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Baryonic Matter Asymmetry 
The Universe is composed of: 
•  Mostly Dark Energy (is the interpretation…) 
•  A lot of Dark Matter (we are pretty sure…) 
•  5% ”Baryonic Matter” (we know for a fact…) 

”Baryonic Matter” is currently composed of: 
•  Loads of CMB photons 
•  A bunch of neutrinos 
•  A few electrons and quarks, in a ratio: 

⌘ =
nB � nB̄

n�
= (6.0± 0.1)⇥ 10�10
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Baryogenesis 
Free particles and anti-particles are completely equivalent. 

 
Are fundamental interactions asymmetric,  

so that a symmetric initial state may  
produce an asymmetric final state? 

 
Such a (sequence of) process(es) à Baryogenesis 

Process(es) must (together) break: 
 
•  Conservation of baryon and lepton number 
•  Symmetry under parity P (sometimes) 
•  Symmetry under charge conjugation C 
•  Symmetry under the combination CP 
•  Thermal equilibrium 
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The Standard Model 

Easy peasy: 
•  Electroweak interactions break C and P, conserve CP 
•  CKM matrix breaks CP (3 families of fermions) 
•  Baryon and lepton number violation from anomaly in electroweak sector 
•  Thermal equilibrium broken by Hubble expansion 

H '
s

(100GeV)4

3M2
pl

' 10�5eV ⌧ �EW

But: 

Thermal equilibrium throughout. 

Electroweak symmetry breaking transition! 
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Electroweak phase transition 

T < Tc 

T > Tc 

V[Φ] 

Φ 

T 

Φ 

Somehow, Φ moved from 0 to 246 GeV as the Universe cooled down. 
 

First order: discontinuous Φ 
Second order: continuous Φ 
Crossover: smooth Φ 
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Electroweak Baryon-number violation 
A fermion coupled chirally to an SU(2) gauge field 
experiences an anomalous current: 
 
 
 
 
 
 
If the gauge field moves in such a way that Chern-Simons  
number changes, so does baryon number.  
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Is this possible? Yes, theory has  
infinite set of (semi-)degenerate  
vacua with integer Ncs. 

@µj
µ
L = @µj

µ
B =

nf

16⇡2
Tr[Fµ⌫

F̃µ⌫ ], @0Ncs =

Z
d

3
x

1

16⇡2
Tr[Fµ⌫

F̃µ⌫ ]

B(t)�B(0) = L(t)� L(0) = nf [Ncs(t)�Ncs(0)]

’t Hooft (’85) 
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Hot Electroweak Baryogenesis 
I: Electroweak transition is 1.st order.  

 Nucleation, and expansion  
 of bubbles of low-temperature vacuum  
 inside high-temperature vacuum. 

II: Bubble walls collide with plasma (fermions).  
 Higgs-fermion interaction breaks CP  
 and produces net right/left-handed  
 currents inside/outside bubbles. 

III: Baryon number violating processes are  
 active outside bubble, suppressed  
 inside bubble. CP-asymmetry converted 
  to B-asymmetry. 

Processes separated in time and space: 
 Bubble-fermion interactions out of equilibrium and break CP.  
 C/P breaking + anomaly leads to baryon number violating  
 processes à equilibrate ”initial” state 

Complicated. 
But could maybe 
work. 
 

B 

B Kuzmin, Rubakov, Shaposhnikov (’86) 
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What to calculate? 
Phase diagram of SM: 
Kajantie, Laine, Rummukainen, Shaposhnikov (’96) 

Bubble nucleation rate: 
Moore, Rummukainen (2000) 
Moore, Rummukainen, AT (2001) 

Bubble wall dynamics: 
… 
Huber, Hindmarsh, Rummukainen, Weir (’14, ’15) 

Bubble-fermion interactions: 
Cohen, Kaplan, Nelson (’92, ’93) 
Schmidt, Kainulainen, Prokopec,  
Joyce, Huber, … (’94…’0?) 
 Sphaleron rate: 
Ambjørn, Krasnitz (’92) 
Moore (’95-’98) 
Moore, Rummukainen, Bödeker (’00) 
D’Onofrio, Rummukainen, AT (’14) 

Huber, Hindmarsh, Rummukainen, Weir (’14, ’15) 
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Three things went wrong 

1: The Higgs mass > 80 GeV  
 à electroweak phase transition is not first order.  
  
