LOOKING TO DARK MATTER THROUGH GAMMA-RAY ANISOTROPIES

NICOLAO FORNENGO

Department of Physics – University of Torino and Istituto Nazionale di Fisica Nucleare (INFN) – Torino Italy

fornengo@to.infn.it nicolao.fornengo@unito.it

www.to.infn.it/~fornengo www.astroparticle.to.infn.it

Department of Physics, University of Oslo - 31.05.2017

Dark Matter

The presence of DM is supported by copious and consistent astrophysical and cosmological probes

- Smaller scales:

- Large scales: Average DM density about 6 times baryon density DM distribution is quite anisotropic and hierarchical clusters – galaxies – subhalos

Observations are compatible with a theoretical understanding of cosmic structure formation through gravitational instability

Dark Matter

DM evidence purely gravitational

- Galaxy clusters dynamics
- Rotational curves of spiral galaxies
- Gravitational lensing
- Hydrodynamical equilibrium of hot gas in galaxy clusters
- Energy budget of the Universe
- The same theory of structure formation

Dark Matter as a particle?

DM evidence purely gravitational

- Galaxy clusters dynamics
- Rotational curves of spiral galaxies
- Gravitational lensing
- Hydrodynamical equilibrium of hot gas in galaxy clusters
- Energy budget of the Universe
- The same theory of structure formation

A natural solution is that DM is a new particle, relic from the early Universe

Dark Matter as a particle

DM evidence purely gravitational

- Galaxy clusters dynamics
- Rotational curves of spiral galaxies
- Gravitational lensing
- Hydrodynamical equilibrium of hot gas in galaxy clusters
- Energy budget of the Universe
- The same theory of structure formation

If DM is a new particle, a non-gravitational signal (due to it's particle physics nature) is expected

Where to search for a signal ...

We can exploit every structure where DM is present ...

- Our Galaxy
 - Smooth component
 - Subhalos
- Satellite galaxies (dwarfs)
- Galaxy clusters
 - Smooth component
 - Individual galaxies
 - Galaxíes subhalos
- "Cosmíc web"

... and what

...and we have a large number of messengers at disposal

- Our Galaxy
 - Smooth component
 - Subhalos
- Satellite galaxies (dwarfs)
- Galaxy clusters
 - Smooth component
 - Individual galaxies
 - Galaxíes subhalos
- "Cosmíc web"

Charged CR (e[±], antip, antiD) [G] [G,E]Neutrínos Photons [G,E]- Gamma-rays Prompt production
IC from e[±] on ISRF and CMB А -X-rays - IC from e[±] on ISRF and CMB - Radio - Synchro from e[±] on mag. field В Direct detection [L] $DM + DM \longrightarrow (...) \longrightarrow signal$ A: $DM + \mathcal{N} \longrightarrow DM + \mathcal{N}$ **B**:

Local [L] - Galactic [G] - Extragalactic [E]

Galactic foreground emission Resolved sources Díffuse Gamma Rays Backgound (DGRB)

DGRB Intensity

Ackerman et al. (Fermí Collab.) Ap. J. 799 (2015) 86

DGRB Intensity

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

DGRB and Dark Matter

The Good: Spectral behaviour different from astro sources: (o,m, channel) The Bad: Can be quite subdominant in intensity

DGRB intensity bounds on DM

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

Galactic center: an "excess" ?

DM interpretation

Calore et al, PRD 91 (2015) 063003

Alternative approaches?

- Indirect detection signals are intrinsically anisotropic (being produced by DM structures, present at any scale)
- EM signals (and neutrinos) more directly trace the underlying DM distribution: they need to exhibit some level of anisotropy
 - "Bright" DM objects: would appear as resolved sources
 e.g: gamma or radio halo around clusters, dwarf galaxies or even subhalos
 - Faint DM objects: would be unresolved (i.e. below detector sensitivity)
 - Díffuse flux: at first level isotropic

at a deeper level anisotropic

Gamma rays and Dark Matter

Extra galactic emission Higher redshift

Extra galactic emission Lower redshift

Anisotropic emission

Even though sources are too dim to be individually resolved, they can affect the <u>statistics of photons</u> across the sky

Anisotropic emission - Photon statistics

This can be help in characterizing the gamma-ray sky:

Astrophysical sources (AGN, SFG, ...) Dark matter

Photon statistics

Photon pixel counts (1-point PDF) Source count number dN/dS below detection threshold

Photon statistics

Photon pixel counts (1-point PDF) Source count number dN/dS below detection threshold

