UiO : University of Oslo

Aspects of Resurgence

Jeriek Van den Abeele
Theory Seminar
November 2, 2016
University of Oslo

Perturbation theory is an important tool in physics

- Unfortunately, it generally diverges
- Not well-defined even after resummation

Non-perturbative effects should be included explicitly

- In particular: quantum tunnelling

Resurgence sheds new light on these challenges in QM and QFT

- Perturbation theory encodes non-perturbative effects

Context

Quantum electrodynamics

- Excellent perturbative prediction of e^{-}magnetic moment

$$
\begin{aligned}
& {\left[\frac{1}{2}(g-2)\right]_{\mathrm{th}}=0.00115965218178(77)} \\
& {\left[\frac{1}{2}(g-2)\right]_{\mathrm{ex}}=0.00115965218073(28)}
\end{aligned}
$$

Quantum chromodynamics

- Perturbativity breaks down as $\alpha_{\text {s }}$ grows towards low energy scales
- Recent progress in toy models using resurgence idea
- Connected to QM with periodic potential

Outline

1. Can perturbation theory make sense?
2. Non-perturbative instanton effects
3. The cosine potential, perturbatively
4. Resurgence to the rescue

Can perturbation theory make sense?

Perturbation theory: traditional recipe gone wrong

Find perturbative series through iterative procedures

$$
E\left(g^{2}\right)=\sum_{n=0}^{\infty} a_{n}\left(g^{2}\right)^{n}
$$

Due to factorial growth of number of Feynman diagrams: $a_{n} \sim n!$
\rightarrow Generally divergent, but asymptotic series

- Converge at first, then diverge \longrightarrow truncate optimally

2nd term: 0.02
10th term: 0.0004
20th term: 0.0243

Partial sum $\sum_{n=0}^{N} n!\left(-\frac{1}{10}\right)^{n}$ vs. N

Wait, really divergent?!

Yep. Look at quantum mechanical ground states

$$
E\left(g^{2}\right)=\sum_{n=0}^{\infty} a_{n}\left(g^{2}\right)^{n}
$$

Some physical examples:

Context	$a_{n} \sim \ldots$
Zeeman effect	$(-1)^{n}(2 n)!$
Stark effect	$(2 n)!$
Cubic oscillator	$\Gamma\left(n+\frac{1}{2}\right)$
Quartic oscillator	$(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)$
Double well	$n!$
Periodic cosine well	$n!$

Also, Dyson (1952) asserted QED perturbation theory must diverge.

Physical argument: the perturbative expansion

$$
F\left(e^{2}\right)=a_{0}+a_{1} e^{2}+a_{2} e^{4}+\ldots
$$

is a power series converging inside some open disk.
However, for $e^{2}<0$:
"[...] every physical state is unstable against the spontaneous creation of large numbers of particles. Further, a system once in a pathological state will not remain steady; there will be a rapid creation of more and more particles, an explosive disintegration of the vacuum by spontaneous polarization."

Asymptotic Series 101

Perturbative expansions are generally divergent asymptotic series:

$$
\sum_{n=0}^{\infty} f_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{N-1} f_{n}\left(z-z_{0}\right)^{n}+R_{N}(z)
$$

- For any fixed N : when $z \rightarrow z_{0}$, remainder $\left|R_{N}(z)\right| \ll\left|z-z_{0}\right|^{N}$
\leftrightarrow Convergent series: at fixed z, remainder $\left|R_{N}(z)\right| \rightarrow 0$ when $N \rightarrow \infty$
- Exponential accuracy possible when truncated optimally

Superasymptotics!