 à No bubbles. Game over. 

2: Effects of SM CP violation is ”extremely small”  
 at electroweak temperatures. 
 à ”Extremely small” asymmetry, we think. 

3: Many people gave up trying to compute the asymmetry.  
 à Because: What’s the point?  
 à And it’s really hard, too. 

Kajantie, Laine, Rummukainen, Shaposhnikov (’96) 

Shaposhnikov, Farrar, Gavela, … (’87-) 
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Alternatives to SM 1.st order PT: I 
The Standard Model is incomplete (inflation, Dark Matter, …) 
 
Enlarged scalar sector provides strong 1.st order phase transtion 

Example: SM + singlet.  
5 parameters.  
Project onto m_S, sin θ plane. 
 
Experimentally accessible. 

Damgaard, O’Connell, Haarr, AT (’15) 0 1000 2000 3000 4000
mS êGeV0.0

0.2
0.4
0.6
0.8
1.0
sinq
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Alternatives to SM 1.st order PT: II 
Spinodal transition: 
Field dynamics cannot keep  
up with potential quench. 
 
Unstable IR modes 

 à out of equilibrium 
 
Does not work with temperature 
quench 
 
Need a second field to quench it: 
   Hybrid low-scale inflation? 
   Second field 1.st order jump? 

H ' 10�5eV

? ! 

Cold Electroweak Baryogenesis 

Turok, Zadrozny (’90-’91), Krauss, Trodden (’99), 
Garcia-Bellido, Grigoriev, Kusenko, Shapohsnikov (’99) 
Copeland, Lyth, Rajantie, Trodden (’01), Smit, AT (’03) 

Copeland, Lyth, Rajantie, Trodden (’01) 
Smit, van Tent, AT (’04) 
Enqvist, Stephens, Taanila, AT (’10) 
Konstandin, Servant (’11) 
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Alternatives to SM CP-violation  
at EW temperature: I 

Some other source of CP-violation: 

0 5 10 15 20
mHt
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Higgs/5
<Ncs>, all    cp, rescaled to    cp=1
<Nw>, all    cp, rescaled to    cp=1
<Ncs>, linear diffusion approx.

δ δ

δ δ

Figure 5: Comparing eq. (3.5) (black) for 〈Ncs〉 to the full simulation (red), mH/mW = 2, δcp =
1/8, 1/4, 1/2, 3/4, 1. The red lines are curves for all δcp, simply rescaled to δcp = 1. The blue
lines are 〈Nw〉, also rescaled. Notice that the average winding number does not move until around
τ = 10, the time of the first minimum of 〈φ̃2〉(t).

strongly favoured to end up near each other at later times. This means that one has to

adjust to the other2.

Higgs winding only changes when
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mHt
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Higgs/3
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Figure 6: The time history of 〈φ̃2〉 (black), 〈Ncs〉 (red)
and 〈Nw〉 (green) for mH/mW = 2, δcp = 1.

there is a zero of the Higgs field. The

average Higgs field φ̃2 continues to

oscillate some time after the transi-

tion (figure 6). When it is low, the

probability of zeros in φ itself is high.

The creation and evolution of (near)

zeros was studied in [20], where it

was seen that they indeed act as nu-

clei for winding number change as

well as sphaleron-like transitions. It

was also seen, that multiple “genera-

tions” of (near) zeros are generated,

corresponding to subsequent minima

of the Higgs oscillations. First gen-

eration nuclei are the most numerous, subsequent generations are less populated.

