Model Building in Grand Unified Theories

Tomás Gonzalo

University College London

Universitetet i Oslo, 2 Sept 2015

F. Deppisch, T.G., L. Graf [in preparation]
Outline

1. Motivation
2. Overview of GUTs
3. Model Building
4. Results
5. Outlook
Outline

1. Motivation
2. Overview of GUTs
3. Model Building
4. Results
5. Outlook
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

- Very successful, accurate predictions: $m_{H}=125.7\pm0.4$ GeV
- However, it does not explain everything:
 - ⋆ Gravity!
 - ⋆ Charge quantisation
 - ⋆ Hierarchy problem
 - ⋆ Neutrino oscillation and masses
 - ⋆ Baryon - antibaryon asymmetry
 - ⋆ Dark matter
 - ⋆ Cosmological constant

There must be an extension of the Standard Model that can explain some of these observations.

We expect to see something new during Run II of the LHC, and other experiments.
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV

There must be an extension of the Standard Model that can explain some of these observations.

We expect to see something new during Run II of the LHC, and other experiments.
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything

There must be an extension of the Standard Model that can explain some of these observations

We expect to see something new during Run II of the LHC, and other experiments
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!

There must be an extension of the Standard Model that can explain some of these observations.

We expect to see something new during Run II of the LHC, and other experiments.
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!
 - Charge quantisation

There must be an extension of the Standard Model that can explain some of these observations.

We expect to see something new during Run II of the LHC, and other experiments.
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4 \text{ GeV}$
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem

There must be an extension of the Standard Model that can explain some of these observations.
We expect to see something new during Run II of the LHC, and other experiments.
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses

There must be an extension of the Standard Model that can explain some of these observations. We expect to see something new during Run II of the LHC, and other experiments.
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses
 - Baryon - antibaryon asymmetry
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4 \text{ GeV}$
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses
 - Baryon - antibaryon asymmetry
 - Dark matter
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses
 - Baryon - antibaryon asymmetry
 - Dark matter
 - Cosmological constant
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses
 - Baryon - antibaryon asymmetry
 - Dark matter
 - Cosmological constant
 - . . .
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV
- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses
 - Baryon - antibaryon asymmetry
 - Dark matter
 - Cosmological constant
 - ...
- There must be an extension of the Standard Model that can explain some of these observations
Motivation

- The Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

- Very successful, accurate predictions $m_H = 125.7 \pm 0.4$ GeV

- However, it does not explain everything
 - Gravity!
 - Charge quantisation
 - Hierarchy problem
 - Neutrino oscillation and masses
 - Baryon - antibaryon asymmetry
 - Dark matter
 - Cosmological constant
 - . . .

- There must be an extension of the Standard Model that can explain some of these observations

- We expect to see something new during Run II of the LHC, and other experiments
Motivation

Grand Unified Theories
Motivation

Grand Unified Theories

- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
Motivation

Grand Unified Theories

- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow \mathcal{G} \]
- Reuses the mechanism of SSB, seen in the SM
Motivation

Grand Unified Theories
- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
- Reuses the mechanism of SSB, seen in the SM
- Solves the charge quantisation problem and can solve the neutrino mass problem
Motivation

Grand Unified Theories

- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
- Reuses the mechanism of SSB, seen in the SM
- Solves the charge quantisation problem and can solve the neutrino mass problem

Supersymmetry
Motivation

Grand Unified Theories

- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
- Reuses the mechanism of SSB, seen in the SM
- Solves the charge quantisation problem and can solve the neutrino mass problem

Supersymmetry

- Symmetry \(|\mathcal{F}\rangle \leftrightarrow |\mathcal{B}\rangle\)
Motivation

Grand Unified Theories
- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
- Reuses the mechanism of SSB, seen in the SM
- Solves the charge quantisation problem and can solve the neutrino mass problem

Supersymmetry
- Symmetry \(|\mathcal{F}\rangle \leftrightarrow |\mathcal{B}\rangle\)
- Gauge coupling unification in the MSSM (SUSY GUTs)
Motivation

Grand Unified Theories

- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
- Reuses the mechanism of SSB, seen in the SM
- Solves the charge quantisation problem and can solve the neutrino mass problem

Supersymmetry

- Symmetry \(|F\rangle \leftrightarrow |B\rangle\)
- Gauge coupling unification in the MSSM (SUSY GUTs)
- Solves hierarchy problem, dark matter, ...
Motivation

Grand Unified Theories

- Extend the SM internal symmetries
 \[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow G \]
- Reuses the mechanism of SSB, seen in the SM
- Solves the charge quantisation problem and can solve the neutrino mass problem

Supersymmetry

- Symmetry \(|\mathcal{F}\rangle \leftrightarrow |\mathcal{B}\rangle\)
- Gauge coupling unification in the MSSM (SUSY GUTs)
- Solves hierarchy problem, dark matter, ...
- Connections with superstring theory

![Graph showing the inverse of three gauge couplings as a function of log10(\(\frac{\mu}{\text{GeV}}\)).]
Motivation

Experimental motivation
Motivation

Experimental motivation

- Preliminary results: CMS $pp \rightarrow lljj$ and ATLAS $pp \rightarrow WZ$
Motivation

Experimental motivation

- Preliminary results: CMS $pp \rightarrow lljj$ and ATLAS $pp \rightarrow WZ$

![Graph showing CMS and ATLAS results]

Motivation

Experimental motivation

- Preliminary results: CMS $pp \rightarrow lljj$ and ATLAS $pp \rightarrow WZ$

Motivation

Experimental motivation

- Preliminary results: CMS $pp \rightarrow lljj$ and ATLAS $pp \rightarrow WZ$

Could be explained by a heavy gauge boson $W_R \rightarrow$ GUTs
Motivation

Cosmological motivation
Motivation

Cosmological motivation

- From the Planck measurements of A_s

$$V^{1/4} = 2 \times 10^{16} \left(\frac{r}{0.15} \right)^{1/4}$$
Motivation

Cosmological motivation

- From the Planck measurements of A_s

$$V^{1/4} = 2 \times 10^{16} \left(\frac{r}{0.15} \right)^{1/4}$$

- Recent measurements by BICEP2 $r \sim 0.12 - 0.16$
Motivation

Cosmological motivation

- From the Planck measurements of A_s

\[V^{1/4} = 2 \times 10^{16} \left(\frac{r}{0.15} \right)^{1/4} \]

- Recent measurements by BICEP2 $r \sim 0.12 - 0.16$

- Consistent with Planck constraints on inflation
Motivation

Cosmological motivation
- From the Planck measurements of A_s
 \[V^{1/4} = 2 \times 10^{16} \left(\frac{r}{0.15} \right)^{1/4} \]
- Recent measurements by BICEP2 $r \sim 0.12 - 0.16$
- Consistent with Planck constraints on inflation
- Scales of inflation and unification coincide
Motivation

Cosmological motivation

- From the Planck measurements of A_s

\[V^{1/4} = 2 \times 10^{16} \left(\frac{r}{0.15} \right)^{1/4} \]

- Recent measurements by BICEP2 $r \sim 0.12 - 0.16$

- Consistent with Planck constraints on inflation

- Scales of inflation and unification coincide

- Motivation for hybrid inflation models with

\[M_{inf} = 2 \times 10^{16} \text{ GeV} \]
Motivation

Current status of GUTs and SUSY

- A lot of models: SU(5), Pati-Salam, Left-right symmetry, SO(10), ...
- There is a tendency towards minimal simple models
- Next generation of experiments may exclude them
- Limits on SUSY masses \(\gtrsim 1 \text{ TeV}\)
- Not work as solution to hierarchy problem (fine tuning)

Move forward

- Need to extend to non-minimal GUT models
- Non-minimal SUSY models: "split", "compressed" SUSY, ...
- Allow for SUSY to appear at any scale

Generalised SUSY GUT model building
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, ...
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, ...
- There is tendency towards minimal simple models

Limits on SUSY masses $\gtrsim 1$ TeV

Not work as solution to hierarchy problem (fine tuning)

Move forward

Need to extend to non-minimal GUT models

Non-minimal SUSY models: “split”, “compressed” SUSY,...

Generalised SUSY GUT model building
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, ...
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them

Limits on SUSY masses $\gtrsim 1$ TeV

Not work as solution to hierarchy problem (fine tuning)

Move forward

Need to extend to non-minimal GUT models

Non-minimal SUSY models: "split", "compressed" SUSY, ...