Consider the series

$$
\sum_{n=0}^{\infty} f_{n} z^{n} \text { with } f_{n} \sim(-1)^{n} n!
$$

- Optimal truncation just before least term: $N \approx 1 / z$, because

$$
\frac{\mathrm{d}}{\mathrm{dn}} \ln \left|f_{n} z^{n}\right| \sim \ln n z
$$

- The error is exponentially small:

$$
\left|R_{N}(z)\right| \approx\left|f_{N} z^{N}\right| \sim N!N^{-N} \sim \sqrt{N} \mathrm{e}^{-N} \approx \frac{\mathrm{e}^{-1 / z}}{\sqrt{z}}
$$

Superasymptotics: exponential accuracy

Consider the series

$$
\sum_{n=0}^{\infty} f_{n} z^{n} \text { with } f_{n} \sim(-1)^{n} n!
$$

Partial sum for $z=\frac{1}{10}$

Remainder $R_{N}\left(z=\frac{1}{10}\right)$

Superasymptotics: exponential accuracy

Consider the series

$$
\sum_{n=0}^{\infty} f_{n} z^{n} \text { with } f_{n} \sim(-1)^{n} n!
$$

Partial sum for $z=\frac{1}{15}$

Remainder $R_{N}\left(z=\frac{1}{15}\right)$

Borel resummation

Consider a factorially divergent series:

$$
\sum_{n=0}^{\infty} f_{n} z^{n}
$$

Step 1: Borel transform of the series:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty} \frac{f_{n}}{n!} t^{n}
$$

Step 2: Resummation of the series:

$$
\mathcal{S}[f](z)=\frac{1}{z} \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t / z} \mathcal{B}[f](t)
$$

Borel resummation: example

Example of an alternating asymptotic series

$$
\sum_{n=0}^{\infty} f_{n} z^{n} \text { with } f_{n} \sim(-1)^{n} n!
$$

\rightarrow Borel transform:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty}(-1)^{n} t^{n}=\frac{1}{1+t}
$$

\rightarrow Resummation:

$$
\mathcal{S}[f](z)=\frac{1}{z} \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t / z} \frac{1}{1+t}=\frac{1}{z} \mathrm{e}^{1 / z} E_{1}\left(\frac{1}{z}\right)
$$

Borel resummation: example

Example of an alternating asymptotic series

$$
\sum_{n=0}^{\infty} f_{n} z^{n} \text { with } f_{n} \sim(-1)^{n} n!
$$

\rightarrow Borel transform:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty}(-1)^{n} t^{n}=\frac{1}{1+t}
$$

\rightarrow Resummation:

$$
\mathcal{S}[f](z)=\frac{1}{z} \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t / z} \frac{1}{1+t}=\frac{1}{z} \mathrm{e}^{1 / z} E_{1}\left(\frac{1}{z}\right)
$$

\rightarrow Surprise:

$$
\sum_{n=0}^{\infty}(-1)^{n} n!=1-1+2-6+24-120+\ldots=\mathrm{e} E_{1}(1) \approx 0.596
$$

Borel resummation: another example

Example of a non-alternating asymptotic series

$$
\sum_{n=0}^{\infty} f_{n} z^{n} \text { with } f_{n} \sim n!
$$

\rightarrow Borel transform:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty} t^{n}=\frac{1}{1-t}
$$

\rightarrow Resummation:

$$
\mathcal{S}[f](z)=\frac{1}{z} \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t / z} \frac{1}{1-t}=?!
$$

Directional resummation: a tale of two possibilities

Borel transform and resummed perturbation series:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty} \frac{f_{n}}{n!} t^{n} \quad \longrightarrow \quad \mathcal{S}[f](z)=\frac{1}{z} \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t / z} \mathcal{B}[f](t)
$$

Beware of singularities on the integration path!
\rightarrow Non-Borel summable series
Avoiding singularities yields an ambiguous imaginary contribution
\rightarrow Proportional to residue: $\operatorname{Im}\left[\sum_{n=0}^{\infty} n!z^{n}\right]= \pm \pi \frac{1}{z} \mathrm{e}^{-1 / z}$

Imaginary energies, sure

For unstable states, energy $E=\operatorname{Re} E-i \frac{\Gamma}{2}$
\rightarrow Usual time evolution: $\mathrm{e}^{-i E t}=\mathrm{e}^{-i t \operatorname{Re} E} \mathrm{e}^{-\Gamma t / 2}$
\rightarrow Lifetime $\tau=1 / \Gamma$
Example: quartic anharmonic oscillator $V(x)=\frac{1}{2} m \omega^{2} x^{2}+g x^{4}$

$g>0$
stable

$g<0$
unstable

Stable or unstable?

