Late Kinetic Decoupling from Dark Matter - Dark Radiation Scattering

Håvard Tveit Ihle

May 18, 2016

Overview

- 1 Motivation
- 2 Equlibrium Thermodynamics
- 3 Out of Equilibrium
 - Chemical Decoupling
 - Kinetic Decoupling
- 4 Late Kinetic Decoupling
 - General Considerations
 - 2-Particle Models
 - 3-Particle Models

Håvard Tveit Ihle

Motivation

- Particle dark matter (DM) is a first step beyond the standard models of both particle physics and cosmology
- Small-scale problems in ACDM
- Dark acoustic oscillations can wash out structure on small scales. May address missing satellite problem
- SIDM can be relevant for other small-scale problems

Håvard Tveit Ihle

Equibrium Thermodynamics

- Universe expands and cools, $T \sim 1/a$
- $T \equiv T_{\gamma}$
- At high temperatures (possibly) all particles in thermal equilibrium
- Equilibrium as long as:

Interaction Rate Expansion Rate \gg

Н

Late Kinetic Decoupling

Back of the Envelope Estimates

$$\begin{aligned} &(\hbar = c = k_B = 1) \\ f_i^{\text{eq}}(p, T) = \frac{1}{e^{\frac{E_i(p)}{T}} \pm 1} \quad (\mu_i \approx 0) \\ &n_i^{\text{eq}}(T) \sim T^3 \qquad (\text{Relativistic}) \\ &\rho_i^{\text{eq}}(T) \sim T^4 \qquad (\text{Relativistic}) \\ &n_i^{\text{eq}}(T) \sim e^{-m_i/T} \qquad (\text{Non-Relativistic}) \\ &H \sim T^2/M_{Pl} \qquad (\text{Radiation Dominated}) \end{aligned}$$

Håvard Tveit Ihle

Late Kinetic Decoupling

Chemical and Kinetic equilibrium

Useful to decompose thermodynamic equilibrium into two parts, *chemical equilibrium* and *kinetic equilibrium*Chemical eq:

$$n_i = n_i^{eq}$$

Kinetic eq:

$$f_i = \kappa f_i^{eq}, \ (T_i = T^{eq})$$

 $(\kappa = n_i / n_i^{eq})$

Håvard Tveit Ihle

Late Kinetic Decoupling

Interaction Rate

Håvard Tveit Ihle

Late Kinetic Decoupling

Chemical Decoupling

Chemical Decoupling

Håvard Tveit Ihle

Late Kinetic Decoupling

Chemical Decoupling

Chemical Decoupling of Dark Matter

Figure 1: Processes that maintain chemical equilibrium

- $\tilde{\gamma} =$ Heat bath particle (SM or DR)
- Decoupling at $\Gamma_{ann} \sim H$

Håvard Tveit Ihle

Late Kinetic Decoupling 000000000000000

Kinetic Decoupling

Kinetic Decoupling

Håvard Tveit Ihle

Late Kinetic Decoupling

Kinetic Decoupling

Kinetic decoupling of DM

Figure 2: Processes that maintain kinetic equilibrium

- $\Gamma \approx v \sigma n_{\tilde{\gamma}}$
- Still relevant since $n_{\tilde{\gamma}} \gg n_{\chi}$
- Kinetic decoupling at $\Gamma \sim N_{coll} H$
- $N_{coll} \approx m_{\chi}/T$
 - Typical WIMP candidates: $T_{
 m kd} \sim {
 m MeV}$

Håvard Tveit Ihle

Late Kinetic Decoupling

Kinetic Decoupling

Structure formation in one slide

- Small initial overdensities of matter tend to grow
- Pressure counteracts this effect and tries to wash out overdensities
- Only overdensities on scales smaller than the horizon, l_h ~ 1/H can grow
- CDM \rightarrow no pressure \rightarrow maximal growth of overdensities

Håvard Tveit Ihle

Late Kinetic Decoupling

Kinetic Decoupling

Kinetic decoupling of DM

$$T_{\chi}\equiv rac{2}{3}\langle p_{\chi}^2/2m_{\chi}
angle$$

- Kinetic equilibrium $\rightarrow T_{\chi} = T$
- DM still interacts with $\tilde{\gamma}$. The resulting pressure washes out DM overdensities
- Decides the size of the smallest DM structures today

$$M_{\rm cut} \approx \frac{4\pi}{3} \frac{\rho_{\chi}(T_{\rm kd})}{H(T_{\rm kd})^3} \approx 7 \cdot 10^{10} M_{\odot} \left(\frac{T_{\rm kd}}{100 eV}\right)^{-3}$$

Håvard Tveit Ihle

Late Kinetic Decoupling

Kinetic Decoupling

Boltzmann Equation for Kinetic Decoupling

Multiply full BE with $p^2/2m_{\chi}$ and integrate over p to get BE for temperature:

$$\frac{dT_{\chi}}{dT} - 2\frac{T_{\chi}}{T} = \frac{\gamma(T)}{H(T)}(T_{\chi} - T)$$

Momentum transfer rate:

$$\gamma(T) = \frac{1}{48\pi^3 g_{\chi} m_{\chi}^3} \int d\omega f_{\tilde{\gamma}}(\omega, T) \partial_{\omega} (k^4 \langle |\mathcal{M}|^2 \rangle_t)$$

