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Key points

Perturbation theory is an important tool in physics

e Unfortunately, it generally diverges
o Not well-defined even after resummation

Non-perturbative effects should be included explicitly
e In particular: quantum tunnelling
Resurgence sheds new light on these challenges in QM and QFT

e Perturbation theory encodes non-perturbative effects



Quantum electrodynamics

e Excellent perturbative prediction of e~ magnetic moment

B(g - 2)} = 0.001 159 652 181 78(77)
th

B(g - 2)} = 0.001159 652 180 73(28)

ex

Quantum chromodynamics

e Perturbativity breaks down as as grows towards low energy scales
e Recent progress in toy models using resurgence idea

— Connected to QM with periodic potential



Can perturbation theory make sense?
Non-perturbative instanton effects

The cosine potential, perturbatively

A

Resurgence to the rescue



Can perturbation theory make sense?




Perturbation theory: traditional recipe gone wrong

Find perturbative series through iterative procedures
o0
E(g®) =) an(g”)"
n=0
Due to factorial growth of number of Feynman diagrams: a, ~ n!
— Generally divergent, but asymptotic series
e Converge at first, then diverge — truncate optimally

2nd term: 0.02
10th term: 0.0004
20th term: 0.0243

i ; 0 "

N
Partial sum > n! (—%)n vs. N
n=0



Wait, really divergent?!

Yep. Look at quantum mechanical ground states

E(g®) = an(g’)"

n=0
Some physical examples:
Context ap~ ...
Zeeman effect (=1)"(2n)!
Stark effect (2n)!
Cubic oscillator F(n+ 1)
Quartic oscillator (-1)"T(n+3)
Double well n!

Periodic cosine well nl




Really, really divergent

Also, Dyson (1952) asserted QED perturbation theory must diverge.

Physical argument: the perturbative expansion
F(e®) = ap + a1€® + ape’ + ...

is a power series converging inside some open disk.
However, for e?> < 0:

“[...] every physical state is unstable against the spontaneous
creation of large numbers of particles. Further, a system once
in a pathological state will not remain steady; there will be a
rapid creation of more and more particles, an explosive
disintegration of the vacuum by spontaneous polarization.”



Asymptotic Series 101

Perturbative expansions are generally divergent asymptotic series:

0o N—-1
Zf,,z—zo =Zf,,(z—zo) + Rn(2)
n=0 n=0

o For any fixed N: when z — z, remainder |Ry(2)| < |z — zo|"
+ Convergent series: at fixed z, remainder |Ry(z)| — 0 when N — oo
e Exponential accuracy possible when truncated optimally



Superasymptotics!

Consider the series

o0
> faz" with £, ~ (=1)"n!
n=0

e Optimal truncation just before least term: N =~ 1/z, because

d

— In|fz"| ~Innz

dn

e The error is exponentially small:

efl/z

|Rw(2)| = |fuz"| ~ NINTV ~ VNe ™ ~ 7




Superasymptotics: exponential accuracy

Consider the series

oo
n n
E foz" with f, ~ (=1)"n!
n=0
s N
0.920 0.0020
0.0015 |
0.0010
0.0005
N 00000 ———t v 1 b e b L ) N
| 10 15 | 4 6 8 10 12 14 16
i ; 1
Partial sum for z = % Remainder Ry(z = E)



Superasymptotics: exponential accuracy

Consider the series

Z foz" with £, ~ (=1)"n!
n=0

silley pdd

en
0.00001
0.94082
8.x108
0.94081
-6
0.94080 6.x10
0.94079 O3
0.94078
2.x1078 . .
0.94077 111
N 0 N

Remainder Ry(z = &)



Borel resummation

Consider a factorially divergent series:

Step 1: Borel transform of the series:

B[f](t Z

Step 2: Resummation of the series:

:\:

S[f(z) = %/Oocdt e=*/7 B[f](t)



Borel resummation: example

Example of an alternating asymptotic series

> f2" with £, ~ (=1)"n!
n=0

— Borel transform:

o]

BIA() = 3 (-1)"¢" = ——

n=0
— Resummation:

1/~ .1 1., (1
S[f](z):;/o dt e/ 71+t:;e1/ E; (;)



Borel resummation: example

Example of an alternating asymptotic series

> f2" with £, ~ (=1)"n!
n=0

— Borel transform:

o]

BIA() = 3 (-1)"¢" = ——

n=0

— Resummation:

S[f](z) = %/0 dt e—*/Z% - §e1/25 G)

t
— Surprise:
D U(-1)'nl=1-1+2-6+24—120+... =eEi(1) ~ 0.596

n=0



Borel resummation: another example

Example of a non-alternating asymptotic series

o0
Z £,z" with f, ~ n!
n=0

— Borel transform:
= 1
B[f]( t" = —
[F1(t) ; -
— Resummation:

S[fl(2) = %/0 dt e*f/zl%t =7



Directional resummation: a tale of two possibilities

Borel transform and resummed perturbation series:

B =Y e sl = i/oocdt et/ BIf](2)

n=0

Beware of singularities on the integration path!
— Non-Borel summable series

Avoiding singularities yields an ambiguous imaginary contribution

> n! z”} =47 %e_l/z

— Proportional to residue: Im {
n=0

Imt




Imaginary energies, sure . ..

For unstable states, energy E = Re E — ig
— Usual time evolution: e~ /Ft = g~ itRe Eg—Tt/2
— Lifetime 7 =1/T

Example: quartic anharmonic oscillator V/(x) = 3

g>0 g<0
stable unstable



Stable or unstable?

Context ap ~ ... Stability
Zeeman effect (=1)"(2n)!  stable

Stark effect (2n)!  unstable
Quartic oscillator (-1)"T(n+3) stable

Cubic oscillator F(n+3) unstable
Double well n!  stable?!
Periodic cosine well nl  stable?!

Not all imaginary ambiguities can be explained!

— Perturbation theory is ill-defined. What is missing?



Non-perturbative instanton effects




Quantum effects are important

Path integrals determine quantum amplitudes as a sum over

all possible paths

e Each path contribution is weighted by e//"

Action S[x()] = /fdt (T-V]

e The classical path dominates the oscillatory integral
e But tunnelling trajectories (instantons) give quantum corrections!

Path integrals determine the energy spectrum via partition functions

.. B

20



Path integration

Action of trajectory x(t):

Six(8)] = / R B (<) - V(X))}

—to/2

The Feynman path integral in Minkowski space:

<Xf|e lHto/h|X /D[X IS[X )N/ kR

e Oscillatory behaviour
e Semiclassical expansion in / starts with classical trajectory x¢(t)

21



Path integration

After Wick rotation (t = —iT) to Euclidean space:

Se[x(7)] = /_ " dr B (3% + V(x))}
kel = N [[Dlx(r)) SO

e Non-oscillatory, exponential weighting factor
e Inverted potential

Energy spectrum follows from partition function:

Z e~ EnT/h — DIx(7)] e Selx(T)/h

Xi=Xf

22



Instantons in the double well

Classically, doubly-degenerate ground state
However, instantons change that picture qualitatively!

— Non-perturbative splitting of ground-state energy level:
AE o he /"

e S; is the action of an instanton trajectory

double-well potential instanton

23



Instantons in the double well

Classically, doubly-degenerate ground state
However, instantons change that picture qualitatively!

— Non-perturbative splitting of ground-state energy level:
AE o he /"

e S; is the action of an instanton trajectory

X -n

double-well potential anti-instanton

24



Instantons in the double well

Classically, doubly-degenerate ground state
However, instantons change that picture qualitatively!

— Non-perturbative splitting of ground-state energy level:
AE o he /"

e S; is the action of an instanton trajectory

(1)

N

X -n

double-well potential dilute instanton gas
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Instantons in the cosine well

Classically, infinitely-degenerate ground state
However, instantons change that picture qualitatively!

— Energy band structure for ground state:
AEpang o hie /"

e S, is the action of an instanton trajectory

cosine potential dilute instanton gas

26



Instantons in the cosine well

Classically, infinitely-degenerate ground state
However, instantons change that picture qualitatively!

— Energy band structure for ground state:
AEpang o hie /"

e S, is the action of an instanton trajectory

Energy E

P

Coupling A

energy band

cosine potential

27



The cosine well, perturbatively




Perturbation theory for the cosine potential

Schrodinger equation

[—g*02 + cos(x)] ¥(y) = g*Er(x)
— Determine energy perturbatively:

E(g%) =) an(g”)"

n=0

e For ground state, a, computed to
1000 orders via recurrence relations

e Study of large-order behaviour:

n!
Ry o2,
4n

a,
antl s, n
a,

an

29



Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:
n! n!