See also: Malyshev, Hogg, Astrophys. J. 738 (2011) 181 Lisantí et al, 1606.0401

Photon statistics

Photon pixel counts (1 point PDF)

2-point correlator

Correlation function Angular power spectrum

 $\langle I(\vec{n}_1)I(\vec{n}_2) \rangle \longrightarrow C(\theta) \longrightarrow C_l$

Correlation functions

Source Intensity

$$I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi) \overset{\text{Window function}}{\text{Density field of the source}}$$

- W(z): does not depend on direction depends on redishift depends on energy
- g(z,n): describes how the "field" changes from point to point contains the dependence on abundance + distribution of sources

$$I_g(\vec{n}) \longrightarrow a_{lm}^g \longrightarrow C_l^{gg} = \frac{1}{2l+1} \sum_{l=-m}^m |a_{lm}^g|^2$$

Correlation functions

Source Intensity

$$I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi)$$
 Window function
Density field of the source

 $\begin{array}{l} \begin{array}{l} \text{Angular power spectrum} \\ \mathcal{O}_{\ell}^{(ij)} = \frac{1}{\langle I_i \rangle \langle I_j \rangle} \int \frac{d\chi}{\chi^2} W_i(\chi) W_j(\chi) P_{ij}(k = \ell/\chi, \chi) \\ \\ \langle \hat{f}_{g_i}(\chi, \boldsymbol{k}) \hat{f}_{g_j}^*(\chi', \boldsymbol{k}') \rangle = (2\pi)^3 \delta^3(\boldsymbol{k} - \boldsymbol{k}') P_{ij}(k, \chi, \chi') \\ \\ f_g \equiv [g(\boldsymbol{x}|m, z)/\bar{g}(z) - 1] \\ \end{array} \right) \\ \begin{array}{l} \mathcal{O}_{\ell}^{(ij)} \mathcal{O}_{\ell}^{(ij$

$$I_g(\vec{n}) \longrightarrow a_{lm}^g \longrightarrow C_l^{gg} = \frac{1}{2l+1} \sum_{l=-m}^m |a_{lm}^g|^2$$

Ingredient # 1: Window functions

Clumping factor : a measure of the clustering

$$W^{g}(\chi) = \frac{(\Omega_{\rm DM}\rho_{c})^{2}}{4\pi} \frac{\langle \sigma_{a}v\rangle}{2m_{\rm DM}^{2}} \left[1 + z(\chi)\right]^{3} \Delta^{2}(\chi) J_{a}(E,\chi)$$

DM photon "emissivity"

$$\Delta^{2}(\chi) \equiv \frac{\langle \rho_{\rm DM}^{2} \rangle}{\bar{\rho}_{\rm DM}^{2}} = \int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} \int d^{3}\mathbf{x} \frac{\rho_{h}^{2}(\mathbf{x}|M,\chi)}{\bar{\rho}_{\rm DM}^{2}} \begin{bmatrix} 1 + B(M,\chi) \end{bmatrix}$$

$$Subhalo\ boost$$

$$J_{a}(E,\chi) = \int_{\Delta E_{\gamma}} dE_{\gamma} \frac{dN_{a/d}}{dE_{\gamma}} \begin{bmatrix} E_{\gamma}(\chi) \end{bmatrix} e^{-\tau[\chi, E_{\gamma}(\chi)]}$$
subhalos hosted by main halos)

Uncertainties from:

- Minimal halo mass M_{min}
- Halo concentration c(M)

Alternative approach to the Halo Model: Serpico et al. MNRAS 421 (2012) L87 Sefusatti et al.MNRAS 441 (2014) 1861

Gamma-rays are also emitted by astrophysical sources, each of which has a specific window function

Ingredient # 2: Power spectrum

Source Intensity

$$I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi)$$
 Window function
Density field of the source

 $\begin{aligned} & \text{Angular power spectrum} \\ & \mathcal{C}_{\ell}^{(ij)} = \frac{1}{\langle I_i \rangle \langle I_j \rangle} \int \frac{d\chi}{\chi^2} W_i(\chi) W_j(\chi) P_{ij}(k = \ell/\chi, \chi) \\ & \langle \hat{f}_{g_i}(\chi, \mathbf{k}) \hat{f}_{g_j}^*(\chi', \mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \underbrace{P_{ij}(k, \chi, \chi')}_{f_g \equiv [g(\mathbf{x}|m, z)/\bar{g}(z) - 1]} \\ & \hat{f}_g : \text{Fourier tranform} \end{aligned}$