The existence of such zeros suggests why in the first Higgs oscillation, around τ = 12

the Higgs winding is able to adjust to the Chern-Simons number (figure 6). For late times

the winding number can no longer change, except through true sphaleron transition, for

which the time scale at these temperatures is very long compared to the time scale of the

simulation. We can estimate it through Γsph ∝ e−Esph/T , with Esph the sphaleron energy of

order 10 TeV or 60 mH . At time $ 100m−1
H , a Bose-Einstein fit to the particle distribution

2A similar situation has been studied in [25, 26], where it was seen that in single trajectories the relative

size of the winding and Chern-Simons number ‘blobs’ is an indicator whether Nw adjusts to Ncs or vice

versa.
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Figure 8: The Higgs mass dependence of the asymmetry in the analogous model in 1+1 (left) and
3+1 (right) dimensions; δcp = 1, κ is the analogue of δcp. Lefthand plot from [15]. In the righthand
plot, blue points are the simulation presented here for δcp = 1, red are the results from the fits to
the δcp-dependence (see below) and black is the mH/mW = 1 result from [17].
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Figure 9: Final 〈Nw〉 as a function of δcp. Left: mH/mW = 2, right: mH/mW =
√

2. The full
red line is a linear fit, the dotted lines represent ±1σ in the fitted slope.

of CP-conjugate pairs to 192. Figure 9 shows the final value of the average winding number

vs. δcp up to δcp = 1. Within errors, the dependence is consistent with linear. The fits in

figure 9 and the one final value from figure 7 (right) lead to an asymmetry

〈Nw〉 = (0.075 ± 0.006)δcp , mH =
√

2mW ,

〈Nw〉 = (0.005 ± 0.020)δcp , mH =
√

3mW ,

〈Nw〉 = (−0.0359 ± 0.0040)δcp , mH = 2mW . (3.6)

4. Conclusion

Given the final ensemble average of the winding number, we can make an estimate for the

generated baryon asymmetry. We use

nB

nγ
= 7.04

nB

s
, s =

2π2

45
g∗T

3,
π2

30
g∗T

4 = ε =
m4

H

16λ
, (4.1)
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�CP ' 1.5⇥ 10�5 is a good number 

�S =
3�CP

16⇡2m2
W

�†�Tr[Fµ⌫ F̃µ⌫ ]

Smit, AT (’06) 
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Alternatives to SM CP-violation  
at EW temperature: II 

Two Higgs doublets with C(P)-breaking potential, and C/P breaking: 

�S =
3�C/P

16⇡2m2
W

i(�†
1�2 � �†

2�1)Tr[F
µ⌫ F̃µ⌫ ]

2 The 2HDM

The 2HDM is defined through the continuum action

S = −
∫

d3x dt

[

1

4g2
TrFµνF

µν + (Dµφ1)
†Dµφ1 + (Dµφ2)

†Dµφ2 + V (φ1,φ2) + LC/P

]

,

(2.1)

where we use the metric η = diag(−+++), φ1,2 are SU(2) doublets with hypercharge +1

and Fµν is the field strength tensor of the gauge field. We will ignore the SU(3) and U(1)

gauge fields. The covariant derivative is Dµφi = (∂µ + iAµ)φi and the potential is in all

generality 2

V (φ1,φ2) = −
µ2
11

2
φ†
1φ1 −

µ2
22

2
φ†
2φ2 −

µ2
12

2
φ†
1φ2 −

µ2,∗
12

2
φ†
2φ1

+
λ1

2
(φ†

1φ1)
2 +

λ2

2
(φ†

2φ2)
2 + λ3(φ

†
1φ1)(φ

†
2φ2) + λ4(φ

†
2φ1)(φ

†
1φ2)

+
λ5

2
(φ†

1φ2)
2 +

λ∗
5

2
(φ†

2φ1)
2 + λ6(φ

†
1φ1)(φ

†
1φ2) + λ∗

6(φ
†
1φ1)(φ

†
2φ1)

+λ7(φ
†
2φ2)(φ

†
1φ2) + λ∗

7(φ
†
2φ2)(φ

†
2φ1). (2.2)

The parameters λ1,2,3,4 and µ2
11,22 are real and in general λ5,6,7 and µ2

12 are complex. In this

paper, we only study the 2HDM with a softly broken Z2 symmetry, in which λ6 = λ7 = 0

[9]. There is then only one independent CP violating phase. In the Standard Model as well

as the 2HDM there is also CP-violation through the complex phase in the CKM mixing

matrix. For the purpose of the present work, we will assume that the effective CP-breaking

terms arising from this are negligible, although at very low temperatures, this may not be

correct [7].

