low energy EFT

gmatter: coupling strength to external matter

J: arbitrary external source
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Existing Positivity bounds

Lagrangian

L =− 1

2
(∂φ)2 − 1

2
m2φ2 +

g8

Λ4
(∂φ)4 +

g10

Λ6
(∂φ)2

[
(φ,µν)2 − (�φ)2

]
+

g12

Λ8
((φ,µν)2)2 − gmatterφJ .

The small mass m is introduced because Positivity bounds require
a mass gap. This breaks the shift-symmetry but does not induce
any further symmetry-breaking operator at the quantum level. The
previously derived Positivity bounds give

g8 > 0 , g12 > 0 , g10 < 2g8 , g12 < 4g8 ,

−16

3

√
g8g12 < g10 <

√
g8g12︸ ︷︷ ︸

full crossing symmetry

.
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Hierarchy between scales of variation

WKB approximation states that

λpert � λbkg ,

where we consider perturbations ψ = φ− φ̄ over an arbitrary
background φ̄. In this regime, we have causality violation if

ω∆T ∼
(
λbkg

λpert

)[∫
X⊂R3+1

(1− cs(λpert)) +O
(
λpert

λbkg

)]
. −1 .

Subluminality cs < 1 implies causality

The first term (...) is large, but the integrand is small within
the regime of validity of the EFT. It can even be negative and
not necessarily lead to violations of causality.
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Method to derive Causality bounds

Now that the theoretical grounds have been (hopefully) clarified,
there is a simple recipe to derive Causality bounds

1 Choose the symmetry of the background

2 Choose the functional form of the background profile and
compute the equations of motion of the perturbation while
ensuring validity of the EFT and WKB approximation

3 Compute the time-delay and extremise the Causality bounds
(ω∆T` > −1) by re-computing points 2 and 3

4 Compare with Positivity bounds (if they exist!)
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Background symmetry

Choose the symmetry of the background profile φ̄
e.g. Homogeneous: φ̄ = φ̄(t)

Could be interesting for some problems

Slightly too trivial in our case (reproduces some basic
inequalities)

or Spherically-symmetric: φ̄ = φ̄(R) = Φ̄0f (r/r0) where

Φ̄0: scale of the background ([Φ̄0] = +1)

r0: typical scale of variation of the background ([r0] = −1)

f : dimensionless function such that f ∼ O(1)

R: dimensionless radial coordinate

Perturbation: ψ = φ− φ̄
Azimuthal symmetry ⇒ neglect ϕ-dependence
Expansion in partial waves: ψ =

∑
` e

iωtY`(θ)δρ`(R)

Y`(θ): spherical harmonics
δρ`(R): radial perturbation
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Regime of validity of the EFT

The advantage of turning to dimensionless quantities is that it
makes the expansion parameters more tractable

First, we have ∂nf /∂Rn ∼ O(1)

Second, one can show that it is sufficient to require

ε1 ≡ Φ̄0
r0Λ2 � 1 , ε2 ≡ 1

r0Λ � 1 , εΩ ≡ Ωε2 � 1 .

to ensure higher-order terms remain negligible.

Finally, we want to truncate at O(ε4
1, ε

2
1ε

2
2) so we additionally

require

ε2
1 � ε2 , ε2

2 � ε1 .

At the level of the phase shift/time delay, we have the following
scaling

g8 : O(ε2
1) , g10 : O(ε2

1ε
2
2) , g12 : O(ε2

1ε
2
2Ω2) .
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Equation of motion

In the spherically-symmetric case, we write down the linear
equation of motion (eom) for the perturbation δρ`(R).

Solve perturbatively order by order in the scale Λ

Remove higher-order radial derivatives (> 2) using lower-order
eom
⇒ Get a second-order equation eom for the perturbation

δρ′′` (R) + Aδρ′`(R) + Bδρ`(R) = 0 .

Field-redefine the perturbation to remove the friction term

χ′′` (R)+W`χ`(R) = 0 , W` =
(ωr0)2

c2
s (ω2,R, `)

(
1− Veff(ω2,R, `)

(ωr0)2

)
,

where

c2
s = 1 +O(gi )

Veff = `(`+1)
R2 +O(gi )
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Regime of applicability of WKB

Equation of motion

χ′′` (R) + (ωr0)2Ŵ`χ`(R) = 0 .

nth-order approximation to the exact solution χ`

χ
(n)
` (R) ∝ Exp

[
i(ωr0)

∫ R
Rt

∑n
j=0 δ

(j)
WKBdR

]
, where Ŵ`(Rt) = 0.

WKB series

δ
(0)
WKB =

√
Ŵ` , · · · with δ

(j)
WKB ∼ O

((
λpert

λbkg

)j)
∼ O((ωr0)−j) .

Now we can establish the validity of the WKB approximation

Small error:

∆χ
(n)
` =

χ`−χ
(n)
`

χ`
∼
∫ R
Rt
δ

(n+1)
WKB dR ∼ O((ωr0)−(n+1))� 1

Convergence:
∫ R
Rt
δ

(n+1)
WKB dR �

∫ R
Rt
δ

(n)
WKBdR
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Extremisation

Here, one needs to specify the functional form of the background
profile

e.g. f (R) =
nmax∑
n≥0

a2nR
2ne−R

2
.

