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Key points

Perturbation theory is an important tool in physics

• Unfortunately, it generally diverges

• Not well-defined even after resummation

Non-perturbative effects should be included explicitly

• In particular: quantum tunnelling

Resurgence sheds new light on these challenges in QM and QFT

• Perturbation theory encodes non-perturbative effects
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Context

Quantum electrodynamics

• Excellent perturbative prediction of e− magnetic moment[
1

2
(g − 2)

]
th

= 0.001 159 652 181 78(77)[
1

2
(g − 2)

]
ex

= 0.001 159 652 180 73(28)

Quantum chromodynamics

• Perturbativity breaks down as αs grows towards low energy scales
• Recent progress in toy models using resurgence idea

− Connected to QM with periodic potential
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Outline

1. Can perturbation theory make sense?

2. Non-perturbative instanton effects

3. The cosine potential, perturbatively

4. Resurgence to the rescue
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Can perturbation theory make sense?



Perturbation theory: traditional recipe gone wrong

Find perturbative series through iterative procedures

E (g2) =
∞∑
n=0

an(g2)n

Due to factorial growth of number of Feynman diagrams: an ∼ n!

→ Generally divergent, but asymptotic series

• Converge at first, then diverge −→ truncate optimally
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0.912
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0.920

Σn=0
N

fnz
n

Partial sum
N∑

n=0
n!
(
− 1

10

)n
vs. N

2nd term: 0.02

10th term: 0.0004

20th term: 0.0243
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Wait, really divergent?!

Yep. Look at quantum mechanical ground states

E (g2) =
∞∑
n=0

an(g2)n

Some physical examples:

Context an ∼ . . .

Zeeman effect (−1)n(2n)!

Stark effect (2n)!

Cubic oscillator Γ(n + 1
2 )

Quartic oscillator (−1)nΓ(n + 1
2 )

Double well n!

Periodic cosine well n!
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Really, really divergent

Also, Dyson (1952) asserted QED perturbation theory must diverge.

Physical argument: the perturbative expansion

F (e2) = a0 + a1e
2 + a2e

4 + . . .

is a power series converging inside some open disk.

However, for e2 < 0:

“[. . . ] every physical state is unstable against the spontaneous

creation of large numbers of particles. Further, a system once

in a pathological state will not remain steady; there will be a

rapid creation of more and more particles, an explosive

disintegration of the vacuum by spontaneous polarization.”
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Asymptotic Series 101

Perturbative expansions are generally divergent asymptotic series:

∞∑
n=0

fn(z − z0)n =
N−1∑
n=0

fn(z − z0)n + RN(z)

• For any fixed N: when z → z0, remainder |RN(z)| � |z − z0|N

↔ Convergent series: at fixed z , remainder |RN(z)| → 0 when N →∞
• Exponential accuracy possible when truncated optimally
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Superasymptotics!

Consider the series

∞∑
n=0

fnz
n with fn ∼ (−1)nn!

• Optimal truncation just before least term: N ≈ 1/z , because

d

dn
ln |fnzn| ∼ ln nz

• The error is exponentially small:

|RN(z)| ≈ |fNzN | ∼ N!N−N ∼
√
Ne−N ≈ e−1/z

√
z
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Superasymptotics: exponential accuracy

Consider the series

∞∑
n=0

fnz
n with fn ∼ (−1)nn!
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Superasymptotics: exponential accuracy

Consider the series

∞∑
n=0

fnz
n with fn ∼ (−1)nn!
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15
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15 )
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Borel resummation

Consider a factorially divergent series:

∞∑
n=0

fnz
n

Step 1: Borel transform of the series:

B[f ](t) =
∞∑
n=0

fn
n!

tn

Step 2: Resummation of the series:

S[f ](z) =
1

z

∫ ∞
0

dt e−t/z B[f ](t)
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Borel resummation: example

Example of an alternating asymptotic series

∞∑
n=0

fnz
n with fn ∼ (−1)nn!