We will take (2.1) to represent a bosonized version of the full theory, where fermions

have been integrated out, and their effect is captured in a C- and P-breaking term given

by [17]

LC/P =
δC/P

16π2m2
W

i(φ†
1φ2 − φ†

2φ1) TrFµν F̃
µν , (2.3)

The Yukawa couplings and the mixing matrix is encoded in the real parameter δC/P, and

it can in principle be computed from the model. The standard prescription in bosonized

theories, which we will also adopt here, is then to infer the value of the baryon number B

through the anomaly equation

B(t)−B(0) = 3[Ncs(t)−Ncs(0)], (2.4)

where Ncs is the Chern-Simons number of the SU(2) gauge field.

The reason for including the term (2.3) is that, as demonstrated in [1], to generated

a non-zero average Chern-Simons number, we need P-symmetry to be broken as well as

CP-symmetry. It is easy to see that (2.3) conserves CP.

2We here correct an error in [1] in the normalization of the coefficients. The results obtained there were

based on the conventions presented here.
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Figure 3: Chern-Simons number and Higgs winding numbers when averaged over an

ensemble of 4 × 25 configurations. The potential is CP-breaking with complex vevs (left)

and real vevs (right). δC/P = −105. We have included the 1σ statistical error band for N2
w

for illustration. The errors on the other observables are similar.
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Figure 4: Left: The evolution of the normalized Higgs expectation values and the av-

erage complex angle θ for a CP-breaking, and complex-vev potential, and its evolution in

time. Right: The distribution of the Higgs field imaginary part |φ1||φ2| sin θ at the initial,

intermediate and final times (t =0, 2, 5, 120).

show the evolution of the (normalized) average Higgs fields and the relative angle θ for

the complex-vev potential. All settle fairly early on, t # 10/v, resulting in a non-zero P-

violating coefficient. In Fig. 4 (right) we show the distribution of Im(φ∗
2φ1)(x) at the initial,

final and two intermediate time-slices. We see how the initial condition is C-symmetric and

strongly peaked, and then as the system evolves, the distribution flattens out and moves

to a non-zero average value.

For the real-vev case, CP-violation shows up as a nonzero average of the Higgs field

angle Eq. (3.2) at intermediate times. In Fig. 5 (left) we show this average, and in Fig. 5

(right) the distribution at different times. The distribution is again symmetric and peaked

– 12 –

is a good number �C/P � 3⇥ 10�4

AT, Wu (’12-13) 
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Alternatives to SM CP-violation  
at EW temperature: III 

SM CP-violation is extremely small at finite T, because,  
when integrating out the fermions, one would expect: 

�CP ' 3⇥ 10�5 (m
2
b �m2

d)(m
2
s �m2

d)(m
2
b �m2

s)(m
2
t �m2

u)(m
2
c �m2

u)(m
2
t �m2

c)

T 12
' 10�19

But doing the actual calculations: 

3

where Nc = 3 is the number of colors, GF = 1/(
√
2v2)

the Fermi coupling, and the zero temperature effective
coupling κCP reads

κCP ≡
∆

GF

∫

d4p

(2π)4
(p2)3

6
∏

f=1

1

(p2 +m2
f )

2
≈ 3.1× 102,

∆ ≡ (m2
u −m2

c)(m
2
u −m2

t )(m
2
c −m2

t )

×(m2
d −m2

s)(m
2
d −m2

b)(m
2
s −m2

b). (9)