 Allow for SUSY to appear at any scale

Generalised SUSY GUT model building
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, …
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1$ TeV
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, \ldots
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1$ TeV
- Not work as solution to hierarchy problem (fine tuning)
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, …
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1 \text{ TeV}$
- Not work as solution to hierarchy problem (fine tuning)

Move forward
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, ...
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1$ TeV
- Not work as solution to hierarchy problem (fine tuning)

Move forward

- Need to extend to non-minimal GUT models
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, …
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1$ TeV
- Not work as solution to hierarchy problem (fine tuning)

Move forward

- Need to extend to non-minimal GUT models
- Non-minimal SUSY models: “split”, “compressed” SUSY,...
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, …
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1$ TeV
- Not work as solution to hierarchy problem (fine tuning)

Move forward

- Need to extend to non-minimal GUT models
- Non-minimal SUSY models: “split”, “compressed” SUSY,…
- Allow for SUSY to appear at any scale
Motivation

Current status of GUTs and SUSY

- A lot of models: $SU(5)$, Pati-Salm, Left-right symmetry, $SO(10)$, ...
- There is tendency towards minimal simple models
- Next gen of experiments may exclude them
- Limits on SUSY masses $\gtrsim 1$ TeV
- Not work as solution to hierarchy problem (fine tuning)

Move forward

- Need to extend to non-minimal GUT models
- Non-minimal SUSY models: “split”, “compressed” SUSY,...
- Allow for SUSY to appear at any scale

Generalised SUSY GUT model building
Motivation

Model building tool

- We argue the need for a model building tool
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs \rightarrow general GUT models
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs → general GUT models
- Automatisation of the process of model building
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs \rightarrow general GUT models
- Automatisation of the process of model building

Use group theory structure: Lie groups, representations, roots, weights, etc
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs \rightarrow general GUT models
- Automatisation of the process of model building

- Use group theory structure: Lie groups, representations, roots, weights, etc
- Inputs = \{group, chain, representations\}
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs \rightarrow general GUT models
- Automatisation of the process of model building

- Use group theory structure: Lie groups, representations, roots, weights, etc
- Inputs $= \{ \text{group, chain, representations} \}$
- Impose constraints on models:

\[
\text{Inputs} \rightarrow \text{Models}
\]
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs → general GUT models
- Automatisation of the process of model building

- Use group theory structure: Lie groups, representations, roots, weights, etc
- Inputs = \{group, chain, representations\}
- Impose contraints on models:
 - Theoretical: anomalies, gauge coupling unification, ...

\[\text{Inputs} \rightarrow \text{Models}\]
Motivation

Model building tool

- We argue the need for a model building tool
- Small set of inputs \rightarrow general GUT models
- Automatisation of the process of model building

- Use group theory structure: Lie groups, representations, roots, weights, etc
- Inputs = \{group, chain, representations\}
- Impose constraints on models:
 - Theoretical: anomalies, gauge coupling unification,...
 - Phenomenological: proton decay, SUSY searches,...
Outline

1. Motivation

2. Overview of GUTs

3. Model Building

4. Results

5. Outlook
Overview of GUTs

Overview of GUTs

- Supergroup of the SM group

$$SU(5) \supset SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$$
Overview of GUTs

\(SU(5) \) [H. Georgi and S. Glashow, Phys.Rev.Lett.32 (1974)]

- Supergroup of the SM group

\[
SU(5) \supset SU(3)_c \otimes SU(2)_L \otimes U(1)_Y
\]

- SM matter field content

\[
10 \equiv \begin{pmatrix}
0 & u_3^c & -u_2^c & u_1 & d_1 \\
-u_3^c & 0 & u_1^c & u_2 & d_2 \\
u_2^c & -u_1^c & 0 & u_3 & d_3 \\
-u_1 & -u_2 & -u_3 & 0 & e^c \\
-d_1 & -d_2 & -d_3 & -e^c & 0
\end{pmatrix}, \quad \bar{5} \equiv \begin{pmatrix}
d_1^c \\
d_2^c \\
d_3^c \\
e^c \\
-\nu
\end{pmatrix}
\]
Overview of GUTs

\(SU(5) \) [H. Georgi and S. Glashow, Phys.Rev.Lett.32 (1974)]

- Supergroup of the SM group

\[SU(5) \supset SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \]

- SM matter field content

\[
10 \equiv \begin{pmatrix}
0 & u^c_3 & -u^c_2 & u_1 & d_1 \\
-u^c_3 & 0 & u^c_1 & u_2 & d_2 \\
u_2 & -u^c_1 & 0 & u_3 & d_3 \\
-u_1 & -u_2 & -u_3 & 0 & e^c \\
-d_1 & -d_2 & -d_3 & -e^c & 0
\end{pmatrix}, \quad \bar{5} \equiv \begin{pmatrix}
d^c_1 \\
d^c_2 \\
d^c_3 \\
e \\
-\nu
\end{pmatrix}
\]

- The EW Higgs field \(5_H = \begin{pmatrix} T_u \\ H_u \end{pmatrix} \)

\[
\bar{5}_H = \begin{pmatrix} T_d \\ H_d \end{pmatrix}
\]
Overview of GUTs

Advantages of $SU(5)$
Overview of GUTs

Advantages of SU(5)

- Predicts SM charges

\[
\begin{align*}
\frac{Q(\nu)}{Q(e^c)} &= 0, \\
\frac{Q(e)}{Q(e^c)} &= -1, \\
\frac{Q(u)}{Q(e^c)} &= \frac{2}{3}, \\
\frac{Q(d)}{Q(e^c)} &= -\frac{1}{3}, \\
\frac{Q(d^c)}{Q(e^c)} &= \frac{1}{3}, \\
\frac{Q(u^c)}{Q(e^c)} &= -\frac{2}{3}.
\end{align*}
\]
Overview of GUTs

Advantages of $SU(5)$

- Predicts SM charges

$$\frac{Q(\nu)}{Q(e^c)} = 0, \quad \frac{Q(e)}{Q(e^c)} = -1$$

$$\begin{align*}
\frac{Q(u)}{Q(e^c)} &= \frac{2}{3'}, \\
\frac{Q(d)}{Q(e^c)} &= -\frac{1}{3'}, \\
\frac{Q(d^c)}{Q(e^c)} &= \frac{1}{3'}, \\
\frac{Q(u^c)}{Q(e^c)} &= -\frac{2}{3}
\end{align*}$$

- It is anomaly free

$$\begin{align*}
A(\bar{5}) &= A(\bar{3}) = -A(3) \\
A(10) &= 2A(3) + A(\bar{3}) = A(3)
\end{align*}$$

$$\sum A = 0$$
Overview of GUTs

Advantages of $SU(5)$

- Predicts SM charges

\[
\frac{Q(\nu)}{Q(e^c)} = 0, \quad \frac{Q(e)}{Q(e^c)} = -1
\]

\[
\frac{Q(u)}{Q(e^c)} = \frac{2}{3}', \quad \frac{Q(d)}{Q(e^c)} = \frac{-1}{3}', \quad \frac{Q(d^c)}{Q(e^c)} = \frac{1}{3}', \quad \frac{Q(u^c)}{Q(e^c)} = \frac{-2}{3}
\]

- It is anomaly free

\[
\begin{align*}
\mathcal{A}(\bar{5}) &= \mathcal{A}(\bar{3}) = -\mathcal{A}(3) \\
\mathcal{A}(10) &= 2\mathcal{A}(3) + \mathcal{A}(\bar{3}) = \mathcal{A}(3)
\end{align*}
\right\} \sum \mathcal{A} = 0
\]

- Gauge coupling unification,

\[
\alpha_3(M_{GUT}) = \alpha_2(M_{GUT}) = \alpha_1(M_{GUT})
\]
Overview of GUTs

Disadvantages of $SU(5)$

Doublet-triplet splitting

$H \sim M_{EW}$ and $T \sim M_{GUT}$

$O \left(M_{2GUT}^2 / M_{2EW}^2 \right) \sim 10^{26}$

Yukawa unification

$m_b \sim m_\tau, m_s \sim m_\mu, m_d \sim m_e$
$m_b m_\tau \sim 20\%,$
$m_s m_\mu m_d m_e \sim O(1)$

Rapid proton decay,
$\tau_{\exp} > 10^{34} y$

$\Gamma (p \rightarrow \pi^0 e^+ + \nu_e) \sim \alpha^2 m_p^5 M_X^4$, \Rightarrow $M_{GUT} \gg 10^{16} \text{GeV}$

Non-SUSY $SU(5)$ is ruled out.
Overview of GUTs

Disadvantages of $SU(5)$

- Doublet-triplet splitting $m_H \sim M_{EW}$ and $m_T \sim M_{GUT}$

\[\mathcal{O}(M_{GUT}^2/M_{EW}^2) \sim 10^{26} \]
Overview of GUTs

Disadvantages of $SU(5)$

- Doublet-triplet splitting $m_H \sim M_{EW}$ and $m_T \sim M_{GUT}$

$$\mathcal{O}(M_{GUT}^2/M_{EW}^2) \sim 10^{26}$$

- Yukawa unification $m_b \sim m_\tau$, $m_s \sim m_\mu$, $m_d \sim m_e$

$$\frac{m_b}{m_\tau} \sim 20\%, \quad \frac{m_s}{m_\mu} \sim \frac{m_d}{m_e} \sim \mathcal{O}(1)$$
Overview of GUTs

Disadvantages of $SU(5)$

- Doublet-triplet splitting $m_H \sim M_{EW}$ and $m_T \sim M_{GUT}$

$$\mathcal{O}(M_{GUT}^2/M_{EW}^2) \sim 10^{26}$$

- Yukawa unification $m_b \sim m_\tau$, $m_s \sim m_\mu$, $m_d \sim m_e$

$$\frac{m_b}{m_\tau} \sim 20\%, \quad \frac{m_s}{m_\mu} \sim \frac{m_d}{m_e} \sim \mathcal{O}(1)$$

- Rapid proton decay, $\tau_{exp} > 10^{34}$ y

$$\Gamma(p \to \pi^0 e^+) \sim \frac{\alpha^2 m_p^5}{M_X^4}, \quad \Rightarrow M_{GUT} \gtrsim 10^{16} \text{ GeV}$$
Overview of GUTs

Disadvantages of $SU(5)$

- Doublet-triplet splitting $m_H \sim M_{EW}$ and $m_T \sim M_{GUT}$

$$O(M_{GUT}^2/M_{EW}^2) \sim 10^{26}$$

- Yukawa unification $m_b \sim m_\tau$, $m_s \sim m_\mu$, $m_d \sim m_e$

$$\frac{m_b}{m_\tau} \sim 20\%, \quad \frac{m_s}{m_\mu} \sim \frac{m_d}{m_e} \sim O(1)$$