Target

Solve (ω∆T`) = −1 .
⇒ Gives boundary between causality-violating and allowed regions
in parameter space

Constraints

EFT regime of validity

WKB regime of applicability
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Causality bounds vs Positivity bounds

g8 = 0g8 = 1

Lagrangian

L =− 1

2
(∂φ)2 − 1

2
m2φ2 +

g8

Λ4
(∂φ)4 +

g10

Λ6
(∂φ)2

[
(φ,µν)2 − (�φ)2

]
+

g12

Λ8
((φ,µν)2)2 − gmatterφJ ,
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Causality bounds vs Positivity bounds

g8 = 0g8 = 1

g8 = 1 ⇔ Redefine Λ

Compact Causality bounds

Excellent agreement with
Positivity bounds

g8 = 0 ⇔ Impose galileon
symmetry

Ruling out quartic galileon
(as a causal uncoupled
low-energy EFT)
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Conclusion

Take-home message

Requiring causality for low-energy EFTs places tight compact
bounds on the Wilson coefficients (independently of UV
completion)

Our intuition could have told us:

Causality ⇒ cs . 1 ⇒ One-sided bounds

But we get two-sided bounds and a much richer constraint
structure than expected!

Comparison with Positivity bounds

Causality bounds not as constraining as Positivity ones (just yet!)
But results are remarkably close and we provide a proof of principle
that the method works.
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What’s to come?

Possible improvements

Less-symmetric background could lead to tighter bounds

One could explore a wider range of functions

A solid extremisation procedure is yet to be applied

Going beyond Positivity bounds

Bound higher-order operators in the field φn with n ≥ 5
(do not contribute to tree-level 2→ 2 Positivity bounds)

Extend to any spin, e.g. vectors (ongoing work)

Apply Causality bounds to gravitational theories and curved
backgrounds
⇒ Cosmological and black hole gravitational bounds
(no S-matrix, broken Lorentz symmetry for Positivity bounds)

Constrain potentials V (φ) which is useful for inflation
(not possible for Positivity bounds)
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Thank you!

Thank you very much
for your attention!
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Positivity bounds: How does it work?

Im(s)

Re(s)

C

4m2 Λ2

General idea:

Compute some integrals
∫∞

4m2

Cut them into
∫ Λ2

4m2 (IR) +
∫∞

Λ2 (UV)

How to compute the UV part?
⇒ Deform into an infinite contour in the
complex s-plane
⇒ Use analyticity
⇒ Get relations between IR and UV
quantities without even knowing the UV
completion!

Very successful indeed, but...
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Positivity bounds: What are the cons?

Im(s)

Re(s)

C

4m2 Λ2

Very successful indeed, but...

Need to make a number of assumptions
on the UV completion: unitarity, locality,
causality, Poincaré symmetry, and
especially (full) crossing symmetry

Challenging to extend to (massless)
gravitational theories and to
arbitrary-curved backgrounds

Broken Lorentz symmetry
Lack of an S-matrix

⇒ Analyticity is hard to generalise and
hence dispersion relations are not
straightforward to build
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Scattering time delay

If a state with energy ω is scattered in an event described by an
S-matrix, the time delay reads

∆T = −i〈in|Ŝ† ∂
∂ω

S |in〉 = 2
∂δ

∂ω
,

where δ is the eigenvalue S |in〉 = e2iδ|in〉 and will later be
identified with the phase-shift.

Spherically-symmetric backgrounds: the S-matrix diagonalises in
multipoles ` and one can define the time-delay for each multipole

∆T` = 2
∂δ`
∂ω

∣∣∣∣
`

.

Note that the well-known eikonal approximation is done at large `
and fixed impact parameter b = (`+ 1/2)ω−1.
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Causality criterion

∆T ∼ − 1
kv

∆T ∼ −2r0
v

r0

r =∞

r =∞

No potential

Potential

Potential +
additional operators

So how shall we define resolvability?

Example: Monopole (` = 0) with
speed v and momentum k
scattering in a
spherically-symmetric potential
vanishing for r > r0 can experience
a time advance due to

Uncertainty principle ∆T ∼ ω−1

where ω ∼ O(kv)
Wave scattering at the boundary
r = r0

∆T`=0 ≥ −2r0
v︸ ︷︷ ︸

Potential

− 1

kv
.︸ ︷︷ ︸

Uncertainty
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Note on the first-order relation to the phase-shift

When no higher-order derivative operators are included
∂cs
∂ω = 0

δEFT ∝ ω
⇒ Causality violation for δEFT < −1

However, when including such operators,

cs becomes ω-dependent

δEFT becomes non-linear δEFT =
∑nmax

n=nmin
anω

2n+1 (where
nmin can be negative)
⇒ There is no clear causality violation criterion in terms of
the phase-shift
⇒ Go back to using ω∆T < −1
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Time delay

Monopole (` = 0): Rt = 0 and one can compute arbitrarily

high WKB corrections (here we need up to δ
(4)
WKB)

⇒ Can achieve small corrections for (ωr0) ∼ 3

Higher multipoles (` > 0):

Langer trick to better capture the low-` regime
Rt > 0: finite value
χ

(0)
` can be computed

Corrections are hard to compute but we can ensure their
smallness by taking a large WKB suppression: (ωr0)� 1
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Conclusion

What we found

` = 0: lower bounds (∼ triple crossing symmetry in the UV
for Positivity bounds)

` > 0: higher bounds (∼ s ↔ u dispersion relations in the UV
for Positivity bounds)

Comparison with Positivity bounds

Causality bounds not as constraining as Positivity ones (just yet!)
But results are remarkably close and we provide a proof of principle
that the method works.
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