The index n in the functions On counts the number of
Z or ϕ fields where ϕµ ≡ (∂µφ)/φ. Each of these three
terms can be subsequently divided into P even and P odd
parts, On = O+

n +O−
n . These functions contain not only

Lorentz invariant operators, but also ones containing one
or several vectors uµ ≡ δµ0, specifying the rest frame of
the thermal bath. The non-invariant terms must natu-
rally vanish in the limit of zero temperature, which we
have indeed verified.
The Lorentz invariant operators in O+

n read explicitly

O+
0 = −

c1
3
(W+)2W−

µµW
−
νν +

5c2
3

(W+)2W−
µνW

−
µν

−
c1
3
(W+)2W−

µνW
−
νµ +

4c3
3

W+
µ W+

ν W−
µαW

−
αν

−
2c1
3

W+
µ W+

ν W−
µαW

−
να − 2c4W

+
µ W+

ν W−
αµW

−
αν

+
4c3
3

W+
µ W+

ν W−
µνW

−
αα − c.c., (10)

O+
1 =

8

3
(Zµ + ϕµ)

[

c5(W
+)2W−

µ W−
νν

−c6(W
+)2W−

ν W−
µν − c6(W

+)2W−
ν W−

νµ

−c3(W
+ ·W−)W+

µ W−
νν

+c7(W
+ ·W−)W+

ν W−
µν + c7W

+
µ W+

ν W−
α W−

αν

−c12(W
+ ·W−)W+

ν W−
νµ − c12W

+
µ W+

ν W−
α W−

να

+c13W
−
µ W+

ν W+
α W−

να

]

− c.c., (11)

O+
2 = 4(ZµZν + ϕµϕν)

×
[

c8(W
+)2W−

µ W−
ν − c8(W

−)2W+
µ W+

ν

]

−
16

3
(Z · ϕ)

[

c9(W
+ ·W−)2 − 2c6(W

+)2(W−)2
]

+
4

3
(Zµϕν + Zνϕµ)

×
[

c10(W
+)2W−

µ W−
ν + c10(W

−)2W+
µ W+

ν

−2c11(W
+ ·W−)(W+

µ W−
ν +W+

ν W−
µ )
]

, (12)

while we find that

O−
0 = O−

1 = O−
2 = 0. (13)

Here, “c.c.” stands for complex conjugation, acting on
the fields as W± → −W∓, Z → −Z, and ϕ→ ϕ. In ad-
dition, we have denoted the hypercharge covariant deriva-
tives of W± by W±

µν ≡ (∂µ ±Bµ)W±
ν . For the numerical

values of the quark masses and the Jarlskog invariant (see

FIG. 1: The coefficients c1–c13 plotted as functions of the
effective temperature Teff ≡ vT/φ. The bold lines correspond
to the smallest and largest of the ci that approach one at zero
temperature, i.e. c1 and c10.

Ref. [19]), we have used mu = 2.5 MeV, md = 5 MeV,
mc = 1.27 GeV, ms = 100 MeV, mt = 172 GeV,
mb = 4.2 GeV as well as J = 2.9× 10−5.
The coefficients ci depend on the quark masses mf as

well as the temperature T and the Higgs field φ(x), which
appear in the particular combination Teff ≡ vT/φ. In the
zero temperature limit, c1–c11 approach unity while c12–
c13 tend to zero, reducing our result to that of Ref. [11]
and thus independently verifying its conclusions.
In Fig. 1, we display the behavior of the coefficients ci

as functions of Teff, obtained through numerical evalua-
tion of their defining one-loop, multi scale sum-integrals.
At low temperatures, the c1–c11 evolve slowly until at
Teff ' 10–30 MeV they begin to fall rapidly. The c12–c13
on the other hand first exhibit a fast increase, reaching
their maximum around 20–30MeV, after which they, too,
begin to decrease. The largest coefficient at all temper-
atures is c10, which reaches its maximal value of 1.3 at
Teff ≈ 18 MeV. In addition, we note that at Teff