- Rapid proton decay, $\tau_{\text{exp}} > 10^{34} \text{ y}$

$$\Gamma(p \to \pi^0 e^+) \sim \frac{\alpha^2 m_p^5}{M_X^4}, \quad \Rightarrow \quad M_{GUT} \gtrsim 10^{16} \text{ GeV}$$

Non-SUSY $SU(5)$ is ruled out
Overview of GUTs

Flipped $SU(5) \otimes U(1)$

[A. de Rujula, H. Georgi, S. Glashow, Phys.Rev.Lett.45, 413 (1980);
Overview of GUTs

Flipped $SU(5) \otimes U(1)$

[A. de Rujula, H. Georgi, S. Glashow, Phys. Rev. Lett. 45, 413 (1980);

- Alternative embedding

\[
10_1 \equiv \begin{pmatrix}
0 & d_3^c & -d_2^c & u_1 & d_1 \\
-d_3^c & 0 & d_1^c & u_2 & d_2 \\
d_2^c & -d_1^c & 0 & u_3 & d_3 \\
-u_1 & -u_2 & -u_3 & 0 & \nu^c \\
-d_1 & -d_2 & -d_3 & -\nu^c & 0
\end{pmatrix}, \quad \bar{5}_{-3} \equiv \begin{pmatrix}
u_1^c \\
u_2^c \\
u_3^c \\
\bar{e} \\
-\nu
\end{pmatrix},
\]

\[1_5 \equiv (e^c)\]
Overview of GUTs

Flipped $SU(5) \otimes U(1)$
[A. de Rujula, H. Georgi, S. Glashow, Phys.Rev.Lett.45, 413 (1980);

- Alternative embedding

$$
\begin{pmatrix}
0 & d_3^c & -d_2^c & u_1 & d_1 \\
-d_3^c & 0 & d_1^c & u_2 & d_2 \\
d_2^c & -d_1^c & 0 & u_3 & d_3 \\
-u_1 & -u_2 & -u_3 & 0 & \nu^c \\
-d_1 & -d_2 & -d_3 & -\nu^c & 0
\end{pmatrix},
\begin{pmatrix}
u_1^c \\
u_2^c \\
u_3^c \\
e \\
-\nu
\end{pmatrix}
$$

10$_1$ ≡ (e^c)

- Hypercharge is a linear combination of generators $SU(5)$ and $U(1)$

$$Y = -\frac{1}{5} T_{24} + \frac{1}{5} X$$
Overview of GUTs

Differences with respect to “standard” $SU(5)$
Overview of GUTs

Differences with respect to “standard” $SU(5)$

- No full gauge coupling unification \Rightarrow partial unification

\[
\begin{align*}
\alpha_2(M_{GUT}) &= \alpha_3(M_{GUT}) = \alpha_5(M_{GUT}) \\
\alpha_1^{-1}(M_{GUT}) &= \frac{1}{25} \left(\alpha_5^{-1}(M_{GUT}) + \alpha_X^{-1}(M_{GUT}) \right)
\end{align*}
\]
Overview of GUTs

Differences with respect to “standard” $SU(5)$

- No full gauge coupling unification \Rightarrow partial unification

$$\alpha_2(M_{GUT}) = \alpha_3(M_{GUT}) = \alpha_5(M_{GUT})$$

$$\alpha_1^{-1}(M_{GUT}) = \frac{1}{25} \left(\alpha_5^{-1}(M_{GUT}) + \alpha_X^{-1}(M_{GUT}) \right)$$

- SUSY version solves doublet-triple splitting, $10_1', \ 10_{-1}$

$$10_1' \ 10_1' \ 5_{-2}, \ \bar{10}_{-1} \ \bar{10}_{-1} \ \bar{5}_2$$
Overview of GUTs

Differences with respect to “standard” $SU(5)$

- No full gauge coupling unification \Rightarrow partial unification

$$\alpha_2(M_{GUT}) = \alpha_3(M_{GUT}) = \alpha_5(M_{GUT})$$

$$\alpha_1^{-1}(M_{GUT}) = \frac{1}{25} \left(\alpha_5^{-1}(M_{GUT}) + \alpha_X^{-1}(M_{GUT}) \right)$$

- SUSY version solves doublet-triple splitting, $10', \overline{10}_{-1}$

$$10'_{1} 10'_{1} 5_{-2}, \quad \overline{10}_{-1} \overline{10}_{-1} \overline{\bar{5}}_{2}$$

- With 3 sterile neutrinos $1_{0}^{(1,2,3)}$, generates neutrino masses and mixing

$$\lambda_{j} 10_{1} \overline{10}_{-1} 1_{0}^{j}$$
Overview of GUTs

Pati-Salam $SU(4)_C \otimes SU(2)_L \otimes SU(2)_R$

Overview of GUTs

Pati-Salam $SU(4)_C \otimes SU(2)_L \otimes SU(2)_R$

- Leptons are a fourth colour

\[
\begin{pmatrix}
4, 2, 1 \\
\end{pmatrix} \equiv \begin{pmatrix}
 u_1 & u_2 & u_3 & \nu \\
 d_1 & d_2 & d_3 & e
\end{pmatrix}
\]
Overview of GUTs

Pati-Salam $SU(4)_C \otimes SU(2)_L \otimes SU(2)_R$

- Leptons are a fourth colour

$$\{4, 2, 1\} \equiv \begin{pmatrix} u_1 & u_2 & u_3 & \nu \\ d_1 & d_2 & d_3 & e \end{pmatrix}$$

- Left-handed ↔ right-handed symmetry

$$\{\bar{4}, 1, 2\} \equiv \begin{pmatrix} d_1^c & d_2^c & d_3^c & e^c \\ -u_1^c & -u_2^c & -u_3^c & -\nu^c \end{pmatrix}$$
Overview of GUTs

Pati-Salam $SU(4)_C \otimes SU(2)_L \otimes SU(2)_R$

- Leptons are a fourth colour

$$\{ 4, 2, 1 \} \equiv \left(\begin{array}{cccc} u_1 & u_2 & u_3 & \nu \\ d_1 & d_2 & d_3 & e \end{array} \right)$$

- Left-handed \leftrightarrow right-handed symmetry

$$\{ \bar{4}, 1, 2 \} \equiv \left(\begin{array}{cccc} d_1^c & d_2^c & d_3^c & e^c \\ -u_1^c & -u_2^c & -u_3^c & -\nu^c \end{array} \right)$$

- And the SM Higgs is a bi-doublet $\{ 1, 2, 2 \}$
Overview of GUTs

Pati-Salam $SU(4)_C \otimes SU(2)_L \otimes SU(2)_R$

- Leptons are a fourth colour

\[\{4, 2, 1\} \equiv \begin{pmatrix} u_1 & u_2 & u_3 & \nu \\ d_1 & d_2 & d_3 & e \end{pmatrix} \]

- Left-handed \leftrightarrow right-handed symmetry

\[\{\bar{4}, 1, 2\} \equiv \begin{pmatrix} d_1^c & d_2^c & d_3^c & e^c \\ -u_1^c & -u_2^c & -u_3^c & -\nu^c \end{pmatrix} \]

- And the SM Higgs is a bi-doublet $\{1, 2, 2\}$

- Naturally includes right-handed ν, sees-saw mechanism

\[M_\nu = \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \rightarrow \begin{cases} m_\nu \sim \frac{m_D^2}{M_R} \\ m_{\nu^c} \sim M_R \end{cases} \]
Overview of GUTs

Properties of Pati-Salam

Breaking to the SM can happen in different ways. The Higgs sector depends on the breaking.

Hypercharge is a linear combination of the generators, $Y = T_3^R + \frac{1}{2}(B-L)$.

No unification of gauge couplings, $\alpha_3 = \alpha_4$, $\alpha_2 = \alpha_1 (M_{GUT})^{-1} = \frac{2}{5} \alpha_4 (M_{GUT})^{-1} + \frac{3}{5} \alpha_2 R (M_{GUT})^{-1}$

No rapid proton decay.
Overview of GUTs

Properties of Pati-Salam

- Breaking to the SM can happen in different ways
Overview of GUTs

Properties of Pati-Salam

- Breaking to the SM can happen in different ways
- The Higgs sector depends on the breaking
Overview of GUTs

Properties of Pati-Salam

- Breaking to the SM can happen in different ways.
- The Higgs sector depends on the breaking.

