Nonlinear Cosmological Probes of Screening Mechanisms in Modified Gravity

David F. Mota

Institute of Theoretical Astrophysics
University of Oslo

General Relativity: One field

Modified Gravity: Extra degrees of freedom

• Gravity may be mediated by a tensor field $\bar{g}_{\mu\nu}$, and/or a vector field A_{μ} , and/or a scalar field ϕ

Spacetime geometry may be a combination of all:

$$g_{\mu\nu} = e^{-2\phi} (\tilde{g}_{\mu\nu} + A_{\mu}A_{\nu}) - e^{2\phi}A_{\mu}A_{\nu}.$$

Scalar-Tensor Theories Extra scalar degree of freedom (fifth force)

Extremely tight constraints on Modified Gravity at small scales and "strong" gravitational fields!

Extremely <u>loose</u> constraints on Modified Gravity at large scales and "weak" gravitational fields!

Modified Gravity as Dark Energy

$$\int dx^4 \sqrt{g} \left[f(R) + L_{matter} \right]$$

$$\int dx^4 \sqrt{g} \left(R + \left(R^2 + R^3 + \ldots \right) \right)$$

- \checkmark f(R) models are simple
- ✓ easy to produce acceleration (first inflationary model)
- ✓ high-energy corrections to gravity likely to introduce higher-order terms
- ✓ particular case of scalar-tensor and extra-dimensional theory

$$\mathcal{L}_{ModGrav} = R - \left(\alpha \frac{1}{R} \right) - \text{Negative Pressure!}$$

High-Z Supernovae Search Team

Large Scale Structure Formation: deviations from GR must be small

$$\mathcal{L}_{ModGrav} = R - \alpha R^{\beta}$$

Supernovae + Large Scale Structures + CMBR + Baryon Oscillations

How to Modify Gravity and evade constraints?

Screening Mechanisms!

Screening mechanisms key elements

$$S = \int dx^4 \sqrt{-g} \left[\frac{R}{2} M_{\rm pl}^2 - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_m(A^2(\phi) g_{\mu\nu}, \psi_i)$$

Scalar bosons produce Yukawa potential: $\Psi(r) = -\frac{GM}{(1+\alpha)}(1+\alpha)e^{-r(\lambda)}$

$$\Psi(r) = -\frac{GM}{r} (1 + \alpha e^{-r/\lambda})$$
coupling
range

$\alpha \sim \mathcal{O}(1) \Rightarrow \lambda \sim 0.1 mm$

If extra scalar for gravity, then:
Either coupling becomes very small in Solar System or...

the range becomes very short in Solar System

scale dependent coupling/range!

Range of Fifth Force on Scalar-Tensor Gravity

$$\Psi(r) = -\frac{GM}{r} (1 + \alpha e^{-r/\lambda}) \qquad \text{range}$$

$$S = \int dx^4 \sqrt{-g} \left[\frac{R}{2} M_{\rm pl}^2 - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_m(A^2(\phi) g_{\mu\nu}, \psi_i)$$

$$\Box \varphi = \frac{dV_{\text{eff}}}{d\varphi}$$

$$V_{eff}(\phi) = V + \rho e^{\alpha \phi / M_{pl}}$$

$$m_{m{\phi}} = \sqrt{V_{eff}^{''}(\phi_c)}$$

Chameleon Screening: range of fifth force depends on local density

$$S = \int dx^4 \sqrt{-g} \left[\frac{R}{2} M_{\rm pl}^2 - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_m(A^2(\phi) g_{\mu\nu}, \psi_i)$$

Nonlinear mass/range

$$V_{eff}(\phi) = V + \rho e^{\alpha \phi / M_{pl}}$$

$$\lambda_{\text{Fifth}} = \left(\frac{\mathrm{d}^2 V_{\text{eff}}}{\mathrm{d}\varphi^2}\big|_{\min}\right)^{-1/2}$$

Chameleon mechanism

Range of dark force depends on local environment (Khoury & Weltman 2004)

Symmetron Screening: coupling of fifth force depends on local density

$$S = \int dx^4 \sqrt{-g} \left[\frac{R}{2} M_{\rm pl}^2 - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] + S_m(A^2(\phi) g_{\mu\nu}, \psi_i)$$