Context	$a_{n} \sim \ldots$	Stability
Zeeman effect	$(-1)^{n}(2 n)!$	stable
Stark effect	$(2 n)!$	unstable
Quartic oscillator	$(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)$	stable
Cubic oscillator	$\Gamma\left(n+\frac{1}{2}\right)$	unstable
Double well	$n!$	stable?!
Periodic cosine well	$n!$	stable?!

Not all imaginary ambiguities can be explained!
\rightarrow Perturbation theory is ill-defined. What is missing?

Non-perturbative instanton effects

Quantum effects are important

Path integrals determine quantum amplitudes as a sum over all possible paths

- Each path contribution is weighted by $\mathrm{e}^{i S / \hbar}$

$$
\text { Action } S[x(t)]=\int_{t_{i}}^{t_{f}} \mathrm{~d} t[T-V]
$$

- The classical path dominates the oscillatory integral
- But tunnelling trajectories (instantons) give quantum corrections!

Path integrals determine the energy spectrum via partition functions

Path integration

Action of trajectory $x(t)$:

$$
S[x(t)]=\int_{-t_{0} / 2}^{+t_{0} / 2} \mathrm{~d} t\left[\frac{1}{2}\left(\left(x^{\prime}\right)^{2}-V(x)\right)\right]
$$

The Feynman path integral in Minkowski space:

$$
\left\langle x_{f}\right| \mathrm{e}^{-i H t_{0} / \hbar}\left|x_{i}\right\rangle=N \int \mathcal{D}[x(t)] \mathrm{e}^{i S[x(t)] / \hbar}
$$

- Oscillatory behaviour
- Semiclassical expansion in \hbar starts with classical trajectory $x_{c l}(t)$

Path integration

After Wick rotation $(t=-i \tau)$ to Euclidean space:

$$
\begin{aligned}
& S_{E}[x(\tau)]=\int_{-T / 2}^{T / 2} \mathrm{~d} \tau\left[\frac{1}{2}\left(\dot{x}^{2}+V(x)\right)\right] \\
& \left\langle x_{f}\right| \mathrm{e}^{-H T}\left|x_{i}\right\rangle=N \int \mathcal{D}[x(\tau)] \mathrm{e}^{-S_{E}[x(\tau)] / \hbar}
\end{aligned}
$$

- Non-oscillatory, exponential weighting factor
- Inverted potential

Energy spectrum follows from partition function:

$$
\sum_{n} \mathrm{e}^{-E_{n} \tau / \hbar}=N \int_{x_{i}=x_{f}} \mathcal{D}[x(\tau)] \mathrm{e}^{-S_{E}[x(\tau)] / \hbar}
$$

Instantons in the double well

Classically, doubly-degenerate ground state However, instantons change that picture qualitatively!
\rightarrow Non-perturbative splitting of ground-state energy level:

$$
\Delta E \propto \hbar \mathrm{e}^{-S_{1} / \hbar}
$$

- S_{I} is the action of an instanton trajectory

Instantons in the double well

Classically, doubly-degenerate ground state
However, instantons change that picture qualitatively!
\rightarrow Non-perturbative splitting of ground-state energy level:

$$
\Delta E \propto \hbar \mathrm{e}^{-s_{l} / \hbar}
$$

- S_{I} is the action of an instanton trajectory

anti-instanton

Instantons in the double well

Classically, doubly-degenerate ground state However, instantons change that picture qualitatively!
\rightarrow Non-perturbative splitting of ground-state energy level:

$$
\Delta E \propto \hbar \mathrm{e}^{-S_{I} / \hbar}
$$

- S_{I} is the action of an instanton trajectory

dilute instanton gas

Instantons in the cosine well

Classically, infinitely-degenerate ground state
However, instantons change that picture qualitatively!
\rightarrow Energy band structure for ground state:

$$
\Delta E_{\text {band }} \propto \hbar \mathrm{e}^{-S_{1} / \hbar}
$$

- S_{I} is the action of an instanton trajectory

dilute instanton gas

Instantons in the cosine well

Classically, infinitely-degenerate ground state
However, instantons change that picture qualitatively!
\rightarrow Energy band structure for ground state:

$$
\Delta E_{\text {band }} \propto \hbar \mathrm{e}^{-S_{1} / \hbar}
$$

- S_{I} is the action of an instanton trajectory

The cosine well, perturbatively

Perturbation theory for the cosine potential

Schrödinger equation

$$
\left[-g^{4} \partial_{x}^{2}+\cos (x)\right] \psi(y)=g^{2} E \psi(x)
$$

\rightarrow Determine energy perturbatively:

$$
E\left(g^{2}\right)=\sum_{n=0}^{\infty} a_{n}\left(g^{2}\right)^{n}
$$

- For ground state, a_{n} computed to 1000 orders via recurrence relations
- Study of large-order behaviour:

$$
a_{n} \sim \frac{n!}{4^{n}}
$$

Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

$$
a_{n} \sim \frac{n!}{4^{n}}=\frac{n!}{\left(2 S_{l}\right)^{n}}
$$

- Action of 1 instanton in the cosine well: $S_{I}=2$
- Non-alternating series \longrightarrow singularities of Borel transform $\sum_{n=0}^{\infty} \frac{a_{n}}{n!} t^{n}$
- Singularities converge to branch cut, starting at $t=2 S_{\text {, }}$

Poles of approximated Borel transform

Beyond leading-order behaviour

There are corrections to the leading behaviour:

$$
a_{n} \sim \frac{n!}{\left(2 S_{l}\right)^{n}}\left(1-\frac{5}{2 n}-\frac{13}{8 n^{2}}-\ldots\right)
$$

Deduce imaginary energy contribution from large-order behaviour:

$$
\operatorname{Im} \mathcal{S}[E]\left(g^{2}\right) \sim \pm \frac{1}{g^{2}} \mathrm{e}^{-2 S_{l} / g^{2}}\left(a_{0}^{l \bar{I}}+a_{1}^{l \bar{I}} g^{2}+a_{2}^{l \bar{T}} g^{4}+\ldots\right)
$$

\rightarrow Perturbative fluctuations around a 2-instanton sector

- The fluctuation series diverges too (4-instanton effect):

$$
a_{n}^{I \bar{I}} \sim \frac{n!}{\left(2 S_{l}\right)^{n}}
$$

Resurgence to the rescue

Resurgence idea

Perturbation theory itself is incomplete

- Singularities of the Borel transform

Instanton gas picture incomplete too

- Missing correlated multi-instanton events
\rightarrow Solving both gives ambiguous, imaginary contributions
\rightarrow Sum over non-perturbative effects in a trans-series

$$
E=E_{\text {pert }}+\sum_{k=1}^{\infty} \mathrm{e}^{-S_{k} / g^{2}}\left[\sum_{n=0}^{\infty} a_{n}^{(k)} g^{2 n}\right]
$$

\rightarrow Resurgence: exact cancellations yield unambiguous, real observables

- Perturbation theory and $[\mathcal{I} \overline{\mathcal{I}}],[\mathcal{I} \overline{\mathcal{I}} \mathcal{I} \overline{\mathcal{I}}], \ldots$ sectors are connected

Resurgent trans-series via uniform WKB

Wave function for potentials with harmonic vacua:

$$
\psi(y)=\frac{D_{\nu}\left(\frac{1}{g} u(y)\right)}{\sqrt{u^{\prime}(y)}}
$$

Local analysis: $E\left(\nu, g^{2}\right)=\sum_{n=0}^{\infty} g^{2 n} E_{n}(\nu)$

- Ansatz parameter ν not fixed, but close to integer N
- For $\nu=N: E\left(N, g^{2}\right)=E_{\text {pert }}\left(N, g^{2}\right)$