- an (25/)"

an

e Action of 1 instanton in the cosine well: S5, =2

o0
o Non-alternating series — singularities of Borel transform 3 2¢”
n=0
— Singularities converge to branch cut, starting at t = 25,

Poles of approximated Borel transform

30



Beyond leading-order behaviour

There are corrections to the leading behaviour:

oM (45 _ 1
(28 2n  8n2

Deduce imaginary energy contribution from large-order behaviour:
1 - - -
Im S[E](g?) ~ :|:—2e_25’/g2 (a(')' ALl e )
g

— Perturbative fluctuations around a 2-instanton sector
e The fluctuation series diverges too (4-instanton effect):

a”_ n!
"2s)e

31



Resurgence to the rescue




Resurgence idea

Perturbation theory itself is incomplete
e Singularities of the Borel transform
Instanton gas picture incomplete too

e Missing correlated multi-instanton events
— Solving both gives ambiguous, imaginary contributions

— Sum over non-perturbative effects in a trans-series

E=FE, e+ Zefsk/gz Z af,k)g2"
k=1 n=0

— Resurgence: exact cancellations yield unambiguous, real observables
o Perturbation theory and [ZZ], [ZZZZ], ... sectors are connected

33



Resurgent trans-series via uniform WKB

Wave function for potentials with harmonic vacua:

Local analysis: E(v,g?) = 3 g2"E,(v)
n=0

e Ansatz parameter v not fixed, but close to integer N
o Forv=N: E(N,g%) = Eper(N, g%)
Global analysis: add Bloch condition 9(y + 7) = e (y)

e Resulting trans-series: perturbations, instantons, quasi-zero modes, Bloch

0o oo (m) 1 k 1 i
N 2 n —S1/g° im
EM(g?) = ZZ Z Corked g |:g2N+1e I/g} In <_g2) el

e Classification with topological charge m = nz — n7

34



Resurgence triangle

Decode trans-series via resurgence triangle
e Number of Z, T events n = nz + nz
e Topological charge m = nz — nz
&~ e "51/8" and f(n, m) is perturbative fluctuation series

e Intricately related sectors with same topological charge can
communicate to cancel imaginary ambiguities

flo.0)
fewf(l.l) ﬁeimf(l.—l)
szQ'Of(z.z) 52f(2 0) 52672'0?((2.—2)
§3e¥fs 5 ety e f3 ) Ge 35 3
4084 4 £4e?0fy 5 E'fa0) e 0f, o) EreH0fy g
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Conclusions




Key points

Perturbation theory is an important tool in physics

e Unfortunately, it generally diverges
o Not well-defined even after resummation

Non-perturbative effects should be included explicitly
e In particular: quantum tunnelling
Resurgence sheds new light on these challenges in QM and QFT

e Perturbation theory encodes non-perturbative effects
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Questions?

IF THERE ARE NO QUESTIONS,| | CERTAINLY, | WHATS THE T MEANT AMY QUESTIONS FRANKI, T'D LIKE To MNWE
WE'LL MOVE ON To THE NEXT | [ CAWIN POINT OF ABOUT THE SUBJECT AT MAND [ [TUE YSSUE RESOLVED BEFORE
WUAT 1S 1T? HUMAN [ EXPEND AN MORE ENERGY
| EXASTENCE?

T HAVE A
QUESTION.
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Energy bands for the cosine well

41



Asymptotic series

Perturbative expansions are generally divergent asymptotic series

e > f,z" is asymptotic to f(z) when for z — 0 and any N,
n=0

N—-1

_anzﬂ

n=0

< Culz"

<> Convergence: at fixed z, remainder vanishes for N — oo
Exponential accuracy possible when truncated optimally
e Typically factorial divergence: f, ~ n!
— Borel resummation idea: fix analytical transgression

e o]

[T SO S > he

n=0 n=0

42



Borel resummation

Borel transform and resummed perturbation series:

BIf](t) Ziln Sz /dtetB[f](tz)

o0
Problem: non-Borel summable series, e. g. non-alternating > n! z"
n=0

e Borel transform B[f](t) = ;1 singular on integration contour

— Lateral resummation yields ambiguous imaginary contribution:

Im S+ [f](z) = ige*/z

Imt

’—\\j\ flet
¢

43



Dispersion relation

dz f(z) i/ dlesco f(z)
0

27 z—2zy 2mi zZ—2

Disco f(z) = sllno [f(z+ie) — f(z — ig)]

- 1 [ Imf
f(Zo) = Z fnzg — fn = ; /0 d27r2n+(12)
n=0 -

Imz

44



Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:
n! n!