Nonlinear coupling

$$\Psi(r) = -\frac{GM}{r} (1 + \alpha e^{-r/\lambda})$$

$$A(\phi) = 1 + \frac{1}{2M^2}\phi^2$$

coupling

$$A(\phi) = 1$$

$V_{\text{eff}}(\phi) = \frac{1}{2} \left(\frac{\rho}{M^2} - \mu^2 \right) \phi^2 + \frac{1}{4} \lambda \phi^4$

$V_{ m eff}(\phi)$

coupled!

$$A(\phi) = 1 + \frac{1}{2M^2}\phi_{\text{\tiny MW}}^2$$

Symmetron mechanism Strength of dark force depends on local environment (Hinterbicheler & Khoury 2010)

Structure formation probes deviations from GR

Structure formation dependence on coupling and range

$$\frac{G_{\text{eff}}(r)}{G} = 1 + 2\beta^2 e^{-r/\lambda_{\phi}}$$

$$\frac{G_{\rm eff}}{G} = \left\{ \begin{array}{ll} 1 & \mathbf{r} \gg \lambda_{\phi} \\ 1 + 2\beta^2 & \mathbf{r} \ll \lambda_{\phi} \end{array} \right.$$

Stronger coupling -> bigger deviations from LCDM Larger range -> large scale deviations from LCDM

Scales larger than Compton wavelength: recovers GR

Structure formation dependence on the screening scale

$$\frac{G_{ ext{eff}}}{G} = 1$$

Global observables are not ideal to distinguish Modified Gravity theories with or without Screenings

How to Probe Screening Mechanisms?

Mass measured via gravitational lensing

Conformal Invariance: photons not affected by Modified Gravity

Lensing Mass in (conformal) Modified Gravity same as GR

Mass measured via dynamics

$$M_{dyn}(r < R) \approx \frac{V_{rot}^2 R}{G} M_{\odot}$$

$$M_D = \frac{F_N + F_\phi}{a}$$

The mass inside an orbit can be found using the size of the orbit and the orbital speed. The arrows show the speeds for certain points on the **rotation curve** for this galaxy.

Modified Gravity enhances mass inferred via dynamical methods

Modified Gravity with Screening Mechanisms: Dynamical mass depends on position in environment

Dynamical mass differs from GR

Dynamical Mass depends on distance to high/low dense environment

Modified Gravity with Screening Mechanisms: Dynamical Mass depends on size of cluster

Dynamical Mass same as in GR

Dynamical Mass differs from GR

Dynamical Mass depends on size/density of cluster

Smoking gun for Screening Mechanisms

Lensing Mass vs. Environmental dependent Dynamical Mass

Lensing Mass same as in GR

 $\Delta_M \equiv \frac{M_D}{M_L} - 1$

Dynamical Mass depends on environment

$$GR: \Delta_M = 0$$

$$F(R): \Delta_M \in [0, \frac{1}{3}]$$

Chameleon/Symmetron:
$$\Delta_M \in [0, 2\beta^2]$$

$$\Delta_M \equiv \frac{M_D}{M_L} - 1$$

f(R) Max deviation

Winther, DFM, Li ApJ; Zhao, Li, Koyama 1011.1257;

$$\Delta_M \equiv \frac{M_D}{M_L} - 1$$

Fifth force not screened

$$\Delta_M \equiv \frac{M_D}{M_L} - 1$$

$$\Delta_M \equiv \frac{M_D}{M_L} - 1$$

Screened purely by environment

$$\Delta_M \equiv \frac{M_D}{M_L} - 1$$

Symmetron Unique Feature

Probing Symmetron Unique Signature

Global Power Spectra deviates in 0.2%
Local Power Spectra deviates in 1%

Summary: Probing Screened Modified Gravity

in laboratory

in the solar system

- + perfect to test EP violations, PPN, etc
- + Direct gravity experiments
- very limited time/space/energy scales
- only probes baryonic physics

at astrophysical scales

- + probe different Screening Mechanisms
- complicated non-linear/non-gravitational effects

at cosmological scales

- + unlimited scales
- + baryons, dark matter, dark energy
- + mostly linear processes
- Does not probe screening mechanisms