→ Borel transform:

B[f ](t) =
∞∑
n=0

(−1)ntn =
1

1 + t

→ Resummation:

S[f ](z) =
1

z

∫ ∞
0

dt e−t/z 1

1 + t
=

1

z
e1/zE1

(
1

z

)

→ Surprise:

∞∑
n=0

(−1)nn! = 1− 1 + 2− 6 + 24− 120 + . . . = eE1(1) ≈ 0.596
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Borel resummation: another example

Example of a non-alternating asymptotic series

∞∑
n=0

fnz
n with fn ∼ n!

→ Borel transform:

B[f ](t) =
∞∑
n=0

tn =
1

1−t

→ Resummation:

S[f ](z) =
1

z

∫ ∞
0

dt e−t/z 1

1−t = ?!
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Directional resummation: a tale of two possibilities

Borel transform and resummed perturbation series:

B[f ](t) =
∞∑
n=0

fn
n!
tn −→ S[f ](z) =

1

z

∫ ∞
0

dt e−t/z B[f ](t)

Beware of singularities on the integration path!

→ Non-Borel summable series

Avoiding singularities yields an ambiguous imaginary contribution

→ Proportional to residue: Im

[
∞∑
n=0

n! zn
]

= ±π 1
z

e−1/z

16



Imaginary energies, sure . . .

For unstable states, energy E = Re E − i Γ
2

→ Usual time evolution: e−iEt = e−itRe Ee−Γt/2

→ Lifetime τ = 1/Γ

Example: quartic anharmonic oscillator V (x) = 1
2mω

2x2 + gx4

x

V(x)

g > 0

stable

x

V(x)

g < 0

unstable
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Stable or unstable?

Context an ∼ . . . Stability

Zeeman effect (−1)n(2n)! stable

Stark effect (2n)! unstable

Quartic oscillator (−1)nΓ(n + 1
2 ) stable

Cubic oscillator Γ(n + 1
2 ) unstable

Double well n! stable?!

Periodic cosine well n! stable?!

Not all imaginary ambiguities can be explained!

→ Perturbation theory is ill-defined. What is missing?
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Non-perturbative instanton effects



Quantum effects are important

Path integrals determine quantum amplitudes as a sum over

all possible paths

• Each path contribution is weighted by eiS/~

Action S [x(t)] =

∫ tf

ti

dt [T − V ]

• The classical path dominates the oscillatory integral

• But tunnelling trajectories (instantons) give quantum corrections!

Path integrals determine the energy spectrum via partition functions

A

B
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Path integration

Action of trajectory x(t):

S [x(t)] =

∫ +t0/2

−t0/2

dt

[
1

2

(
(x ′)2 − V (x)

)]
The Feynman path integral in Minkowski space:

〈xf |e−iHt0/~|xi 〉 = N

∫
D[x(t)] eiS[x(t)]/~

• Oscillatory behaviour

• Semiclassical expansion in ~ starts with classical trajectory xcl(t)
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Path integration

After Wick rotation (t = −iτ) to Euclidean space:

SE [x(τ)] =

∫ T/2

−T/2

dτ

[
1

2

(
ẋ2 + V (x)

)]

〈xf |e−HT |xi 〉 = N

∫
D[x(τ)] e−SE [x(τ)]/~

• Non-oscillatory, exponential weighting factor

• Inverted potential

Energy spectrum follows from partition function:∑
n

e−Enτ/~ = N

∫
xi=xf

D[x(τ)] e−SE [x(τ)]/~
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Instantons in the double well

Classically, doubly-degenerate ground state

However, instantons change that picture qualitatively!

→ Non-perturbative splitting of ground-state energy level:

∆E ∝ ~ e−SI /~

• SI is the action of an instanton trajectory

-η η

x

V(x)

double-well potential

τ

-η

η

x(τ)

instanton
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Instantons in the double well

Classically, doubly-degenerate ground state

However, instantons change that picture qualitatively!

→ Non-perturbative splitting of ground-state energy level:

∆E ∝ ~ e−SI /~

• SI is the action of an instanton trajectory

-η η

x

V(x)

double-well potential

τ

-η

η

x(τ)

anti-instanton
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Instantons in the double well

Classically, doubly-degenerate ground state

However, instantons change that picture qualitatively!