Halo Model

DM is distributed in halos

- With a given mass function dN/dM
- With a DM profile within halos

Power spectrum decomposition

$$P_{ij}(k) = P_{ij}^{1h}(k) + P_{ij}^{2h}(k)$$

1-halo term
$$P_{ij}^{1h}(k) = \int dm \, \frac{dn}{dm} \hat{f}_i^*(k|m) \, \hat{f}_j(k|m)$$

2-halo term $P_{ij}^{2h}(k) = \left[\int dm_1 \, \frac{dn}{dm_1} b_i(m_1) \hat{f}_i^*(k|m_1) \right] \left[\int dm_2 \, \frac{dn}{dm_2} b_j(m_2) \hat{f}_j(k|m_2) \right] P^{\text{lin}}(k)$
Linear bias

depens on spatial clustering

Astro sources: Dark matter: typically considered as point-like extended

Correlations

Point-like sources:

1h flat
2h may emerge and give info on
 clustering

Extended sources:

1h no longer flat, suppressed at scale > síze of sources

Main uncertainties for DM:

M_{mín} subhalo boost

Some dependencies

Amount of subhalos (boost) affects mainly 1-halo e.g.: larger subhalo boost = increases contribution of most massive halos = increase of the 1-halo term

Mmín

affects mainly 1-halo

Clustering

affects overall norm

Recap on dependencies

Halo mass function dN/dM

Concentration Halo density profile Minimum halo mass Subhalo abundance

(NFW, Burkert, etc) $(10^{-6}, 10^{6}) M_{Sun}$

Auto Correlation

 $C_l^{\gamma\gamma} \longleftarrow W_{\gamma}^2(z)P(k,z)$ window function power spectrum

Observationally: Energy dependence is available Redshift dependence is not available

Gamma rays auto-correlation

Fornasa, Cuoco et al, PRD 94 (2016) 123005 Ando, Fornasa, NF, Regis, Zechlin, 1701.06988 (interpretation) See also: Ackerman et al (Fermi Collab) PRD 85 (2012) 083007 (first detection)

Gamma-ray auto-correlation

Features of the signal point toward interpretation in terms of blazars

DM likely plays a subdominant role (as for total intensity)

Difficult to extract a clear DM signature from the EGB alone, while relevant to constrain the level of astro sources
Bounds from Auto Correlation

Fornasa, Cuoco et al, 1608.07289

Photon pixel counts (1 point PDF)

2 point correlator angular power spectrum

2 point correlator angular power spectrum

 $\langle I_i(\vec{n}_1)I_j(\vec{n}_2)\rangle \longrightarrow C_{ij}(\theta) \longrightarrow C_l^{ij}$

Cross Correlations

Cross-correlation of EM signal with gravitational tracer of DM

It exploits two distinctive features of particle DM: An electromagnetic signal, manifestation of the particle nature of DM A gravitational probe of the existence of DM

It can offer a direct evidence that what is measured by means of gravity is indeed due to DM in terms of an elementary particle

Weak gravitational lensing

- Weak lensing: small distortions of images of distant galaxies, produced by the distribution of matter located between background galaxies and the observer
- Powerful probe of dark matter distribution in the Universe

Cosmic structures and gamma-rays

The same Dark Matter structures that act as lenses can themselves emit light at various wavelengths, including the gamma-rays range

- From DM itself (annihilation/decay)
- From astrophysical sources hosted by DM halos (AGN, SFG, ...)

Gamma-rays emítted by DM may exhíbit strong correlation with lensing signal

The lensing map can act as the filter needed to isolate the signal (DM) hidden in a large "noise" (astro)

Cross Correlations

• Lensing observables

- Cosmic shear: directly traces the whole DM distribution
- CMB lensing: traces DM imprints on CMB anisotropies

- Large scale structure
 - Galaxy catalogs: trace DM by tracing light
 - Cluster catalog

Furhter advantages

Observationally:

- Auto correlation feels:
 - Detector noíse (auto correlates with itself)
 - Galactic foregound (auto correlates with itself: typically GF is subtracted, but residuals may be present)
- Cross correlation "automatically" removes:
 - Detector noíses (2 dífferent detectors, noíses do not correlate)
 - Galactic foreground (gravitational tracers signals do not correlate with galactic gamma ray emission)

Life is more complex than that, but these can offer a good help

Correlation functions

Source Intensity

$$I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi) \overset{\text{Window function}}{\text{Density field of the source}}$$