- Hypercharge is a linear combination of the generators,

\[Y = T_R^3 + \frac{1}{2}(B - L) \]
Overview of GUTs

Properties of Pati-Salam

- Breaking to the SM can happen in different ways
- The Higgs sector depends on the breaking

- Hypercharge is a linear combination of the generators,
 \[Y = T^3_R + \frac{1}{2}(B - L) \]

- No unification of gauge couplings, \(\alpha_3 = \alpha_4, \alpha_2 \)
 \[\alpha_1(M_{GUT})^{-1} = \frac{2}{5} \alpha_4(M_{GUT})^{-1} + \frac{3}{5} \alpha_2 R(M_{GUT})^{-1} \]
Overview of GUTs

Properties of Pati-Salam

- Breaking to the SM can happen in different ways
- The Higgs sector depends on the breaking

- Hypercharge is a linear combination of the generators,

\[Y = T_R^3 + \frac{1}{2}(B - L) \]

- No unification of gauge couplings, \(\alpha_3 = \alpha_4, \alpha_2\)

\[\alpha_1(M_{GUT})^{-1} = \frac{2}{5}\alpha_4(M_{GUT})^{-1} + \frac{3}{5}\alpha_{2R}(M_{GUT})^{-1} \]

- No rapid proton decay
Overview of GUTs

Left-right symmetry $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

Overview of GUTs

Left-right symmetry $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

- Can be an intermediate step from Pati-Salam
Overview of GUTs

Left-right symmetry $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

- Can be an intermediate step from Pati-Salam
- Matter content comes from that of P-S

$$\{4, 2, 1\} \rightarrow \{3, 2, 1, \frac{1}{3}\} \oplus \{1, 2, 1, -1\},$$
$$\{\bar{4}, 1, 2\} \rightarrow \{\bar{3}, 1, 2, -\frac{1}{3}\} \oplus \{1, 1, 2, 1\}.$$
Overview of GUTs

Left-right symmetry $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

- Can be an intermediate step from Pati-Salam
- Matter content comes from that of P-S

\[
\{4, 2, 1\} \rightarrow \{3, 2, 1, \frac{1}{3}\} \oplus \{1, 2, 1, -1\},
\]
\[
\{\bar{4}, 1, 2\} \rightarrow \{\bar{3}, 1, 2, -\frac{1}{3}\} \oplus \{1, 1, 2, 1\}.
\]

- Predicts the existence of a W_R, e.g. $M_{W_R} \sim 2$ TeV

[F. F. Deppisch, T. G. et al, Phys.Rev.D90, 053014 (2014)]
[F. F. Deppisch, T. G. et al, Phys.Rev.D91, 015018 (2015)]

\[
\sigma(p p \rightarrow W_R \rightarrow f N \rightarrow \tau \tau jj) [fb]
\]
\[
1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0
\]
\[
1.0 \quad 10
\]

\[
V_{eN}^2 = 0.19 \quad V_{\mu N}^2 = 0.41 \quad V_{\tau N}^2 = 1
\]
Overview of GUTs

$SO(10)$ [H. Fritzsch and P. Minkowski, Annals Phys. 93 (1975)]

The spinor representation, \(16 \), contains all SM fermions (plus right-handed neutrino) \(16 \equiv \{ u_1, \nu, u_2, u_3, \nu_c, u_c_1, u_c_3, u_c_2, d_1, e, d_2, d_3, e_c, d_c_1, d_c_3, d_c_2 \} \).

The EW Higgs depends on the Yukawa sector \(16 \otimes 16 = 10 \oplus 120 \oplus 126 \).

Can predict accurate fermion masses, e.g.

\[
\begin{align*}
 m_u &= Y_{10} v_u + Y_{126} \sigma_u + Y_{120} (\omega_{10} u + \omega_{120} u), \\
 m_d &= Y_{10} v_d + Y_{126} \sigma_d + Y_{120} (\omega_{10} d + \omega_{120} d), \\
 m_e &= Y_{10} v_d - 3 Y_{126} \sigma_d + Y_{120} (\omega_{10} d - 3 \omega_{120} d), \\
 m_\nu &= Y_{10} v_u - 3 Y_{126} \sigma_u + Y_{120} (\omega_{10} u - 3 \omega_{120} u).
\end{align*}
\]
Overview of GUTs

$SO(10)$ [H. Fritzsch and P. Minkowski, Annals Phys. 93 (1975)]

- The spinor representation, 16 contains all SM fermions (plus right-handed neutrino)

\[16 \equiv \{ u_1, \nu, u_2, u_3, \nu^c, u_1^c, u_3^c, u_2^c, d_1, e, d_2, d_3, e^c, d_1^c, d_3^c, d_2^c \} \]
Overview of GUTs

$SO(10)$ [H. Fritzsch and P. Minkowski, Annals Phys. 93 (1975)]

- The spinor representation, 16 contains all SM fermions (plus right-handed neutrino)

\[16 \equiv \{ u_1, \nu, u_2, u_3, \nu^c, u_1^c, u_3^c, u_2^c, d_1, e, d_2, d_3, e^c, d_1^c, d_3^c, d_2^c \} \]

- The EW Higgs depends on the Yukawa sector

\[16 \otimes 16 = 10 \oplus 120 \oplus 126 \]
Overview of GUTs

SO(10) [H. Fritzsch and P. Minkowski, Annals Phys. 93 (1975)]

- The spinor representation, 16 contains all SM fermions (plus right-handed neutrino)

\[16 \equiv \{ u_1, \nu, u_2, u_3, \nu^c, u_1^c, u_3^c, u_2^c, d_1, e, d_2, d_3, e^c, d_1^c, d_3^c, d_2^c \} \]

- The EW Higgs depends on the Yukawa sector

\[16 \otimes 16 = 10 \oplus 120 \oplus \overline{126} \]

- Can predict accurate fermion masses, e.g.

\[
\begin{align*}
 m_u &= Y_{10} \nu_u + Y_{126} \sigma_u + Y_{120} (\omega^\alpha_u + \omega^\beta_u), \\
 m_d &= Y_{10} \nu_d + Y_{126} \sigma_d + Y_{120} (\omega^\alpha_d + \omega^\beta_d), \\
 m_e &= Y_{10} \nu_d - 3Y_{126} \sigma_d + Y_{120} (\omega^\alpha_d - 3 \omega^\beta_d), \\
 m_\nu &= Y_{10} \nu_u - 3Y_{126} \sigma_u + Y_{120} (\omega^\alpha_u - 3 \omega^\beta_u)
\end{align*}
\]
Overview of GUTs

Breakings of $SO(10)$
Overview of GUTs

Breakings of $SO(10)$
- Contains $SU(5) \otimes U(1)$ and $SU(4) \otimes SU(2) \otimes SU(2)$
Overview of GUTs

Breakings of $SO(10)$

- Contains $SU(5) \otimes U(1)$ and $SU(4) \otimes SU(2) \otimes SU(2)$

- Most studied GUT model
Overview of GUTs

Breakings of $SO(10)$

- Contains $SU(5) \otimes U(1)$ and $SU(4) \otimes SU(2) \otimes SU(2)$

- Most studied GUT model
- We will use $SO(10)$ as the testing ground for the model building tool
Outline

1 Motivation

2 Overview of GUTs

3 Model Building

4 Results

5 Outlook
Model Building

Automatisation of model building

Main goals

- Start with a small set of inputs at the unification scale
 \{G, G\to \cdots \to G, SM, \{R\}\}
- Construct all possible models from it
 \{R\}\to \sum_i R_i
- Satisfy theoretical constraints (gauge coupling unification)
- Constrain models with phenomenological observables

Caveats

- Only Lie groups considered, no discrete symmetries
- Models are not fully determined, only group structure
- No Lagrangian or scalar potential, symmetry breaking strictly from group properties
- No exotic fermions other than gauginos and Higgsinos
Automatisation of model building

- Main goals

- Start with a small set of inputs at the unification scale:
 \[\{G, \{G \to \cdots \to G\}^{SM}, \{R\} \}\]

- Construct all possible models from it:
 \[\sum_i R_i \]

- Satisfy theoretical constraints (gauge coupling unification)

- Constrain models with phenomenological observables

Caveats

- Only Lie groups considered, no discrete symmetries
- Models are not fully determined, only group structure
- No Lagrangian or scalar potential, symmetry breaking strictly from group properties
- No exotic fermions other than gauginos and Higgsinos

T. Gonzalo (UCL)
Model Building in GUTs
UiO, 02/09/15
Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale
 \[\{ \mathcal{G}, \{ \mathcal{G} \to \cdots \to \mathcal{G}_{SM} \}, \{ \mathcal{R} \} \} \]
Model Building

Automatisation of model building

- **Main goals**
 - Start with a small set of inputs at the unification scale

 \[\{ G, \{ G \rightarrow \cdots \rightarrow G_{SM} \}, \{ \mathcal{R} \} \} \]

 - Construct all possible models from it

 \[\{ \mathcal{R} \} \rightarrow \sum_{i} \mathcal{R}_i \]
Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale

\[\{\mathcal{G}, \{\mathcal{G} \rightarrow \cdots \rightarrow \mathcal{G}_{SM}\}, \{\mathcal{R}\}\} \]

 - Construct all possible models from it

\[\{\mathcal{R}\} \rightarrow \sum_{i} \mathcal{R}_{i} \]

 - Satisfy theoretical constraints (gauge coupling unification)

- Caveats
 - Only Lie groups considered, no discrete symmetries
 - Models are not fully determined, only group structure
 - No Lagrangian or scalar potential, symmetry breaking strictly from group properties
 - No exotic fermions other than gauginos and Higgsinos
Model Building

Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale
 \[
 \{G, \{G \rightarrow \cdots \rightarrow G_{SM}\}, \{R\}\}
 \]
 - Construct all possible models from it
 \[
 \{R\} \rightarrow \sum_i R_i
 \]
 - Satisfy theoretical constraints (gauge coupling unification)
 - Constrain models with phenomenological observables

- Caveats
 - Only Lie groups considered, no discrete symmetries
 - Models are not fully determined, only group structure
 - No Lagrangian or scalar potential, symmetry breaking strictly from group properties
 - No exotic fermions other than gauginos and Higgsinos
Model Building

Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale
 \[\{ \mathcal{G}, \{ \mathcal{G} \to \cdots \to \mathcal{G}_{SM} \}, \{ \mathcal{R} \} \} \]
 - Construct all possible models from it
 \[\{ \mathcal{R} \} \to \sum_i \mathcal{R}_i \]
 - Satisfy theoretical constraints (gauge coupling unification)
 - Constrain models with phenomenological observables

- Caveats
 - Only Lie groups considered, no discrete symmetries
 - Models are not fully determined, only group structure
 - No Lagrangian or scalar potential, symmetry breaking strictly from group properties
 - No exotic fermions other than gauginos and Higgsinos
Model Building

Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale
 \[
 \{G, \{G \rightarrow \cdots \rightarrow G_{SM}\}, \{\mathcal{R}\}\}
 \]
 - Construct all possible models from it
 \[
 \{\mathcal{R}\} \rightarrow \sum_i \mathcal{R}_i
 \]
 - Satisfy theoretical constraints (gauge coupling unification)
 - Constrain models with phenomenological observables

- Caveats
 - Only Lie groups considered, no discrete symmetries
 - No Lagrangian or scalar potential, symmetry breaking strictly from group properties
 - No exotic fermions other than gauginos and Higgsinos
Automatisation of model building

- **Main goals**
 - Start with a small set of inputs at the unification scale
 \[\{G, \{G \to \cdots \to G_{SM}\}, \{R\}\} \]
 - Construct all possible models from it
 \[\{R\} \to \sum_i R_i \]
 - Satisfy theoretical constraints (gauge coupling unification)
 - Constrain models with phenomenological observables

- **Caveats**
 - Only Lie groups considered, no discrete symmetries
 - Models are not fully determined, only group structure
Model Building

Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale
 \[\{G, \{G \rightarrow \cdots \rightarrow G_{SM}\}, \{R\}\} \]
 - Construct all possible models from it
 \[\{R\} \rightarrow \sum_i R_i \]
 - Satisfy theoretical constraints (gauge coupling unification)
 - Constrain models with phenomenological observables

- Caveats
 - Only Lie groups considered, no discrete symmetries
 - Models are not fully determined, only group structure
 - No Lagrangian or scalar potential, symmetry breaking strictly from group properties
Model Building

Automatisation of model building

- Main goals
 - Start with a small set of inputs at the unification scale
 \[
 \{G, \{G \to \cdots \to G_{SM}\}, \{R}\}\]
 - Construct all possible models from it
 \[
 \{R\} \to \sum_i R_i
 \]
 - Satisfy theoretical constraints (gauge coupling unification)
 - Constrain models with phenomenological observables

- Caveats
 - Only Lie groups considered, no discrete symmetries
 - Models are not fully determined, only group structure
 - No Lagrangian or scalar potential, symmetry breaking strictly from group properties
 - No exotic fermions other than gauginos and Higgsinos
Generating the models

Starting from the GUT model at M_{GUT}

Decompose the reps $\{R\} \rightarrow \sum_i R_i$ to the next step.

Apply constraints.

Generate all possible combinations of the representations $\{R_i\} \rightarrow 2^n$.

Repeat for next step of the chain.
Model Building

Generating the models

- Starting from the GUT model at M_{GUT} scale

Group G, chain, $\{G \rightarrow \cdots \rightarrow F_i \rightarrow \cdots \rightarrow G_{SM}\}$ and reps $\{R\}$ at GUT scale

- Decompose the reps $\{R\} \rightarrow \sum_i R_i$ to the next step
- Apply constraints
- Generate all possible combinations of the representations $\{R_i\} \rightarrow 2^n$
- Repeat for next step of the chain
Model Building

Generating the models

- Starting from the GUT model at M_{GUT} scale
- Decompose the reps $\{\mathcal{R}\} \rightarrow \sum_i \mathcal{R}_i$ to the next step

Diagram:

1. Group \mathcal{G}, chain, $\{\mathcal{G} \rightarrow \cdots \rightarrow \mathcal{F}_i \rightarrow \cdots \rightarrow \mathcal{G}_{SM}\}$ and reps $\{\mathcal{R}\}$ at GUT scale
2. Next step in the chain, \mathcal{F}_i
3. Next model, \mathcal{M}_j
4. Check constraints on \mathcal{M}_j
5. Generate all possible set of subreps $\{\mathcal{R}^{(i)}\}_j$
6. Add to list of submodels $\{\mathcal{SM}\}$
7. Set of models $\{\mathcal{M}\} = \{\mathcal{SM}\}$
Model Building

Generating the models

- Starting from the GUT model at M_{GUT} scale
- Decompose the reps $\{\mathcal{R}\} \rightarrow \sum_i \mathcal{R}_i$ to the next step
- Apply constraints

Group \mathcal{G}, chain, $\{\mathcal{G} \rightarrow \cdots \rightarrow \mathcal{F}_i \rightarrow \cdots \rightarrow \mathcal{G}_{SM}\}$ and reps $\{\mathcal{R}\}$ at GUT scale

- Next step in the chain, \mathcal{F}_i
- Next model, \mathcal{M}_j
- Check constraints on \mathcal{M}_j
 - fail
 - Generate all possible set of subreps $\{\mathcal{R}^{(i)}\}_j$
 - Add to list of submodels $\{\mathcal{S}\}$
 - Set of models $\{\mathcal{M}\} = \{\mathcal{S}\}$
Model Building

Generating the models

- Starting from the GUT model at M_{GUT} scale
- Decompose the reps $\{\mathcal{R}\} \rightarrow \sum_i \mathcal{R}_i$ to the next step
- Apply constraints
- Generate all possible combinations of the representations $\{\mathcal{R}_i\} \rightarrow 2^n$

Diagram:

- Group \mathcal{G}, chain, $\{\mathcal{G} \rightarrow \cdots \rightarrow \mathcal{F}_i \rightarrow \cdots \rightarrow \mathcal{G}_{SM}\}$ and reps $\{\mathcal{R}\}$ at GUT scale
- Next step in the chain, \mathcal{F}_i
- Next model, \mathcal{M}_j
- Check constraints on \mathcal{M}_j
 - fail
 - Generate all possible set of subreps $\{\mathcal{R}^{(i)}\}_j$
 - Add to list of submodels $\{\mathcal{SM}\}$
- Set of models $\{\mathcal{M}\} = \{\mathcal{SM}\}$
Model Building

Generating the models

- Starting from the GUT model at M_{GUT} scale
- Decompose the reps $\{\mathcal{R}\} \rightarrow \sum_i \mathcal{R}_i$ to the next step
- Apply constraints
- Generate all possible combinations of the representations $\{\mathcal{R}_i\} \rightarrow 2^n$
- Repeat for next step of the chain

Group \mathcal{G}, chain, $\{\mathcal{G} \rightarrow \cdots \mathcal{F}_i \rightarrow \cdots \mathcal{G}_{SM}\}$ and reps $\{\mathcal{R}\}$ at GUT scale
Model Building

Constraints

Chirality: different embedding of left- and right-handed fermions

Anomalies: three types
- Gauge or Adler-Bell-Jackiw anomaly
 \[A_{abc} = \text{Tr} \left[\{ T^a, T^b \} T^c \right] \]
- Gravitational anomaly
 \[A = \sum_i Q_i \]
- Witten anomaly, SU(2) topology
 \[A = n_f \mod 2 = 0 \]

Symmetry breaking: rep content includes a scalar field that decomposes into a singlet
Reproduces the SM content at \(M_{EW} \): SM fermions + a Higgs doublet (at least)
Constraints

- **Chirality**: different embedding of left- and right-handed fermions
Model Building

Constraints

- **Chirality**: different embedding of left- and right-handed fermions
- **Anomalies**: three types
Model Building

Constraints

- **Chirality**: different embedding of left- and right-handed fermions

- **Anomalies**: three types
 - Gauge or Adler-Bell-Jackiw anomaly
 \[A_{abc} = \text{Tr}[\{T_a, T_b\} T_c] \]
 - Gravitational anomaly
 - Witten anomaly, SU(2) topology

Symmetry breaking: rep content includes a scalar field that decomposes into a singlet
Reproduces the SM content at \(M_{EW} \): SM fermions + a Higgs doublet (at least)
Model Building

Constraints

- **Chirality**: different embedding of left- and right-handed fermions

- **Anomalies**: three types
 - Gauge or Adler-Bell-Jackiw anomaly
 \[A_{abc} = \text{Tr}[\{ T_a, T_b \} T_c] \]
 - Gravitational anomaly \(A = \sum_i Q_i \)
Model Building

Constraints

- **Chirality**: different embedding of left- and right-handed fermions

- **Anomalies**: three types
 - Gauge or Adler-Bell-Jackiw anomaly
 \[A_{abc} = \text{Tr}[\{ T_a, T_b \} T_c] \]
 - Gravitational anomaly \(A = \sum_i Q_i \)
 - Witten anomaly, \(SU(2) \) topology
 \[A = n_f \mod 2 = 0 \]
Model Building

Constraints

- **Chirality**: different embedding of left- and right-handed fermions

- **Anomalies**: three types
 - Gauge or Adler-Bell-Jackiw anomaly
 \[A_{abc} = \text{Tr}[\{ T_a, T_b \} T_c] \]
 - Gravitational anomaly
 \[A = \sum_i Q_i \]
 - Witten anomaly, \(SU(2) \) topology
 \[A = n_f \mod 2 = 0 \]

- **Symmetry breaking**: rep content includes a scalar field that decomposes into a singlet
Model Building

Constraints

- **Chirality**: different embedding of left- and right-handed fermions

- **Anomalies**: three types

 - Gauge or Adler-Bell-Jackiw anomaly
 \[A_{abc} = \text{Tr}[\{ T_a, T_b \} T_c] \]

 - Gravitational anomaly \[A = \sum_i Q_i \]

 - Witten anomaly, \(SU(2) \) topology
 \[A = n_f \mod 2 = 0 \]

- **Symmetry breaking**: rep content includes a scalar field that decomposes into a singlet

- Reproduces the **SM content** at \(M_{EW} \): SM fermions + a Higgs doublet (at least)
Model Building