→ Non-perturbative splitting of ground-state energy level:

∆E ∝ ~ e−SI /~

• SI is the action of an instanton trajectory

-η η

x

V(x)

double-well potential

τ

-η

x(τ)

dilute instanton gas
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Instantons in the cosine well

Classically, infinitely-degenerate ground state

However, instantons change that picture qualitatively!

→ Energy band structure for ground state:

∆Eband ∝ ~ e−SI /~

• SI is the action of an instanton trajectory

j-2 j-1 j j+1
x

V(x)

cosine potential

τ

j

j+1

x(τ)

dilute instanton gas
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Instantons in the cosine well

Classically, infinitely-degenerate ground state

However, instantons change that picture qualitatively!

→ Energy band structure for ground state:

∆Eband ∝ ~ e−SI /~

• SI is the action of an instanton trajectory

j-2 j-1 j j+1
x

V(x)

cosine potential

Coupling ℏ

Energy E

energy band
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The cosine well, perturbatively



Perturbation theory for the cosine potential

Schrödinger equation[
−g4∂2

x + cos(x)
]
ψ(y) = g2Eψ(x)

→ Determine energy perturbatively:

E (g2) =
∞∑
n=0

an(g2)n

• For ground state, an computed to

1000 orders via recurrence relations

• Study of large-order behaviour:

an ∼
n!

4n

200 400 600 800 1000
n

50

100

150

200

250

an+1 /an

an+1

an
vs. n
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

an ∼
n!

4n
=

n!

(2SI )n

• Action of 1 instanton in the cosine well: SI = 2

• Non-alternating series −→ singularities of Borel transform
∞∑
n=0

an
n!
tn

− Singularities converge to branch cut, starting at t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of approximated Borel transform
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Beyond leading-order behaviour

There are corrections to the leading behaviour:

an ∼
n!

(2SI )n

(
1− 5

2n
− 13

8n2
− . . .

)
Deduce imaginary energy contribution from large-order behaviour:

ImS[E ](g2) ∼ ± 1

g2
e−2SI/g

2
(
aI Ī0 + aI Ī1 g

2 + aI Ī2 g
4 + . . .

)
→ Perturbative fluctuations around a 2-instanton sector

• The fluctuation series diverges too (4-instanton effect):

aI Īn ∼
n!

(2SI )n
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Resurgence to the rescue



Resurgence idea

Perturbation theory itself is incomplete

• Singularities of the Borel transform

Instanton gas picture incomplete too

• Missing correlated multi-instanton events

→ Solving both gives ambiguous, imaginary contributions

→ Sum over non-perturbative effects in a trans-series

E = Epert +
∞∑
k=1

e−Sk/g
2

[ ∞∑
n=0

a(k)
n g2n

]

→ Resurgence: exact cancellations yield unambiguous, real observables

• Perturbation theory and [II], [IIII], . . . sectors are connected
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Resurgent trans-series via uniform WKB

Wave function for potentials with harmonic vacua:

ψ(y) =
Dν( 1

g u(y))√
u′(y)

Local analysis: E (ν, g2) =
∞∑
n=0

g2nEn(ν)

• Ansatz parameter ν not fixed, but close to integer N

• For ν = N: E(N, g 2) = Epert(N, g
2)

Global analysis: add Bloch condition ψ(y + π) = eiθψ(y)

• Resulting trans-series: perturbations, instantons, quasi-zero modes, Bloch

E (N)(g2) =
∞∑
n=0

∞∑
k=0

k−1∑
l=0

k∑
m=−k
∆=2

c
(m)
n,k,l g

2n

[
1

g2N+1
e−SI/g

2

]k
ln

(
− 1

g2

)l

eimθ

• Classification with topological charge m = nI − nI
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Resurgence triangle

Decode trans-series via resurgence triangle

• Number of I, I events n = nI + nI
• Topological charge m = nI − nI
• ξn ∼ e−nSI /g

2

and f (n,m) is perturbative fluctuation series

• Intricately related sectors with same topological charge can

communicate to cancel imaginary ambiguities

f(0,0)