Håvard Tveit Ihle

Late Kinetic Decoupling

Kinetic Decoupling

Scattering Amplitude Squared

In the limit where $m_{\chi} \gg \omega \gg m_{\tilde{\gamma}}$ we can often approximate the amplitude

$$|\mathcal{M}|^2 \approx c_n \left(\frac{\omega}{m_\chi}\right)^n$$

For n > -1 we can then solve the BE analytically for T_{kd}

Håvard Tveit Ihle

Comparison of Rates

Late Kinetic Decoupling

Kinetic Decoupling

Important Caveat

- $T \not\propto 1/a$
- Photon bath heated by annihilating particles, as particles become non-relativistic
- If γ̃ is also decoupled (dark radiation), we generally expect T_{γ̃} ≠ T.
- We take this into account by introducing

$$T_{\tilde{\gamma}} = \xi T$$

Håvard Tveit Ihle

Late Kinetic Decoupling

Kinetic Decoupling

Important Caveat

Entropy conservation:

$$\frac{d}{dt}(s \ a^3) = 0 \rightarrow T \propto g_*^{-1/3}(T)/a$$

$$g_* = N_{\text{Bosons}}^{\text{rel.dof}} + 7/8 \times N_{\text{Fermions}}^{\text{rel.dof}}$$

$$\xi \equiv \left(\frac{g_{\text{ader}} g_*^{\text{visible}}}{g_*^{\text{dark}} g_*^{\text{visible}}}\right)^{1/3}$$
Example $T_{\nu} = \left(\frac{2}{2+4 \times 7/8}\right)^{1/3} T$

Håvard Tveit Ihle

Late Kinetic Decoupling

Late Kinetic Decoupling of Dark Matter

Håvard Tveit Ihle

Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter

Torsten Bringmann^{*}

Department of Physics, University of Oslo, Box 1048, N-0371 Oslo, Norway

Håvard Tveit Ihle Institute of Theoretical Astrophysics, University of Oslo, N-0315 Oslo, Norway

Jörn Kersten

University of Bergen, Institute for Physics and Technology, Postboks 7803, N-5020 Bergen, Norway

Parampreet Walia Department of Physics, University of Oslo, Box 1048, N-0371 Oslo, Norway

arXiv:1603.04884

Late Kinetic Decoupling

General Considerations

Goals for Model Building

- Classify "all" models that result in late kinetic decoupling ($T_{\rm kd} \sim {\rm keV}$)
- Include constraints on model properties:
 - Get correct relic density (at least not deplete the relic density) $\rightarrow \alpha/m_{\chi} \lesssim 10^{-5} \text{GeV}^{-1}$
 - $\tilde{\gamma} = \text{Extra radiation} \rightarrow \Delta N_{\text{eff}} \rightarrow \text{constraint}$ on ξ
 - Not too much self interaction, $\chi\chi \to \chi\chi$ (a little bit is good though!)

Håvard Tveit Ihle

Late Kinetic Decoupling

General Considerations

- In order to get a later kinetic decoupling we want to enhance the scattering amplitude
- One way to do this, is to put a virtual particle almost "on-shell"
- We do this in the *t*-channel or the s/u-channels

Håvard Tveit Ihle

Late Kinetic Decoupling

General Considerations

t-channel Enhancement

Håvard Tveit Ihle

Late Kinetic Decoupling

General Considerations

s/u-channel Enhancement

Håvard Tveit Ihle

Late Kinetic Decoupling

2-Particle Models

2-Particle models

Håvard Tveit Ihle

Late Kinetic Decoupling

2-Particle Models

Simplest Possible ModelTM

- Four point vertex with scalar χ and scalar $\tilde{\gamma}$
- *Can* result in late kinetic decoupling, but relic density depletion $\rightarrow m_{\chi} \lesssim 1$ MeV
- How small mass we need also depends strongly on $\xi = T_{\tilde{\gamma}}/T$

Håvard Tveit Ihle

Late Kinetic Decoupling

2-Particle Models

2-Particle Models in the s/u-channels

Håvard Tveit Ihle

2-Particle Models

Dark Gluons

- Fermion or scalar χ charged under SU(N) gauge symmetry
- $\tilde{\gamma} = \mathsf{dark} \ \mathsf{gluons}$
- Interesting model with $|\mathcal{M}|^2 \propto \left(m_\chi/\omega
 ight)^2$ (almost)
- Need small coupling α_N to avoid confinement etc.

Late Kinetic Decoupling

3-Particle Models

3-Particle models

Håvard Tveit Ihle

Late Kinetic Decoupling

3-Particle Models

3-Particle Models in the s/u-channels

Håvard Tveit Ihle

Late Kinetic Decoupling

3-Particle Models

3-Particle Models in t-channel

- New light mediator particle $ilde{\gamma}'$
- $m_\chi \gg m_{ ilde\gamma'} \gg \omega \gg m_{ ilde\gamma}$
- Late kinetic decoupling + SI + RD !

Håvard Tveit Ihle

3-Particle Models

Conclusion

- Dark acoustic oscillations from LKD can possibly address *missing satellites problem* LKD can be achieved by putting a virtual particle "on-shell", or reducing m_y
- Self-interaction constraints severely restrict
 - $\chi \chi \tilde{\gamma}$ coupling
- Some interesting 2-particle models, and a large class of working 3-particle models
 - More detailed study still needed

Håvard Tveit Ihle

			Late Kinetic Decoupling

Thank you !

Håvard Tveit Ihle