A Boost for Dark Matter Searches

Joachim Kopp (University of Mainz / PRISMA Cluster of Excellence)

University of Oslo Theory Seminar, November 11, 2015

Based on work done in collaboration with Aalte Buschmann, Jia Liu, Pedro Machado, Xiaoping Wanc arXiv:1503.02669, arXiv:1505.07459

JGU

PRISMA

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Boosted Dark Matter Scattering in IceCube

Boosted Dark Matter Scattering in IceCube

IceCube results

Track event (mostly ν_{μ})

19

•

Shower event (ν_e , ν_{τ})

Joachim Kopp

IceCube results (2)

Significant excess of events & 30 TeV Spatially uniform within uncertainties

IceCube Collaboration, arXiv:1405.5303 and ICRC 2015 talk by Claudia Kopper

Conventional interpretation:

Astrophysical neutrinos from unknown sources.

IceCube results (3)

Flavor ratios: more shower events (not significant yet)

Bump in the southern sky

IceCube Collaboration, arXiv:1502.03376, arXiv:1410.1749

This talk: Alternative explanation in terms of boosted dark matter

Boosted dark matter Lagrangian

New particles:

- ϕ ... Main component of DM [$\mathcal{O}(\text{PeV})$]
- χ ... DM decay product [$\mathcal{O}(10 \text{ GeV})$]
- a... Pseudoscalar mediator [$\mathcal{O}(10 \text{ GeV})$] of DM–SM interactions

$$\mathcal{L} \supset -\mathbf{y}_{\phi\chi}\phi\bar{\chi}\chi + ig_{\chi}a\bar{\chi}\gamma^{5}\chi + i\sum_{f}g_{Y_{f}}\frac{\sqrt{2}m_{f}}{v}a\bar{f}\gamma^{5}f$$

Phenomenology:

IceCube signals

IceCube fit

Joachim Kopp

Relic density

Several mechanisms to generate correct relic density for PeV-scale DM:

Harigaya Kawasaki Mukaida Yamada, arXiv:1402.2846

- Cascade decays of the inflaton
- Inelastic scattering of high-*E* particles from inflaton decay on low-*T* plasma.
- Thermal production and freeze-out during reheating, dilution as inflatons continue to decay after DM freeze-out.

What about the light DM species χ ?

• Thermalization and freeze-out in the early Universe

Abundance naturally comparable to abundance of heavy DM ϕ

A Hooperon

Light DM particles χ can annihilate in the galactice center.

For $m_{\chi} \sim 30$ GeV, and couplings

dominant annihilation mode is $\bar{\chi}\chi \rightarrow b\bar{b}$.

 χ could thus explain the galactic center gamma ray excess.

Goodenough Hooper arXiv:0910.2998; Hooper Goodenough arXiv:1010.2752 Daylan Finkbeiner Hooper Linden Portillo Rodd Slatyer arXiv:1402.6703

Diffuse gamma ray flux

Diffuse γ ray flux from 3-body decays $\phi \rightarrow \overline{\chi} \chi a \dots OK$.

Direct detection

Constraints very weak due to pseudoscalar mediator $a \rightarrow$ velocity-suppression

Collider limits

3 UV completions of boosted DM model:

MSSM-like	Flipped	Vector quark	
a mixes with A ⁰ in type-II 2HDM	<i>a</i> mixes with <i>A</i> ⁰ in flipped 2HDM	a couples to new vector-like quarks, mixed with SM quarks	

- K and B meson decays to pseudoscalar a
 - kinematically forbidden for m_a & 10 GeV

• $B_s \rightarrow \mu^+ \mu^-$

- avoided for sufficiently heavy ma
- Weakened in Flipped model
- Absent in Vector quark model
- *h* → aa
 - avoided for sufficiently heavy ma
 - Absent in Vector quark model

Lepton Jets from Radiating Dark Matter

Dark Matter Production at the LHC

Traditional DM searches: initial state radiation

DM pair production (invisible @ LHC)

Monojet

Monophoton

This talk: final state radiation

Model Framework: Self-Interacting DM

Dark Sector Lagrangian

$$\mathcal{L}_{\text{dark}} \equiv \bar{\chi} (i \partial \!\!\!/ - m_{\chi} + i g_{A'} A') \chi - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} ,$$

Mediator Sector

$$\mathcal{L}_{Z'} \equiv g_q \sum_f \bar{q}_f \mathbf{Z}' q_f + g_\chi \, \bar{\chi} \mathbf{Z}' \chi \,,$$

Dark Radiation Showers — Semi-Analytical Results

Notation, notation, notation, ...