Global analysis: add Bloch condition $\psi(y+\pi)=\mathrm{e}^{i \theta} \psi(y)$

- Resulting trans-series: perturbations, instantons, quasi-zero modes, Bloch

$$
E^{(N)}\left(g^{2}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{k-1} \sum_{\substack{m=-k \\ \Delta=2}}^{k} c_{n, k, l}^{(m)} g^{2 n}\left[\frac{1}{g^{2 N+1}} \mathrm{e}^{-S_{l} / g^{2}}\right]^{k} \ln \left(-\frac{1}{g^{2}}\right)^{\prime} \mathrm{e}^{i m \theta}
$$

- Classification with topological charge $m=n_{\mathcal{I}}-n_{\bar{I}}$

Resurgence triangle

Decode trans-series via resurgence triangle

- Number of $\mathcal{I}, \overline{\mathcal{I}}$ events $n=n_{\mathcal{I}}+n_{\overline{\mathcal{I}}}$
- Topological charge $m=n_{\mathcal{I}}-n_{\overline{\mathcal{I}}}$
- $\xi^{n} \sim \mathrm{e}^{-n S_{l} / g^{2}}$ and $f(n, m)$ is perturbative fluctuation series
- Intricately related sectors with same topological charge can communicate to cancel imaginary ambiguities

Conclusions

Perturbation theory is an important tool in physics

- Unfortunately, it generally diverges
- Not well-defined even after resummation

Non-perturbative effects should be included explicitly

- In particular: quantum tunnelling

Resurgence sheds new light on these challenges in QM and QFT

- Perturbation theory encodes non-perturbative effects

Questions?

- G. Dunne, A Beginners' Guide to Resurgence and Trans-series in Quantum Theories, talk, March 2016.
- G. Dunne and M. Ünsal, WKB and Resurgence in the Mathieu Equation, arXiv:1603.04924, 2016.
- G. Dunne and M. Ünsal, Uniform WKB, Multi-instantons, and Resurgent Trans-Series, arXiv:1401.5202, 2014.
- M. Mariño, Lectures on non-perturbative effects in large \mathbf{N} gauge theories, matrix models and strings, arXiv:1206.6272, 2012.
- J.C. Le Guillou and J. Zinn-Justin (eds.), Large-Order Behaviour of Perturbation Theory, Elsevier, 1990.
- E.B. Bogomolnyi, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett. B 91 431, 1980.
- C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer, 1978.

Backup slides

Energy bands for the cosine well

Asymptotic series

Perturbative expansions are generally divergent asymptotic series

- $\sum_{n=0}^{\infty} f_{n} z^{n}$ is asymptotic to $f(z)$ when for $z \rightarrow 0$ and any N,

$$
\left|f(z)-\sum_{n=0}^{N-1} f_{n} z^{n}\right| \leq C_{N}|z|^{N}
$$

\leftrightarrow Convergence: at fixed z, remainder vanishes for $N \rightarrow \infty$ Exponential accuracy possible when truncated optimally

- Typically factorial divergence: $f_{n} \sim n$!
\rightarrow Borel resummation idea: fix analytical transgression

$$
\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} \sum_{n=0}^{\infty} \frac{f_{n}}{n!}(t z)^{n}=\sum_{n=0}^{\infty} \frac{n!f_{n}}{n!} z^{n}=\sum_{n=0}^{\infty} f_{n} z^{n}
$$

Borel resummation

Borel transform and resummed perturbation series:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty} \frac{f_{n}}{n!} t^{n} \quad \longrightarrow \quad \mathcal{S}[f](z)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} \mathcal{B}[f](t z)
$$

Problem: non-Borel summable series, e. g. non-alternating $\sum_{n=0}^{\infty} n!z^{n}$

- Borel transform $\mathcal{B}[f](t)=\frac{1}{1-t}$ singular on integration contour
\rightarrow Lateral resummation yields ambiguous imaginary contribution:

$$
\operatorname{Im} \mathcal{S}_{ \pm}[f](z)= \pm \frac{\pi}{z} \mathrm{e}^{-1 / z}
$$