Unification of gauge couplings

\[\alpha_i - 1 = \alpha_{\text{GUT}} + m \sum_{j=1} \beta_{ij} \Delta t_j \]

For a set of representations calculate the slopes

\[\beta = \frac{2}{3} \sum_f \text{S}(R_f) + \frac{1}{3} \sum_s \text{S}(R_s) - \frac{11}{3} \text{C}_2(G) \]

System of equations

\[(\alpha - \frac{1}{3} \alpha - \frac{2}{3} \alpha - \frac{1}{3}) = (\sum R_s S(R)) - 3 \text{C}_2(G) \]

\[B_0 \cdot \Delta t \]
Unification of gauge couplings

- Gauge RGEs are exactly solvable at one loop

\[\alpha_i^{-1} = \alpha_{GUT}^{-1} + \sum_{j=1}^{m} b_i^j \Delta t_j \]
Model Building

Unification of gauge couplings

- Gauge RGEs are exactly solvable at one loop

\[
\alpha_i^{-1} = \alpha_{GUT}^{-1} + \sum_{j=1}^{m} b_i^j \Delta t_j
\]

- For a set of representations calculate the slopes

\[
b = \frac{2}{3} \sum_f S(\mathcal{R}_f) + \frac{1}{3} \sum_s S(\mathcal{R}_s) - \frac{11}{3} C_2(\mathcal{G}) \quad \text{(general)}
\]

\[
b = \sum_{\mathcal{R}} S(\mathcal{R}) - 3 C_2(\mathcal{G}) \quad \text{(SUSY)}
\]
Model Building

Unification of gauge couplings

- Gauge RGEs are exactly solvable at one loop

\[\alpha_i^{-1} = \alpha_{GUT}^{-1} + \sum_{j=1}^{m} b_j^i \Delta t_j \]

- For a set of representations calculate the slopes

\[b = \frac{2}{3} \sum_f S(\mathcal{R}_f) + \frac{1}{3} \sum_s S(\mathcal{R}_s) - \frac{11}{3} C_2(\mathcal{G}) \quad \text{(general)} \]

\[b = \sum_{\mathcal{R}} S(\mathcal{R}) - 3 C_2(\mathcal{G}) \quad \text{(SUSY)} \]

- System of equations

\[
\begin{pmatrix}
\alpha_3^{-1} \\
\alpha_2^{-1} \\
\alpha_1^{-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & b_3^1 & b_3^2 & \cdots & b_3^m \\
1 & b_2^1 & b_2^2 & \cdots & b_2^m \\
1 & b_1^1 & b_1^2 & \cdots & b_1^m
\end{pmatrix}
\begin{pmatrix}
\alpha_{GUT} \\
\Delta t_1 \\
\Delta t_2 \\
\vdots \\
\Delta t_m
\end{pmatrix}
\equiv B_0 \cdot \Delta t
\]
We allow the SUSY breaking scale to appear in between any scale $t_k < t_{SUSY} < t_k + 1$. Above t_{SUSY} we use b_S, the SUSY slopes; below t_{SUSY} we use b_0 the slopes without SUSY. The matrix of slopes above change to

$$B_S = \begin{pmatrix}
(1 (b_0))_{3 1} & \cdots & (b_S)_{3 k} \\
\vdots & \ddots & \vdots \\
(1 (b_0))_{2 1} & \cdots & (b_S)_{2 k} \\
\end{pmatrix} \begin{pmatrix}
(1 (b_0))_{1 1} & \cdots & (b_S)_{1 k} \\
\vdots & \ddots & \vdots \\
(1 (b_0))_{1 1} & \cdots & (b_S)_{1 m} \\
\end{pmatrix}
$$

And the scales $\Delta t = \{ \Delta t_1, \ldots, \Delta t_k, \Delta t_{SUSY}, \Delta t_{k + 1}, \ldots, \Delta t_m \}$.
We allow the SUSY breaking scale to appear in between any scale $t_k < t_{SUSY} < t_{k+1}$.
Supersymmetry

- We allow the SUSY breaking scale to appear in between any scale $t_k < t_{SUSY} < t_{k+1}$
- Above t_{SUSY} we use b_S, the SUSY slopes; below t_{SUSY} we use b_0 the slopes without SUSY
Supersymmetry

- We allow the SUSY breaking scale to appear in between any scale \(t_k < t_{SUSY} < t_{k+1} \).
- Above \(t_{SUSY} \) we use \(b_S \), the SUSY slopes; below \(t_{SUSY} \) we use \(b_0 \) the slopes without SUSY.
- The matrix of slopes above change to

\[
B_S = \begin{pmatrix}
1 & (b_0)_1^3 & \cdots & (b_0)_k^3 & (b_S)_k^3 & (b_S)_{k+1}^3 & \cdots & (b_S)_m^3 \\
1 & (b_0)_1^2 & \cdots & (b_0)_k^2 & (b_S)_k^2 & (b_S)_{k+1}^2 & \cdots & (b_S)_m^2 \\
1 & (b_0)_1^1 & \cdots & (b_0)_k^1 & (b_S)_k^1 & (b_S)_{k+1}^1 & \cdots & (b_S)_m^1 \\
\end{pmatrix}
\]
Supersymmetry

- We allow the SUSY breaking scale to appear in between any scale $t_k < t_{\text{SUSY}} < t_{k+1}$
- Above t_{SUSY} we use b_s, the SUSY slopes; below t_{SUSY} we use b_0 the slopes without SUSY
- The matrix of slopes above change to

$$B_s = \begin{pmatrix}
1 & (b_0)^3 & \cdots & (b_0)^{3k} & (b_s)^3 & (b_s)^3_{k+1} & \cdots & (b_s)^3_{m} \\
1 & (b_0)^2 & \cdots & (b_0)^{2k} & (b_s)^2 & (b_s)^2_{k+1} & \cdots & (b_s)^2_{m} \\
1 & (b_0)^1 & \cdots & (b_0)^{1k} & (b_s)^1 & (b_s)^1_{k+1} & \cdots & (b_s)^1_{m}
\end{pmatrix}$$

- And the scales

$$\Delta t = \begin{pmatrix}
\alpha_{\text{GUT}} & \Delta t_1 & \cdots & \Delta t_k & \Delta t_{\text{SUSY}} & \Delta t_{k+1} & \cdots & \Delta t_m
\end{pmatrix}^T$$
Abelian breaking
Abelian breaking

- There are cases where there is abelian breaking

\[U(1)_A \otimes U(1)_B \rightarrow U(1)_C \]
Abelian breaking

- There are cases where there is abelian breaking
 \[U(1)_A \otimes U(1)_B \rightarrow U(1)_C \]
- Charge and gauge coupling
 \[\alpha^{-1}_C = r_A^2 \alpha^{-1}_A + r_B^2 \alpha^{-1}_B, \quad Q^j_C = r_B Q^j_A - r_A Q^j_B \]
Abelian breaking

- There are cases where there is abelian breaking
 \[U(1)_A \otimes U(1)_B \rightarrow U(1)_C \]
- Charge and gauge coupling
 \[\alpha_C^{-1} = r_A^2 \alpha_A^{-1} + r_B^2 \alpha_B^{-1}, \quad Q^j_C = r_B Q^j_A - r_A Q^j_B \]
- The \(U(1)_Y \) coupling is calculated
 \[\alpha_1^{-1} = \alpha_{GUT}^{-1} + r_A^2 \sum_{j=\text{mix}+1}^m b_{jA}^1 \Delta t_j + r_B^2 \sum_{j=\text{mix}+1}^m b_{jB}^1 \Delta t_j + \sum_{j=1}^{\text{mix}} b_j^C \Delta t_j, \]
Abelian breaking

- There are cases where there is abelian breaking
 \[U(1)_A \otimes U(1)_B \rightarrow U(1)_C \]
- Charge and gauge coupling
 \[\alpha_C^{-1} = r_A^2 \alpha_A^{-1} + r_B^2 \alpha_B^{-1}, \quad Q_C^j = r_B Q_A^j - r_A Q_B^j \]
- The \(U(1)_Y \) coupling is calculated
 \[\alpha_1^{-1} = \alpha_{GUT}^{-1} + r_A^2 \sum_{j=\text{mix}+1}^m b_j^{1A} \Delta t_j + r_B^2 \sum_{j=\text{mix}+1}^m b_j^{1B} \Delta t_j + \sum_{j=1}^{\text{mix}} b_j^{C} \Delta t_j, \]
- The matrix of slopes changes
 \[B_{\text{mix}} = r_A^2 B_A + r_B^2 B_B + B_C \]
Outline

1 Motivation

2 Overview of GUTs

3 Model Building

4 Results

5 Outlook
Results

Left-Right symmetric model
Results

Left-Right symmetric model

- Model at M_{GUT}: group, chain and reps
Results

Left-Right symmetric model

- Model at M_{GUT}: group, chain and reps
- Group: $SO(10)$
Results

Left-Right symmetric model

- Model at M_{GUT}: group, chain and reps
- Group: $SO(10)$
- Breaking chain:

\[
SO(10) \downarrow
\]

\[
SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \downarrow
\]

\[
SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
\]
Results

Left-Right symmetric model

- Model at M_{GUT}: group, chain and reps
- Group: $SO(10)$
- Breaking chain:

\[
SO(10) \\
\downarrow \\
SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \\
\downarrow \\
SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
\]