ξeiθf(1,1) ξe−iθf(1,−1)

ξ2e2iθf(2,2) ξ2f(2,0) ξ2e−2iθf(2,−2)

ξ3e3iθf(3,3) ξ3eiθf(3,1) ξ3e−iθf(3,−1) ξ3e−3iθf(3,−3)

ξ4e4iθf(4,4) ξ4e2iθf(4,2) ξ4f(4,0) ξ4e−2iθf(4,−2) ξ4e−4iθf(4,−4)
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Conclusions



Key points

Perturbation theory is an important tool in physics

• Unfortunately, it generally diverges

• Not well-defined even after resummation

Non-perturbative effects should be included explicitly

• In particular: quantum tunnelling

Resurgence sheds new light on these challenges in QM and QFT

• Perturbation theory encodes non-perturbative effects
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Questions?
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Energy bands for the cosine well
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Asymptotic series

Perturbative expansions are generally divergent asymptotic series

•
∞∑
n=0

fnz
n is asymptotic to f (z) when for z → 0 and any N,

∣∣∣∣∣f (z)−
N−1∑
n=0

fnz
n

∣∣∣∣∣ ≤ CN |z |N

↔ Convergence: at fixed z , remainder vanishes for N →∞
Exponential accuracy possible when truncated optimally

• Typically factorial divergence: fn ∼ n!

→ Borel resummation idea: fix analytical transgression∫ ∞
0

dt e−t
∞∑
n=0

fn
n!

(tz)n =
∞∑
n=0

n! fn
n!

zn =
∞∑
n=0

fnz
n
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Borel resummation

Borel transform and resummed perturbation series:

B[f ](t) =
∞∑
n=0

fn
n!
tn −→ S[f ](z) =

∫ ∞
0

dt e−t B[f ](tz)

Problem: non-Borel summable series, e. g. non-alternating
∞∑
n=0

n! zn

• Borel transform B[f ](t) = 1
1−t

singular on integration contour

→ Lateral resummation yields ambiguous imaginary contribution:

ImS±[f ](z) = ±π
z

e−1/z
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Dispersion relation

f (z0) =
1

2πi

∮
dz

f (z)

z − z0
=

1

2πi

∫ ∞
0

dz
Disc0 f (z)

z − z0

Disc0 f (z) = lim
ε→0

[f (z + iε)− f (z − iε)]

f (z0) =
∞∑
n=0

fnz
n
0 −→ fn =

1

π

∫ ∞
0

dz
Im f (z)

zn+1

44



Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

an ∼
n!

4n
=

n!

(2SI )n

• Action of instanton trajectory in the cosine well: SI = 2
• Non-alternating series −→ singularities of Borel transform

− Increasing number of terms, singularities converge to branch cut

− Branch cut starts at t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of Borel transform approximated with 70 terms
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

an ∼
n!

4n
=

n!

(2SI )n

• Action of instanton trajectory in the cosine well: SI = 2
• Non-alternating series −→ singularities of Borel transform

− Increasing number of terms, singularities converge to branch cut

− Branch cut starts at t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of Borel transform approximated with 150 terms
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

an ∼
n!

4n
=

n!

(2SI )n

• Action of instanton trajectory in the cosine well: SI = 2
• Non-alternating series −→ singularities of Borel transform

− Increasing number of terms, singularities converge to branch cut

− Branch cut starts at t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of Borel transform approximated with 230 terms
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Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

an ∼
n!

4n
=

n!