Dispersion relation

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint \mathrm{~d} z \frac{f(z)}{z-z_{0}}=\frac{1}{2 \pi i} \int_{0}^{\infty} \mathrm{d} z \frac{\operatorname{Disc}_{0} f(z)}{z-z_{0}}
$$

$\operatorname{Disc}_{0} f(z)=\lim _{\varepsilon \rightarrow 0}[f(z+i \varepsilon)-f(z-i \varepsilon)]$

$$
f\left(z_{0}\right)=\sum_{n=0}^{\infty} f_{n} z_{0}^{n} \quad \longrightarrow \quad f_{n}=\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} z \frac{\operatorname{lm} f(z)}{z^{n+1}}
$$

Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

$$
a_{n} \sim \frac{n!}{4^{n}}=\frac{n!}{\left(2 S_{l}\right)^{n}}
$$

- Action of instanton trajectory in the cosine well: $S_{I}=2$
- Non-alternating series \longrightarrow singularities of Borel transform
- Increasing number of terms, singularities converge to branch cut
- Branch cut starts at $t=2 S_{\text {, }}$

Poles of Borel transform approximated with 70 terms

Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

$$
a_{n} \sim \frac{n!}{4^{n}}=\frac{n!}{\left(2 S_{l}\right)^{n}}
$$

- Action of instanton trajectory in the cosine well: $S_{I}=2$
- Non-alternating series \longrightarrow singularities of Borel transform
- Increasing number of terms, singularities converge to branch cut
- Branch cut starts at $t=2 S_{\text {, }}$

Poles of Borel transform approximated with 150 terms

Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

$$
a_{n} \sim \frac{n!}{4^{n}}=\frac{n!}{\left(2 S_{l}\right)^{n}}
$$

- Action of instanton trajectory in the cosine well: $S_{I}=2$
- Non-alternating series \longrightarrow singularities of Borel transform
- Increasing number of terms, singularities converge to branch cut
- Branch cut starts at $t=2 S_{\text {, }}$

Poles of Borel transform approximated with 230 terms

Large-order behaviour of perturbation theory

Note the connection to a 2-instanton effect:

$$
a_{n} \sim \frac{n!}{4^{n}}=\frac{n!}{\left(2 S_{l}\right)^{n}}
$$

- Action of instanton trajectory in the cosine well: $S_{I}=2$
- Non-alternating series \longrightarrow singularities of Borel transform
- Increasing number of terms, singularities converge to branch cut
- Branch cut starts at $t=2 S_{\text {, }}$

Nearest-pole distance to $t=2 S$,

Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms II connection

- Approximated by Padé approximants of the Borel transform:

$$
\sum_{n=0}^{N_{*}} \tilde{a}_{n} t^{n} \quad \longrightarrow \quad \mathcal{P}_{[N / M]}[\tilde{E}](t)=\frac{p_{0}+p_{1} t+\ldots+p_{N} t^{N}}{1+q_{1} t+\ldots+q_{M} t^{M}}
$$

- Increasing N, M reveals poles converge to branch cut starting at $t=2 S$,

Poles of $P_{[35 / 35]}[\tilde{E}](t)$

Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms II connection

- Approximated by Padé approximants of the Borel transform:

$$
\sum_{n=0}^{N_{*}} \tilde{a}_{n} t^{n} \quad \longrightarrow \quad \mathcal{P}_{[N / M]}[\tilde{E}](t)=\frac{p_{0}+p_{1} t+\ldots+p_{N} t^{N}}{1+q_{1} t+\ldots+q_{M} t^{M}}
$$

- Increasing N, M reveals poles converge to branch cut starting at $t=2 S_{\text {, }}$

Poles of $P_{[75 / 75]}[\tilde{E}](t)$

Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms II connection

- Approximated by Padé approximants of the Borel transform:

$$
\sum_{n=0}^{N_{*}} \tilde{a}_{n} t^{n} \quad \longrightarrow \quad \mathcal{P}_{[N / M]}[\tilde{E}](t)=\frac{p_{0}+p_{1} t+\ldots+p_{N} t^{N}}{1+q_{1} t+\ldots+q_{M} t^{M}}
$$