- Set of representations

\[\mathcal{R}_i = \{16^3_F, 10, 45^2, 126, \overline{126}\}\]
Results

Representations at the intermediate scale M_{LR}

The number of possible combinations is

$$N = 2^n$$

We constrain to have up to 5 reps at M_{LR}.
Results

Representations at the intermediate scale M_{LR}

- Decomposition of scalar reps R_i

\[10 \rightarrow \{3, 1, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{1, 2, 2, 0\}, \]
\[45 \rightarrow \{3, 2, 2, \frac{1}{2}\} \oplus \{\bar{3}, 2, 2, -\frac{1}{2}\} \oplus \{8, 1, 1, 0\} \oplus \{\bar{3}, 1, 1, 1\} \oplus \{1, 3, 1, 0\} \]
\[\oplus \{3, 1, 1, -1\} \oplus \{1, 1, 3, 0\} \oplus \{1, 1, 1, 0\}, \]
\[126 \rightarrow \{8, 2, 2, 0\} \oplus \{6, 3, 1, -\frac{1}{2}\} \oplus \{\bar{6}, 1, 3, \frac{1}{2}\} \oplus \{\bar{3}, 2, 2, 1\} \oplus \{3, 2, 2, -1\} \]
\[\oplus \{3, 3, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 3, -\frac{1}{2}\} \oplus \{1, 2, 2, 0\} \oplus \{3, 1, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \]
\[\oplus \{1, 3, 1, \frac{3}{2}\} \oplus \{1, 1, 3, -\frac{3}{2}\}, \]
\[\bar{126} \rightarrow \{8, 2, 2, 0\} \oplus \{\bar{6}, 3, 1, \frac{1}{2}\} \oplus \{6, 1, 3, -\frac{1}{2}\} \oplus \{3, 2, 2, -1\} \oplus \{\bar{3}, 2, 2, 1\} \]
\[\oplus \{\bar{3}, 3, 1, -\frac{1}{2}\} \oplus \{3, 1, 3, \frac{1}{2}\} \oplus \{1, 2, 2, 0\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{3, 1, 1, \frac{1}{2}\} \]
\[\oplus \{1, 3, 1, -\frac{3}{2}\} \oplus \{1, 1, 3, \frac{3}{2}\} \]
Results

Representations at the intermediate scale M_{LR}

- Decomposition of scalar reps \mathcal{R}_i:

\[
10 \rightarrow \{3, 1, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{1, 2, 2, 0\},
\]
\[
45 \rightarrow \{3, 2, 2, \frac{1}{2}\} \oplus \{\bar{3}, 2, 2, -\frac{1}{2}\} \oplus \{8, 1, 1, 0\} \oplus \{\bar{3}, 1, 1, 1\} \oplus \{1, 3, 1, 0\}
\]
\[
\quad \oplus \{3, 1, 1, -1\} \oplus \{1, 1, 3, 0\} \oplus \{1, 1, 1, 0\},
\]
\[
126 \rightarrow \{8, 2, 2, 0\} \oplus \{6, 3, 1, -\frac{1}{2}\} \oplus \{\bar{6}, 1, 3, \frac{1}{2}\} \oplus \{\bar{3}, 2, 2, 1\} \oplus \{3, 2, 2, -1\}
\]
\[
\quad \oplus \{3, 3, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 3, -\frac{1}{2}\} \oplus \{1, 2, 2, 0\} \oplus \{3, 1, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\}
\]
\[
\quad \oplus \{1, 3, 1, \frac{3}{2}\} \oplus \{1, 1, 3, -\frac{3}{2}\},
\]
\[
\bar{126} \rightarrow \{8, 2, 2, 0\} \oplus \{\bar{6}, 3, 1, \frac{1}{2}\} \oplus \{6, 1, 3, -\frac{1}{2}\} \oplus \{3, 2, 2, -1\} \oplus \{\bar{3}, 2, 2, 1\}
\]
\[
\quad \oplus \{\bar{3}, 3, 1, -\frac{1}{2}\} \oplus \{3, 1, 3, \frac{1}{2}\} \oplus \{1, 2, 2, 0\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{3, 1, 1, \frac{1}{2}\}
\]
\[
\quad \oplus \{1, 3, 1, -\frac{3}{2}\} \oplus \{1, 1, 3, \frac{3}{2}\}
\]

- The number of possible combinations is $N = 2^n = 10^{10}$
Results

Representations at the intermediate scale M_{LR}

- Decomposition of scalar reps \mathcal{R}_i:

\[
\begin{align*}
10 & \rightarrow \{3, 1, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{1, 2, 2, 0\}, \\
45 & \rightarrow \{3, 2, 2, \frac{1}{2}\} \oplus \{\bar{3}, 2, 2, -\frac{1}{2}\} \oplus \{8, 1, 1, 0\} \oplus \{\bar{3}, 1, 1, 1\} \oplus \{1, 3, 1, 0\} \oplus \{3, 1, 1, -1\} \oplus \{1, 1, 3, 0\} \oplus \{1, 1, 1, 0\}, \\
126 & \rightarrow \{8, 2, 2, 0\} \oplus \{6, 3, 1, -\frac{1}{2}\} \oplus \{\bar{6}, 1, 3, \frac{1}{2}\} \oplus \{\bar{3}, 2, 2, 1\} \oplus \{3, 2, 2, -1\} \oplus \{3, 3, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 3, -\frac{1}{2}\} \oplus \{1, 2, 2, 0\} \oplus \{3, 1, 1, \frac{1}{2}\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{1, 3, 1, \frac{3}{2}\} \oplus \{1, 1, 3, -\frac{3}{2}\}, \\
\bar{126} & \rightarrow \{8, 2, 2, 0\} \oplus \{\bar{6}, 3, 1, \frac{1}{2}\} \oplus \{6, 1, 3, -\frac{1}{2}\} \oplus \{3, 2, 2, -1\} \oplus \{\bar{3}, 2, 2, 1\} \oplus \{\bar{3}, 3, 1, -\frac{1}{2}\} \oplus \{3, 1, 3, \frac{1}{2}\} \oplus \{1, 2, 2, 0\} \oplus \{\bar{3}, 1, 1, -\frac{1}{2}\} \oplus \{3, 1, 1, \frac{1}{2}\} \oplus \{1, 3, 1, -\frac{3}{2}\} \oplus \{1, 1, 3, \frac{3}{2}\}
\end{align*}
\]

- The number of possible combinations is $N = 2^n = 10^{10}$
- We constrain to have up to 5 reps at M_{LR}, $N \sim 4 \times 10^5$
Results

Phenomenological Constraints

- Reduce the number of models by imposing some phenomenological constraints

T. Gonzalo (UCL) Model Building in GUTs UiO, 02/09/15 31 / 39
Results

Phenomenological Constraints

- Reduce the number of models by imposing some phenomenological constraints
- Proton decay, current Super-K and projected Hyper-K limits
Results

Phenomenological Constraints

- Reduce the number of models by imposing some phenomenological constraints
- Proton decay, current Super-K and projected Hyper-K limits
- SUSY searches, approximate average exclusion limit from LHC Run I and projected limit for Run II
Results

Phenomenological Constraints

- Reduce the number of models by imposing some phenomenological constraints
- Proton decay, current Super-K and projected Hyper-K limits
- SUSY searches, approximate average exclusion limit from LHC Run I and projected limit for Run II
- Left-right models predict W_R at M_{LR}, constraints from CMS and ATLAS searches
Results

Phenomenological Constraints

- Reduce the number of models by imposing some phenomenological constraints
- Proton decay, current Super-K and projected Hyper-K limits
- SUSY searches, approximate average exclusion limit from LHC Run I and projected limit for Run II
- Left-right models predict W_R at M_{LR}, constraints from CMS and ATLAS searches

<table>
<thead>
<tr>
<th></th>
<th>$\tau_p(p \rightarrow e^+ \pi^0)$</th>
<th>M_{SUSY}</th>
<th>M_{LR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>1.29×10^{34} y</td>
<td>1 TeV</td>
<td>1 TeV</td>
</tr>
<tr>
<td>Future</td>
<td>1.3×10^{35} y</td>
<td>10 TeV</td>
<td>10 TeV</td>
</tr>
</tbody>
</table>
Results

Example model

Representations at M_{LR} and M_{SM} scale:

$$
R_{M_{LR}} = \{1, 3, 1, 0\} \oplus \{1, 1, 3, 49\} \oplus \{1, 2, 2, 0\} \oplus \{1, 1, 3, -49\}$$

$$
R_{M_{SM}} = \{1, 2, 1, 2\} \oplus \{1, 2, -1, 2\}
$$

RGE running for $M_{SUSY} = 10^4$ GeV

The other scales M_{GUT} and M_{LR} depend on M_{SUSY}

We obtain the limits for the scales
Example model

- Representations at M_{LR} and SM scale

$$\{\mathcal{R}\}_{LR} = \left\{\{1,3,1,0\} \oplus \{1,1,3,\frac{49}{40}\} \oplus \{1,2,2,0\} \oplus \{1,1,3,-\frac{49}{40}\}\right\}$$

$$\{\mathcal{R}\}_{SM} = \left\{\{1,2,\frac{1}{2}\} \oplus \{1,2,-\frac{1}{2}\}\right\},$$
Results

Example model

- Representations at M_{LR} and SM scale

$$\{\mathcal{R}\}_{LR} = \{\{1, 3, 1, 0\} \oplus \{1, 1, 3, \frac{49}{40}\} \oplus \{1, 2, 2, 0\} \oplus \{1, 1, 3, -\frac{49}{40}\}\}$$

$$\{\mathcal{R}\}_{SM} = \{\{1, 2, \frac{1}{2}\} \oplus \{1, 2, -\frac{1}{2}\}\}$$,