(2SI )n

• Action of instanton trajectory in the cosine well: SI = 2
• Non-alternating series −→ singularities of Borel transform

− Increasing number of terms, singularities converge to branch cut

− Branch cut starts at t = 2SI

50 100 150 200
2N

10-6

10-5

10-4

0.001

0.010

0.100

1

Min |t0-4|

Nearest-pole distance to t = 2SI
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms I Ī connection

• Approximated by Padé approximants of the Borel transform:

N∗∑
n=0

ãnt
n −→ P[N/M][Ẽ ](t) =

p0 + p1t + . . .+ pNt
N

1 + q1t + . . .+ qMtM

• Increasing N,M reveals poles converge to branch cut starting at

t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of P[35/35][Ẽ ](t)
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms I Ī connection

• Approximated by Padé approximants of the Borel transform:

N∗∑
n=0

ãnt
n −→ P[N/M][Ẽ ](t) =

p0 + p1t + . . .+ pNt
N

1 + q1t + . . .+ qMtM

• Increasing N,M reveals poles converge to branch cut starting at

t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of P[75/75][Ẽ ](t)

50



Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms I Ī connection

• Approximated by Padé approximants of the Borel transform:

N∗∑
n=0

ãnt
n −→ P[N/M][Ẽ ](t) =

p0 + p1t + . . .+ pNt
N

1 + q1t + . . .+ qMtM

• Increasing N,M reveals poles converge to branch cut starting at

t = 2SI

-2 2 4 6 8 10 12
Re t

-2

-1

1

2
Im t

Poles of P[115/115][Ẽ ](t)
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms I Ī connection

• Approximated by Padé approximants of the Borel transform:

N∗∑
n=0

ãnt
n −→ P[N/M][Ẽ ](t) =

p0 + p1t + . . .+ pNt
N

1 + q1t + . . .+ qMtM

• Increasing N,M reveals poles converge to branch cut starting at

t = 2SI

50 100 150 200
2N

10-6

10-5

10-4

0.001

0.010

0.100

1

Min |t0-4|

Log-plot of nearest-pole distance to t = 4
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Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms I Ī connection

• Approximated by Padé approximants of the Borel transform:

N∗∑
n=0

ãnt
n −→ P[N/M][Ẽ ](t) =

p0 + p1t + . . .+ pNt
N

1 + q1t + . . .+ qMtM

• Exponential convergence of (diagonal) Padé approximations:∣∣∣∣∣a
pred
2N+1 − atrue

2N+1

atrue
2N+1

∣∣∣∣∣ ∼ 1.640 e−1.376 N

50 100 150 200
2N

10-62

10-42

10-22

10-2

Rel. error
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Beyond leading-order behaviour

There are corrections to the leading behaviour:

an ∼ −
1

π

(
1− 5

2n
− 13

8n2
− . . .

)
n!

(2SI )n

Deduce imaginary energy contribution from large-order behaviour:

ImS[E ](g2) ∼ ± 1

g2
e−2SI/g

2
(
aI Ī0 + aI Ī1 g

2 + aI Ī2 g
4 + . . .

)
→ Perturbative fluctuations around 2-instanton sector

200 400 600 800 1000
n0.96

0.97

0.98

0.99

1.00

1.01
Ratio

54



Beyond leading-order behaviour

There are corrections to the leading behaviour:

an ∼ −
1

π

(
1− 5

2n
− 13

8n2
− . . .

)
n!

(2SI )n

Deduce imaginary energy contribution from large-order behaviour:

ImS[E ](g2) ∼ ± 1

g2
e−2SI/g

2
(
aI Ī0 + aI Ī1 g

2 + aI Ī2 g
4 + . . .

)
→ Perturbative fluctuations around 2-instanton sector

• The fluctuation series diverges as well, due to 4-instanton effect

10 20 30 40 50 60
n

5

10

15

an+1
I I
_

/ an
I I
_

aI Īn+1/a
I Ī
n vs. n

10 20 30 40 50
n0

0.230

0.235

0.240

0.245

0.250

Slope

Slope converges to 1
2SI

= 1
4
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Towards resurgence in the Mathieu spectrum

Perturbation theory itself is incomplete

• Ambiguous imaginary contribution to real ground-state energy

• Non-Borel summability when degenerate harmonic minima

Instanton gas picture incomplete too (Bogomolny/Zinn-Justin)

• I and I attract when not widely separated

Regularise both problems by analytic continuation g2 → −g2

• Both give ambiguous, imaginary non-perturbative contributions

→ Resurgence: exact cancellation to all orders

-η η

x

V(x)

j-2 j-1 j j+1
x

V(x)
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