>∼ 10
GeV, all ci’s are at most of order 10−14, consistent with
the estimates of Shaposhnikov et al. [3].
Fig. 2, on the other hand, demonstrates the depen-

dence of our results on the value of the Higgs field φ.
As is evident from the functional form of Teff = vT/φ,
larger values of φ ameliorate the thermal suppression of
CP violating effects. This observation has important im-
plications for cold electroweak baryogenesis simulations,
highlighting the necessity of determining the distribution
of the Higgs field during the cold spinodal transition [20].
Finally, we want to stress that in the present work we

have completely neglected the effects of the strong inter-
action, an issue of increasing severity as one approaches
the deconfinement transition (see also the discussion in
Ref. [12]). For an extended discussion of this issue as
well as of the details of our computation (including the
Lorentz breaking operators present at nonzero tempera-

3

where Nc = 3 is the number of colors, GF = 1/(
√
2v2)

the Fermi coupling, and the zero temperature effective
coupling κCP reads
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∆
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The index n in the functions On counts the number of
Z or ϕ fields where ϕµ ≡ (∂µφ)/φ. Each of these three
terms can be subsequently divided into P even and P odd
parts, On = O+

n +O−
n . These functions contain not only

Lorentz invariant operators, but also ones containing one
or several vectors uµ ≡ δµ0, specifying the rest frame of
the thermal bath. The non-invariant terms must natu-
rally vanish in the limit of zero temperature, which we
have indeed verified.
The Lorentz invariant operators in O+

n read explicitly
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−
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−
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2 = 4(ZµZν + ϕµϕν)

×
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c8(W
+)2W−

µ W−
ν − c8(W

−)2W+
µ W+

ν

]

−
16
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(Z · ϕ)

[

c9(W
+ ·W−)2 − 2c6(W

+)2(W−)2
]

+
4

3
(Zµϕν + Zνϕµ)

×
[

c10(W
+)2W−

µ W−
ν + c10(W

−)2W+
µ W+

ν

−2c11(W
+ ·W−)(W+

µ W−
ν +W+

ν W−
µ )
]

, (12)

while we find that

O−
0 = O−

1 = O−
2 = 0. (13)

Here, “c.c.” stands for complex conjugation, acting on
the fields as W± → −W∓, Z → −Z, and ϕ→ ϕ. In ad-
dition, we have denoted the hypercharge covariant deriva-
tives of W± by W±

µν ≡ (∂µ ±Bµ)W±
ν . For the numerical

values of the quark masses and the Jarlskog invariant (see

FIG. 1: The coefficients c1–c13 plotted as functions of the
effective temperature Teff ≡ vT/φ. The bold lines correspond
to the smallest and largest of the ci that approach one at zero
temperature, i.e. c1 and c10.

Ref. [19]), we have used mu = 2.5 MeV, md = 5 MeV,
mc = 1.27 GeV, ms = 100 MeV, mt = 172 GeV,
mb = 4.2 GeV as well as J = 2.9× 10−5.
The coefficients ci depend on the quark masses mf as

well as the temperature T and the Higgs field φ(x), which
appear in the particular combination Teff ≡ vT/φ. In the
zero temperature limit, c1–c11 approach unity while c12–
c13 tend to zero, reducing our result to that of Ref. [11]
and thus independently verifying its conclusions.
In Fig. 1, we display the behavior of the coefficients ci

as functions of Teff, obtained through numerical evalua-
tion of their defining one-loop, multi scale sum-integrals.
At low temperatures, the c1–c11 evolve slowly until at
Teff ' 10–30 MeV they begin to fall rapidly. The c12–c13
on the other hand first exhibit a fast increase, reaching
their maximum around 20–30MeV, after which they, too,
begin to decrease. The largest coefficient at all temper-
atures is c10, which reaches its maximal value of 1.3 at
Teff ≈ 18 MeV. In addition, we note that at Teff