- RGE running for $M_{SUSY} = 10^4$ GeV
Results

Example model

- Representations at M_{LR} and SM scale

\[
\{\mathcal{R}\}_{LR} = \{\{1, 3, 1, 0\} \oplus \{1, 1, 3, \frac{49}{40}\} \oplus \{1, 2, 2, 0\} \oplus \{1, 1, 3, -\frac{49}{40}\}\}
\]
\[
\{\mathcal{R}\}_{SM} = \{\{1, 2, \frac{1}{2}\} \oplus \{1, 2, -\frac{1}{2}\}\},
\]

- RGE running for $M_{SUSY} = 10^4$ GeV

- The other scales M_{GUT} and M_{LR} depend on M_{SUSY}
Results

Example model

- Representations at M_{LR} and SM scale

\[
\{R\}_{LR} = \{\{1,3,1,0\} \oplus \{1,1,3,\frac{49}{40}\} \oplus \{1,2,2,0\} \oplus \{1,1,3,-\frac{49}{40}\}\}
\]
\[
\{R\}_{SM} = \{\{1,2,\frac{1}{2}\} \oplus \{1,2,-\frac{1}{2}\}\}
\]

- RGE running for $M_{SUSY} = 10^4$ GeV

- The other scales M_{GUT} and M_{LR} depend on M_{SUSY}

- We obtain the limits for the scales

\[
M_{SUSY} \in \{1.0 \times 10^3, 3.48 \times 10^4\}
\]
\[
\cup \{2.29 \times 10^{15}, 3.27 \times 10^{15}\},
\]
\[
M_{LR} \in \{8.03 \times 10^{13}, 2.79 \times 10^{15}\}
\]
\[
\cup \{1.26 \times 10^{10}, 1.32 \times 10^{10}\},
\]
\[
M_{GUT} \in \{3.78 \times 10^{15}, 1.24 \times 10^{16}\}
\]
\[
\cup \{3.01 \times 10^{15}, 3.28 \times 10^{15}\},
\]
Results

Distribution of models
Results

Distribution of models

- Without constraints
Results

Distribution of models

- Without constraints

- Current experimental constraints
Results

Distribution of models

- Without constraints

- Current experimental constraints

- Future experimental constraints
Results

Correlation between M_{LR} and M_{SUSY}

<table>
<thead>
<tr>
<th>M_{LR} (GeV)</th>
<th>M_{SUSY} (GeV)</th>
<th>N_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
<td>16</td>
</tr>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>32</td>
</tr>
<tr>
<td>10^8</td>
<td>10^8</td>
<td>48</td>
</tr>
<tr>
<td>10^{10}</td>
<td>10^{10}</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{LR} (GeV)</th>
<th>M_{SUSY} (GeV)</th>
<th>N_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
<td>160</td>
</tr>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>330</td>
</tr>
<tr>
<td>10^8</td>
<td>10^8</td>
<td>490</td>
</tr>
<tr>
<td>10^{10}</td>
<td>10^{10}</td>
<td>650</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{LR} (GeV)</th>
<th>M_{SUSY} (GeV)</th>
<th>N_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
<td>500</td>
</tr>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>900</td>
</tr>
<tr>
<td>10^8</td>
<td>10^8</td>
<td>1400</td>
</tr>
<tr>
<td>10^{10}</td>
<td>10^{10}</td>
<td>1900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{LR} (GeV)</th>
<th>M_{SUSY} (GeV)</th>
<th>N_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
<td>90</td>
</tr>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>190</td>
</tr>
<tr>
<td>10^8</td>
<td>10^8</td>
<td>280</td>
</tr>
<tr>
<td>10^{10}</td>
<td>10^{10}</td>
<td>370</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{LR} (GeV)</th>
<th>M_{SUSY} (GeV)</th>
<th>N_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
<td>200</td>
</tr>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>300</td>
</tr>
<tr>
<td>10^8</td>
<td>10^8</td>
<td>500</td>
</tr>
<tr>
<td>10^{10}</td>
<td>10^{10}</td>
<td>700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{LR} (GeV)</th>
<th>M_{SUSY} (GeV)</th>
<th>N_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^2</td>
<td>0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
<td>200</td>
</tr>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>300</td>
</tr>
<tr>
<td>10^8</td>
<td>10^8</td>
<td>500</td>
</tr>
<tr>
<td>10^{10}</td>
<td>10^{10}</td>
<td>800</td>
</tr>
</tbody>
</table>
Results

Correlation between M_{LR} and M_{SUSY}
Results

Correlation between M_{LR} and M_{SUSY}
Outline

1 Motivation

2 Overview of GUTs

3 Model Building

4 Results

5 Outlook
Outlook

So far ...
Outlook

So far . . .

- Automated framework for GUT model building
Outlook

So far . . .

- Automated framework for GUT model building
- Using only group theory structure we have generated a large amount of models, satisfying theory constraints and gauge coupling unification
Outlook

So far . . .

- Automated framework for GUT model building
- Using only group theory structure we have generated a large amount of models, satisfying theory constraints and gauge coupling unification
- Tested for a sample left-right symmetric models
Outlook

So far . . .

- Automated framework for GUT model building
- Using only group theory structure we have generated a large amount of models, satisfying theory constraints and gauge coupling unification
- Tested for a sample left-right symmetric models
- We have found that SUSY can exist at any scale
Outlook

So far . . .

- Automated framework for GUT model building
- Using only group theory structure we have generated a large amount of models, satisfying theory constraints and gauge coupling unification
- Tested for a sample left-right symmetric models
- We have found that SUSY can exist at any scale
- There is a correlation between SUSY and LR scale
Outlook

Models generated with this tool can be used for other analysis
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

$$SO(10) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

\[
SO(10) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
\]

- Effect of $SO(10)$ D-terms in SUSY spectrum
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

$$SO(10) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

- Effect of $SO(10)$ D-terms in SUSY spectrum
- Compressed and split SUSY scenarios

Sneutrino and singlet as the inflatons

- Consistent with results of Planck and BICEP2 for inflation
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

\[SO(10) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \]

- Effect of $SO(10)$ D-terms in SUSY spectrum
- Compressed and split SUSY scenarios

- Inflationary analysis: flipped $SU(5) \otimes U(1)$ hybrid inflation

 J.Ellis, T.G., J.Harz and W.-C.Huang, JCAP 1503,039 (2015)
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

\[
SO(10) \to SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
\]

- Effect of $SO(10)$ D-terms in SUSY spectrum
- Compressed and split SUSY scenarios

- Inflationary analysis: flipped $SU(5) \otimes U(1)$ hybrid inflation

 J. Ellis, T.G., J. Harz and W.-C. Huang, JCAP 1503, 039 (2015)

\[
SO(10) \to SU(5) \otimes U(1) \to SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
\]
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

\[SO(10) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \]

- Effect of $SO(10)$ D-terms in SUSY spectrum
- Compressed and split SUSY scenarios

- Inflationary analysis: flipped $SU(5) \otimes U(1)$ hybrid inflation

 J.Ellis, T.G., J.Harz and W.-C.Huang, JCAP 1503, 039 (2015)

\[SO(10) \rightarrow SU(5) \otimes U(1) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \]

- Sneutrino and singlet as the inflatons
Outlook

Models generated with this tool can be used for other analysis

- Phenomenological analysis: minimal SUSY $SO(10)$

\[SO(10) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \]

 ★ Effect of $SO(10)$ D-terms in SUSY spectrum
 ★ Compressed and split SUSY scenarios

- Inflationary analysis: flipped $SU(5) \otimes U(1)$ hybrid inflation

 J.Ellis, T.G., J.Harz and W.-C.Huang, JCAP 1503,039 (2015)

\[SO(10) \rightarrow SU(5) \otimes U(1) \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \]

 ★ Sneutrino and singlet as the inflatons
 ★ Consistent with results of Planck and BICEP2 for inflation
What now

Same analysis for other chains (not LR)

SO → PS → LR → SM

Extend phenomenological analysis including other observables (flavour?)

Include treatment of other symmetries, e.g. discrete symmetries

Better treatment of symmetry breaking, scalar potentials

Extend to larger groups, E_6, $SO(12), \ldots$

Create Lagrangians, RGEs, etc

Link with other tools, GAMBIT
Outlook

What now

- Same analysis for other chains (not LR)
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]

- Extend phenomenological analysis including other observables (flavour?)
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]

- Extend phenomenological analysis including other observables (flavour?)
- Include treatment of other symmetries, e.g. discrete symmetries
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]

- Extend phenomenological analysis including other observables (flavour?)
- Include treatment of other symmetries, e.g. discrete symmetries
- Better treatment of symmetry breaking, scalar potentials
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]

- Extend phenomenological analysis including other observables (flavour?)
- Include treatment of other symmetries, e.g. discrete symmetries
- Better treatment of symmetry breaking, scalar potentials
- Extend to larger groups, \(E_6, SO(12), \ldots \)
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]

- Extend phenomenological analysis including other observables (flavour?)
- Include treatment of other symmetries, e.g. discrete symmetries
- Better treatment of symmetry breaking, scalar potentials
- Extend to larger groups, \(E_6, SO(12), \ldots \)
- Create Lagrangians, RGEs, etc
Outlook

What now

- Same analysis for other chains (not LR)

\[SO(10) \rightarrow PS \rightarrow LR \rightarrow SM \]

- Extend phenomenological analysis including other observables (flavour?)
- Include treatment of other symmetries, e.g. discrete symmetries
- Better treatment of symmetry breaking, scalar potentials
- Extend to larger groups, \(E_6, SO(12), \ldots \)
- Create Lagrangians, RGEs, etc
- Link with other tools, GAMBIT
Thank you!