- Incoming (off-shell) DM particle: $p_{\chi,in} = (E, 0, 0, p)$
- Outgoing DM particle: $p_{\chi,out} = (\mathbf{x}E, -k_t, \mathbf{0}, \sqrt{\mathbf{x}^2 E^2 k_t^2 m_{\chi}^2})$
- Outgoing dark photon: $k = ((1 x)E, k_t, 0, \sqrt{(1 x)^2 E^2 k_t^2 m_{A'}^2})$
- Virtuality: $t \equiv (p_{\chi,out} + k)^2 m_{\chi}^2$

Probability for a collinear splitting:

$$\frac{\alpha_{A'}}{2\pi} dx \, \frac{dt}{t} P_{\chi \to \chi}(x, t)$$

with the splitting kernel

$$P_{\chi \to \chi}(x,t) = \frac{1+x^2}{1-x} - \frac{2(m_{\chi}^2 + m_{A'}^2)}{t}$$

Dark Radiation Showers — Semi-Analytical Results

Average number radiated dark photons

$$\langle n_{\mathcal{A}'}
angle \simeq rac{lpha_{\mathcal{A}'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \int_{t_{\min}}^{t_{\max}} rac{dt}{t} P_{\chi o \chi}(x) \, .$$

Splitting is a Poisson process.

• Probability for *m* splittings

$$p_m = \frac{e^{-\langle n_{A'} \rangle} \langle n_{A'} \rangle^n}{m!}$$

• Probability for no splitting (Sudakov factor)

$$\Delta \equiv \boldsymbol{p}_0 = \boldsymbol{e}^{-\langle \boldsymbol{n}_{A'} \rangle}$$

Dark Radiation — Energy Spectrum of DM Particles

Compute first the moments of the *E* spectrum $f_{\chi}(X \equiv E_{\chi}/E_0)$:

Events with one emission

$$p_{1}\langle X^{s} \rangle_{1A'} = e^{-\langle n_{A'} \rangle} \frac{\alpha_{A'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(x)$$
$$\equiv e^{-\langle n_{A'} \rangle} \langle n_{A'} \rangle \, \overline{X^{s}}$$

Events with two emissions

$$\begin{aligned} p_{2}\langle X^{s} \rangle_{2A'} &= e^{-\langle n_{A'} \rangle} \left(\frac{\alpha_{A'}}{2\pi} \right)^{2} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} \int_{x_{\min}}^{x_{\max}} dx' \, x'^{s} \int_{t_{\min}}^{t} \frac{dt'}{t'} P_{\chi \to \chi}(x) P_{\chi \to \chi}(x') \\ &\simeq e^{-\langle n_{A'} \rangle} \frac{1}{2!} \left(\frac{\alpha_{A'}}{2\pi} \right)^{2} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} \int_{x_{\min}}^{x_{\max}} dx' \, x'^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt'}{t'} P_{\chi \to \chi}(x) P_{\chi \to \chi}(x') \\ &= e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^{2}}{2!} \overline{\chi^{s}}^{2} \end{aligned}$$

Events with *m* emissions

$$\boldsymbol{\rho}_{m}\langle \boldsymbol{X}^{s}\rangle_{m\boldsymbol{A}'}=\boldsymbol{e}^{-\langle \boldsymbol{n}_{\boldsymbol{A}'}\rangle}\frac{\langle \boldsymbol{n}_{\boldsymbol{A}'}\rangle^{m}}{m!}\overline{\boldsymbol{X}^{s}}^{m}.$$

Dark Radiation — Energy Spectrum of DM Particles

Summing over all m

$$\varphi(s+1) \equiv \langle X^s \rangle = \sum_{m=0}^{\infty} p_m \langle X^s \rangle_{mA'} = e^{-\langle n_{A'} \rangle (1-\overline{X^s})}.$$