>∼ 10
GeV, all ci’s are at most of order 10−14, consistent with
the estimates of Shaposhnikov et al. [3].
Fig. 2, on the other hand, demonstrates the depen-

dence of our results on the value of the Higgs field φ.
As is evident from the functional form of Teff = vT/φ,
larger values of φ ameliorate the thermal suppression of
CP violating effects. This observation has important im-
plications for cold electroweak baryogenesis simulations,
highlighting the necessity of determining the distribution
of the Higgs field during the cold spinodal transition [20].
Finally, we want to stress that in the present work we

have completely neglected the effects of the strong inter-
action, an issue of increasing severity as one approaches
the deconfinement transition (see also the discussion in
Ref. [12]). For an extended discussion of this issue as
well as of the details of our computation (including the
Lorentz breaking operators present at nonzero tempera-

is a good temperature T  1 GeV

Brauner, Taanila, AT, Vuorinen (’12) 

�S =
3�CP

16⇡2m2
W

�†�Tr[Fµ⌫ F̃µ⌫ ]!
(
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Can we do the Two-Higgs model? 

Hard; but can we do better than integrating out at one-loop in equilibrium? 

Put in the fermions dynamically in real-time! 
 
Non-perturbative. Out-of-equilibrium. 
Quantum fermions. Classical bosonic fields.  
On the lattice. In the computer. Off we go. 

C and P violation explicitly broken maximally 
in gauge-fermion interactions. CP conserved. 
Integrating out fermions at one loop gives  �C/P

Aarts, Smit (’98) 
Borsanyi, Hindmarsh (’09) 
Saffin, AT (’11, ’12) 

Ensemble fermions: Replace quantum average 
by average over statistical realisations.  
Nq should be big enough for convergence. 
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…with fermions. 

Figure 2: The convergence of the baryon (or fermion) number requires much larger Nq.

Figure 3: Di↵erent energy component in a tachyonic electroweak transition. The Wilson

coe�cient rw is 0 in the left plot, and 0.5 in the right plot. The energy density is scaled

by m4
H . More energy is transferred to the fermion when the Wilson term is small.

number of modes present), and so the agreement is quite non-trivial.

5 Spectrum

The fermion particle number can be extracted from the two-point correlation functions. If

the fermion field is close to thermal equilibrium, fitting of the particle number with the

– 8 –

Mou, Saffin, AT (’13) 
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…with fermions 

Figure 1: Convergence of Higgs, NCS , NW and energy density with Nq. N = 32, �yuk =

0.03 and amH = 0.42. The x-axis is the time.

but we now see that it is a result of the observable being badly behaved, not the dynamics.

In particular, from Fig. 1 we can conclude that the fermion back reaction on the bosonic

field has also converged at Nqc, and as a measure of the baryon production, we can simply

use bosonic operators, NCS and NW . This is with the understanding that had we increased

Nq for a factor of 10 or more, Nf would converge to this same number [1].

A further example is to look at the individual energy components, shown in Fig. 3

for two di↵erent values of the Wilson coe�cient rw. When rw = 0 (left plot), the energy

transfer to the fermions is much faster than when rw = 0.5 (right plot). Apparently the

Wilson term is making the doubler modes more heavy, so that they can no longer be

excited. And so even when not looking specifically for the e↵ect of the baryon anomaly,

it may be worthwhile including the Wilson term in the dynamics. In our simulations, the

Wilson parameter rw is fixed to 0.5.

The lattice spacing dependence is shown in Fig. 4, showing the di↵erent energy compo-

nents on two di↵erent lattices with the same physical volume, but di↵erent lattice spacing

(N = 32, amH = 0.63 and N = 48, amH = 0.42). We see that by choosing the countert-

erms carefully, the lattice spacing dependence is nicely under control. We note that the

random bosonic initial condition is di↵erent in the two cases (since there are a di↵erent

– 7 –
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…with fermions 

Figure 5: The fermion particle spectrum (bottom panel). The red line is the average

particle number, the blue line the derived log(1/Nav � 1), so that the slope is the inverse

temperature. The black line is the linear fit of the lower energy range. For the linear

fitting, we select the range a! 2 [0, 0.9]. The upper plot shows the time evolution of the

Higgs field observable and the time (mHt = 60.795) at which the spectrum is computed.