™ T 25

e Action of instanton trajectory in the cosine well: §; = 2
e Non-alternating series — singularities of Borel transform

— Increasing number of terms, singularities converge to branch cut
— Branch cut starts at t = 25,

Poles of Borel transform approximated with 70 terms
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:
n! n!
- E o (25/)”

an

e Action of instanton trajectory in the cosine well: §; = 2

e Non-alternating series — singularities of Borel transform
— Increasing number of terms, singularities converge to branch cut
— Branch cut starts at t = 25;

Poles of Borel transform approximated with 150 terms
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:
n! n!
- E o (25/)"

an

e Action of instanton trajectory in the cosine well: §; =2

o Non-alternating series — singularities of Borel transform
— Increasing number of terms, singularities converge to branch cut
— Branch cut starts at t = 25,

Poles of Borel transform approximated with 230 terms
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:
n! n!

el E - (25/)"

e Action of instanton trajectory in the cosine well: §; = 2
e Non-alternating series — singularities of Borel transform
— Increasing number of terms, singularities converge to branch cut

— Branch cut starts at t = 25,

Nearest-pole distance to t = 25,
48



Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms /I connection
e Approximated by Padé approximants of the Borel transform:

N, N
= = po+ pit+ ...+ pnt

ant" — P E](t) =

; " v/ [E](2) 1+ qit+...+qut¥

e Increasing N, M reveals poles converge to branch cut starting at
t=2S

Poles Of P[35/35] [E] ( t)
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms /] connection
e Approximated by Padé approximants of the Borel transform:

N, N
= = po+ pit+ ...+ pnt

at" — P E](t) =

HZ:; " i/ [E](2) 1+ qit+...+ qut¥

e Increasing N, M reveals poles converge to branch cut starting at

t=25

Poles of Pyss75[E](t)
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms // connection

e Approximated by Padé approximants of the Borel transform:

N, N
= @ po+ pit+ ...+ pnt
at" — P E](t) =

; " v/an[E](2) 1+ qit+...+qut¥

e Increasing N, M reveals poles converge to branch cut starting at
t=25

Poles of Pji1s/115[E](t)
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms /1 connection
e Approximated by Padé approximants of the Borel transform:

N, N

.0 - +pit4 ...+ pnt
Y oat" —  PumlEl(r) = 22 L2
n=0

1+aqit+...+ gut

e Increasing N, M reveals poles converge to branch cut starting at
t =25

Log-plot of nearest-pole distance to t = 4
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms // connection

e Approximated by Padé approximants of the Borel transform:

P0+P1t+---+pNtN
1+aqit+...+ gut"

N
> at"  —  PumlEl(t) =
n=0

e Exponential convergence of (diagonal) Padé approximations:

pred _ true

D1 — N+l
true
BHN+1

~ 1.640 e71.376N

100 150 200
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Beyond leading-order behaviour

There are corrections to the leading behaviour:

; 1 1 13 n!
(R g2~ ") (25))"

Deduce imaginary energy contribution from large-order behaviour:

1 = -
ImS[E](gz) N i?ef251/g2 (a(l)l + g2 +a£lg4+'“)

— Perturbative fluctuations around 2-instanton sector

Ratio
1.01p
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Beyond leading-order behaviour

There are corrections to the leading behaviour:

UGN CRN R n!
" T 8n2 ) (25)"

Deduce imaginary energy contribution from large-order behaviour:

1 - -
Im S[E](g?) ~ i?e_ZS’/g2 (a(')' g e el )

— Perturbative fluctuations around 2-instanton sector
e The fluctuation series diverges as well, due to 4-instanton effect

20 30 30 50

ans1/an vs. n Slope converges to % =1
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Towards resurgence in the Mathieu spectrum

Perturbation theory itself is incomplete

e Ambiguous imaginary contribution to real ground-state energy
e Non-Borel summability when degenerate harmonic minima

Instanton gas picture incomplete too (Bogomolny/Zinn-Justin)
e 7 and 7 attract when not widely separated
Regularise both problems by analytic continuation g% — —g?

e Both give ambiguous, imaginary non-perturbative contributions

— Resurgence: exact cancellation to all orders
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