- Increasing N, M reveals poles converge to branch cut starting at $t=2 S_{\text {, }}$

Poles of $P_{[115 / 115]}[\tilde{E}](t)$

Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms II connection

- Approximated by Padé approximants of the Borel transform:

$$
\sum_{n=0}^{N_{*}} \tilde{a}_{n} t^{n} \quad \longrightarrow \quad \mathcal{P}_{[N / M]}[\tilde{E}](t)=\frac{p_{0}+p_{1} t+\ldots+p_{N} t^{N}}{1+q_{1} t+\ldots+q_{M} t^{M}}
$$

- Increasing N, M reveals poles converge to branch cut starting at $t=2 S$,

Log-plot of nearest-pole distance to $t=4$

Large-order behaviour of perturbation theory

Pole structure of Borel transform confirms I/ connection

- Approximated by Padé approximants of the Borel transform:

$$
\sum_{n=0}^{N_{*}} \tilde{\mathrm{a}}_{n} t^{n} \quad \longrightarrow \quad \mathcal{P}_{[N / M]}[\tilde{E}](t)=\frac{p_{0}+p_{1} t+\ldots+p_{N} t^{N}}{1+q_{1} t+\ldots+q_{M} t^{M}}
$$

- Exponential convergence of (diagonal) Padé approximations:

$$
\left|\frac{a_{2 N+1}^{\text {pred }}-a_{2 N+1}^{\text {true }}}{a_{2 N+1}^{\text {true }}}\right| \sim 1.640 \mathrm{e}^{-1.376 N}
$$

Beyond leading-order behaviour

There are corrections to the leading behaviour:

$$
a_{n} \sim-\frac{1}{\pi}\left(1-\frac{5}{2 n}-\frac{13}{8 n^{2}}-\ldots\right) \frac{n!}{\left(2 S_{I}\right)^{n}}
$$

Deduce imaginary energy contribution from large-order behaviour:

$$
\operatorname{Im} \mathcal{S}[E]\left(g^{2}\right) \sim \pm \frac{1}{g^{2}} \mathrm{e}^{-2 s_{/} / g^{2}}\left(a_{0}^{l \bar{T}}+a_{1}^{l \bar{T}} g^{2}+a_{2}^{l \bar{T}} g^{4}+\ldots\right)
$$

\rightarrow Perturbative fluctuations around 2-instanton sector

Beyond leading-order behaviour

There are corrections to the leading behaviour:

$$
a_{n} \sim-\frac{1}{\pi}\left(1-\frac{5}{2 n}-\frac{13}{8 n^{2}}-\ldots\right) \frac{n!}{\left(2 S_{I}\right)^{n}}
$$

Deduce imaginary energy contribution from large-order behaviour:

$$
\operatorname{Im} \mathcal{S}[E]\left(g^{2}\right) \sim \pm \frac{1}{g^{2}} \mathrm{e}^{-2 s_{l} / g^{2}}\left(a_{0}^{l \bar{T}}+a_{1}^{l \bar{T}} g^{2}+a_{2}^{l \bar{T}} g^{4}+\ldots\right)
$$

\rightarrow Perturbative fluctuations around 2-instanton sector

- The fluctuation series diverges as well, due to 4-instanton effect

Slope converges to $\frac{1}{2 S_{I}}=\frac{1}{4}$

Towards resurgence in the Mathieu spectrum

Perturbation theory itself is incomplete

- Ambiguous imaginary contribution to real ground-state energy
- Non-Borel summability when degenerate harmonic minima

Instanton gas picture incomplete too (Bogomolny/Zinn-Justin)

- \mathcal{I} and $\overline{\mathcal{I}}$ attract when not widely separated

Regularise both problems by analytic continuation $g^{2} \rightarrow-g^{2}$

- Both give ambiguous, imaginary non-perturbative contributions
\rightarrow Resurgence: exact cancellation to all orders
$v(x)$