Mellin Transform

$$\mathcal{M}[f](s+1) \equiv \varphi(s+1) \equiv \int_0^\infty dX \, X^s f(X)$$

Inverse Mellin Transform

$$f(\boldsymbol{X}) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \, \boldsymbol{X}^{-s} \, \varphi(s)$$

Efficient numerical evaluation using Fast Fourier Transform (FFT)

Dark Radiation — Energy Spectrum of Dark Photons With $Z \equiv E_{A'}/E_0$:

$$p_m \langle Z^s \rangle_{mA'} = \frac{1}{\langle n_{A'} \rangle} e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^m}{m!} \overline{Z^s} \sum_{k=1}^m \overline{X^s}^{k-1}$$

with

$$\overline{Z^{s}} \equiv \frac{1}{\langle n_{A'} \rangle} \frac{\alpha_{A'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \, (1-x)^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(x) \, .$$

Therefore,

$$\varphi(s+1) \equiv \langle Z^s \rangle = \frac{\overline{Z^s}}{\langle n_{A'} \rangle} \frac{1 - e^{-\langle n_{A'} \rangle (1 - \overline{X^s})}}{1 - \overline{X^s}}.$$

Dark Radiation — Analytics vs. Numerics

Reasons for minor discrepancies:

- Assumption that integration limits are independent of x, t.
 - Energy loss in each splitting small
- Neglect of *t*-dependence in $P_{\chi \to \chi}(\mathbf{x})$

Dark Radiation — Analytics vs. Numerics

Reasons for minor discrepancies:

- Assumption that integration limits are independent of x, t.
 - Energy loss in each splitting small
- Neglect of *t*-dependence in $P_{\chi \to \chi}(\mathbf{x})$

Prompt Lepton Jets

For short A' lifetime:

- Consider only muonic lepton jets
 - other categories difficult to implement without full detector simulation
- Selection criteria
 - 1 muon with $p_T > 18 \text{ GeV}$
 - or 3 muons with $p_T > 6$ GeV
 - $|\eta| < 2.5$
 - Track in the inner detector
 - Small impact parameter $|d_0| < 1 \text{ mm}$

Displaced Lepton Jets

For long *A*' lifetime:

- Type 0 ("muonic") LJ
 - \geq 2 muons (and no calorimeter jets) within $\Delta R = 0.5$.
- Type 1 ("mixed") LJ
 - 2 1 muon + exactly 1 calorimeter jet
- Type 2 ("calorimeter") LJ
 - All other calorimeter jets with small EM fraction
 - Includes $A' \rightarrow ee$ with large displacement
 - Includes hadronic A' decay modes

Detector	${\it A}' ightarrow {\it e}^+ {\it e}^-$		${\it A}' ightarrow \mu^+ \mu^-$		$A^\prime ightarrow \pi^+\pi^-/K^+K^-$	
LJ type	2 (calorimeter)		0 (muonic)		2 (calorimeter)	
ID	track		track		track	
ECAL	EM fraction		Х	Х		
HCAL	X		Х	X		
-	Detector	A' ightarrow c	$\pi^+\pi^-\pi^0$	Α'	$ ightarrow K^0_L K^0_S$	-
-	LJ type	2 (calo	rimeter)	2 (ca	alorimeter)	-
-	ID	track			(X)	-
	ECAL	EM fi	raction		(\times)	
	HCAL		Х		Х	

Phenomenological Results

- Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
- Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
- Conservative projections for 13 TeV
 - Type-0 (muonic lepton jets only) cannot estimate multijet background

Phenomenological Results

- Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
- Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
- Conservative projections for 13 TeV
 - Type-0 (muonic lepton jets only) cannot estimate multijet background

Summary

Summary

Boosted DM in IceCube explains:

- Energy spectrum of high-E events
- Morphology

- S (Possible dip at several 100 GeV) (Prediction: larger signal from the GC)
- Flavor ratio (Prediction: more shower-like at PeV, SM-like at lower *E*)
- Galactic Center gamma ray excess (Hooperon)

Boosted DM at the LHC:

- Dark radiation showers leading to lepton jets
- Beautiful analytical formalism
- Significant discovery reach

Malte Buschmann

Xiaoping Wang

Joachim Kopp

Thank you!