N = 48, amH = 0.63 and �yuk = 0.03.

weak eigenmodes (where the singlet correlator is gauge invariant) and the mass eigenstates

for comparison.

The correlation function is expected to have the form [13]

D(p, t) = [1�N(p, t)� N̄(�p, t)]
m(p, t)� ip.�

2!(p, t)
+ [N̄(�p, t)�N(p, t)]

i�0

2
, (5.5)

which is obviously true for the setup (3.3) and (3.5). By assuming the on-shell condition

!(p, t) =
q
p2 +m2(p, t), we have enough freedom to measure the e↵ective energy !(p, t)

and the average particle number Nav(p, t) ⌘ (N(p, t) + N̄(�p, t))/2 simultaneously.

Nav(p, t) =
1

2
� sign[V (p, t)]

q
F 2(p, t) + V 2(p, t)

4
, (5.6)

!(p, t) =

s
4(1� 2Nav)2p2

V 2(p, t)
. (5.7)
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…with fermions 

We now introduce a quench time as in [12] to parametrize the flip of the mass param-

eters in the Higgs potential

V (�) = µ2
e↵(t)�

†�+ �(�†�)2, (6.1)

with

µ2
e↵(t) = µ2

✓
1� 2t

⌧Q

◆
, t < ⌧Q, (6.2)

= �µ2, t > ⌧Q. (6.3)

We then simulate the transition for di↵erent values of ⌧Q, in each case computing the e↵ec-

tive temperature averaged during the first and second period of the Higgs field oscillation.

We use Nq = 2400, N = 48, lyuk = 0.03, amH = 0.63 and we in addition average over 8

realizations of the bosonic fields. An example of such an averaged e↵ective temperatures

and chemical potential is shown in Fig. 9, at a quench time of mH⌧Q = 30.

Figure 10: The first and second Higgs minimum correspond to the first and second time

the Higgs field rolling back to the minumum of the average Higgs field squared. Each point

is the statistical result of 8 runs, with the error bar stands for � confidential interval. The

statistical error for the late time limit is smaller than 0.2 GeV.

We finally show the e↵ective temperatures at the first and second minimum of the Higgs

field, as well as the late time limit, as a function of quench time (Fig. 10). The e↵ective

temperature oscillates in time, and the results are therefore sensitive to the exact time

assigned to the Higgs minima. But the picture is clear: the temperature decreases in time,

– 14 –

We can measure the temperature 
of the fermions as a function 
of the speed of the quench. 
 
25 GeV is an optimistic number. 
 
Does it even make sense to look 
for the asymmetry? 

Mou, Saffin, AT (’13) 
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Is there a number? 

is the number.                           is another number. 
Mou, Saffin, AT (’15) 

nB

n�
= 3.5⇥ 10�7(1.0± 1.0) �C/P = 0.03

Anders Tranberg: Baryogenesis at the electroweak scale 



Conclusions and To-do list 
•  We need to get going again with Hot and Cold EWBG. 
•  Extended scalar sectors give viable models of both kinds.  
•  Using effective bosonic theories, we can simulate Cold EWBG finding 

agreement with observations for certain values of  
 
•  Not obvious that the operators considered are correct and/or dominant. 
•  Quantum fermions work and give an asymmetry. This is the first time a 

simulation has been done of baryogenesis from first principles all the way to 
the end! 

•  For optimised scalar potentials, 600 times observed asymmetry (maybe).  
•  Computer cost is extreme: 0.5 Mhours cpu-times. 9-dimensional parameter 

sweeps not an option.  
•  Quantum fermions also relevant for fermion-wall interactions in Hot EWBG (in 

progress…quite hard). 

�CP, �C/P
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Thank you 
for your attention! 
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