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Outline of this talk

1. The PTA signal

2. Phase transitions vs.
precision cosmology

3. BSM or boring?

[DALL-E’s interpretation of this talk’s buzzwords]
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Gravitational waves observations

- LIGO + Virgo + KAGRA observed
~ 100 mergers since 2015 (eurcs]

GW170818-HLV
GW170608

GW170817-HLV
GW170814-HLV

e 4 GW150914

[LVK, 2020]



Gravitational waves observations
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Gravitational waves observations.

LIGO + Virgo + KAGRA observed
~ 100 mergers since 2015 (ewrcs]

The Einstein Telescope will
probe mergers happening even
before star formation times

LISA’s funding is now confirmed

[University of Florida, Simon Barke (CC BY 4.0)]



Gravitational waves observations

- LIGO + Virgo + KAGRA observed
~ 100 mergers since 2015 (eurcs]

- The Einstein Telescope will
probe mergers happening even
before star formation times

- LISA's funding is now confirmed

- PTAs detected a stochastic GW e L
background at low frequencies!

[adapted from gwplotter.com]



Pulsar timing arrays.

Millisecond pulsars emit radio pulses
with an extremely stable frequency

GWs affect propagation time ~
observe modulated periodicities
PTAs monitor pulse frequency using
radio telescopes on Earth

Fit pulse data with timing model

Fourier decomposition of timing
residuals shows common
spectrum, which is due to GWs




How can we be sure it’s actually gravitational waves

Noise spectra can have many sources:

. - Pulsars: no common noise, B < 1072

Monopolar correlations
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Merging supermassive black hole binaries.

- Expect supermassive black hole
mergers after galaxy mergers

- Predictions are hard to obtain
(distance hierarchies, extreme
environments, unknown
astrophysics, ...)

- GW predictions span several orders
of magnitude, but approximately
follow a power-law:

he(f) o Af°2 e Qau(f) o A% f57

[Mayer et al., 07061562; NASA/CXC/A. Hobart]



GW background from supermassive black hole binaries

~+ The observed GW spectrum is
consistent with a power-law of
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GW background from supermassive black hole binaries

~+ The observed GW spectrum is
consistent with a power-law of
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Possible cosmological sources of the nHz background.

Inflation Phase transitions
Reentering of tensor fluctuations Connection to dark matter?

Topological defects Scalar perturbations
Cosmic strings and domain walls Incl. primordial black hole formation







Cosmological phase transitions

Cross-over phase transition First-order phase transition

Vert () — Verr (0
Vet (¢) — Verr (0)

A scalar field “rolls down” from ¢ = 0 to A scalar field tunnels to the true
¢ = v, when the bath cools from high potential minimum (¢ # 0) to minimize

temperatures to low temperatures. its action (~ free energy).
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Gravitational waves from first-order phase transitions

Bubbles of the new phase nucleate,
collide and perturb the plasma...

10-¢
LISA
107% 1 NANOGray
Q 10—10 -
H SKA
c
“_: 10—12 -
—14 |
10 Phase transition
GW signal
1016 T T T T T T T
1071 1078 107¢ 107* 1072  10° 10? 10*

7/ H

.. giving rise to a stochastic gravitational
wave background which can be observed.
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Parametrization of the GW signal
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- Slow transitions, 8/H ~ 10
- Percolation around T ~ 10 MeV

i - Strong transitions, a ~
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[SMBHB: A = 107 %% 4 = 13/3]

12



Parametrization of the GW signal

hZQGW
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2 1,2
2 SW,bw ~ 106 a E 7 f
Qg (f) =10 (a+1> (ﬂ) S(fpeak)
B

. T
with ~0.1nHz x = x ——
fpeak X H X MeV

To fit the new pulsar timing data:
- Strong transitions, a ~ % ~1
- Slow transitions, 8/H ~ 10

- Percolation around T ~ 10 MeV

But there’s no SM phase
transition at 10 MeV?!
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What we know about our Universe.
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The Big Bang Nucleosynthesis and the CMB

10!
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[Paul Frederik Depta, 2021]
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The Big Bang Nucleosynthesis and the CMB.

Observations of primordial light
element abundances in good

agreement with standard BBN
NN = 2.898 4 0.141 1ver 20005
NGH® = 2.99 £ 0.17 tptanci, w0r06200)
Consistent with N3¢ = 3.044 from 3

v generations isennet, 20120272603]

[ESA and the Planck Collaboration, D. Ducros] Therma“zed BSM SpeCieS are ruled
out after ¢ > 1s,i.e. T < 1MeV.
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Let’s put the transition in a dark sector

- SM has no MeV phase transition ~» Assume a weakly coupled O(MeV) scalar!

- Dark sector temperature is crucial for GW prediction, Tps = Eps T'sm (cr, 210906208]

- Stable dark sector: additional DS energy density accelerates expansion and
changes early element abundances and CMB anisotropies through

1

AN, ~ 6 x (a + I:)O‘ggs) . AN < 0.22@95% CL.

- Decaying dark sector: Energy transfer to the SM plasma, changing element
abundances and CMB anisotropies. Constraints require 7 < 0.1'S. (vepta, 201106510]



The tension between PTAs, CMB and BBN
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—— NGI2.5, sound waves, stable dark sector, 3/H > 1
——— NGI2.5, sound waves, stable dark sector, 3/H > 10
WS B/H < 3: Super-Hubble bubbles

f/H < 10: GWB is overestimated

Global fit = compute global maximum of
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z 7 S S
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gigj Jh - /H > 1: would be a good fit, if the
Lo GW spectrum were reliable...

- J/H > 10: spectra reliable, but GWs
l from phase transition still come

\ with high penalty ~ “Shot” noise.
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Decays to the rescue
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Decays save the phase
transition interpretation!

They only need to happen before

neutrino decoupling, Tsy = 2 MeV,
corresponding to fast decays, 7 < 0.1s.
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The evidence for a dark sector phase transition

?Bayes factors for a phase transition vs. only pulsar-intrinsic red noise
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The evidence for new physics

Bayes factor
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[NANOGrav collaboration, 2023]

- New physics matches

spectra better than (only)
astrophysics

- We should perform

global fits, including
additional constraints &
astrophysical parameters

Still: As soon as a single merger or strong anisotropy is found in the data, all
cosmological explanations will be practically dead.
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- We are for the first time able to p
the early Universe before ;

- New physics can explain the
better than astrophysics.

- Stable dark sector phase transitior
explanations for PTA data are in tension
with precision cosmology.

- Decaying dark sectors are a viable
option and can compete with SMBHBs.

- Ongoing work with Torsten: Study
viability of specific dark sector models.

[image credit: Olena Shmahalo, NANOGrav]




Thank you very 2 '

much for your
attention!
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