- W(z): does not depend on direction depends on redishift depends on energy
- g(z,n): describes how the "field" changes from point to point contains the dependence on abundance of sources distribution

$$\begin{array}{cccc} I_g(\vec{n}) & \longrightarrow & a_{lm}^g \\ & & & \\ I_k(\vec{n}) & \longrightarrow & a_{lm}^k \end{array} \longrightarrow \quad C_l^{gk} = \frac{1}{2l+1} \sum_{m=-l}^l a_{lm}^{g*} a_{lm}^k$$

Cross angular power spectrum $\langle I_{\gamma}(\vec{n}_1) I_{\phi}(\vec{n}_2) \rangle \longrightarrow C_{I}^{\gamma \phi}$ $C_l^{\gamma\phi} \leftarrow W_{\gamma}(z)W_{\phi}(z)P(k,z)$ window functions power spectrum

Redshift dependence Energy dependence

Camera, Fornasa, NF, Regís, Ap. J. Lett. 771 (2013) L5 Camera, Fornasa, NF, Regís, JCAP 1506 (2015) 029 NF, Regís, Front. Physics 2 (2014) 6

Tomographic-spectral approach

Reshift information in shear Energy spectrum of gamma-rays can help in "filtering" signal sources can help in DM-mass reconstruction

Camera, Fornasa, NF, Regis, JCAP 1506 (2015) 029

Opportunities

Euclíd – 15000 sq deg LSST – 30000 sq deg

Camera, Fornasa, NF, Regis, Ap. J. Lett. 771 (2013) L5

Sensitivity on DM parameters

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

We start having data

DM maps from KiDS analysis on weak lensing

Fermi x KiDS+RCSLens+CFTHLens

Troester et al, MNRAS 467 (2017) 2706

Fermi x KiDS+RCSLens+CFTHLens

See also: Shirasaki, Horiuchi, Yoshida, PRD 90 (2014) 063502 Shirasaki, Marcias, Horiuchi, Shirai, Yoshida, PRD 94 (2016) 063522

Planck CMB lensing

- CMB-lensing autocorrelation is measured: 40σ significance
- CMB-lensing: integrated measure of DM distribution up to last scattering
- It might exhibit correlation with gamma-rays emitted in DM structures

Fermi/gamma + Planck/CMB lensing

Cross-correlation: deviates 3.0σ from null signal Compatible with AGN + SFG + BLA gamma-rays emission Points toward a direct evidence of extragalactic origin of the IGRB

NF, Perotto, Regis, Camera, ApJ 802 (2015) L1

Window functions: DM x CMB lensing

CMB lensing is likely not the best observable for DM Instead it can hopefully help in constraining astrophysical sources NF, Regis, Front. Physics 2 (2014) 6

Window functions: DM x LSS

Galaxy catalogs (expecially low-z ones) can have good overlap with DM They trace light (while shear directly traces DM), but great potential NF, Regis, Front. Physics 2 (2014) 6

Fermix 2MASS

Fermí x SDSS-DR8 MG

correlation at the degree scale

Xia, Cuoco, Branchini, Viel, APJS 217 (2015) 15

Fermi x 2MASS

The observed cross-correlation can be reproduced (both in shape and size) by a DM contribution that is largely subdominant in the total intensity Regis, Xia, Cuoco, Branchini, NF, Viel, PRL 114 (2015) 241301

Fermí x 2MASS

Just in case it's a DM signal ...

Regis, Xia, Cuoco, Branchini, NF, Viel, PRL 114 (2015) 241301

Fermí x 2MASS

Bound from cross correlation

Bounds ratios Correlation technique stronger

Regis, Xia, Cuoco, Branchini, NF, Viel, ApJS 221 (2015) 29 See also: Shirasaki, Horiuchi, Yoshida, PRD 90 (2014) 063502 Shirasaki, Horiuchi , Yoshida, PRD 92 (2015) 123540

WHL12

Catalog	Objects
redMaPPer	26 350
WHL12	39 668
Planck SZ	1653

Cross correlation with gamma rays

Branchini, Camera, Cuoco, NF, Regis, Viel, Xia, ApJS 228 (2017) 8

- A cross correlation signal is significantly detected out to 1 degree (beyond the Fermi PSF extension)
- The cross-correlation measurement confirms that the unresolved EGB observed by Fermi correlates with the large scale clustering of matter in the Universe (here traced by clusters)
- At the typical redshifts of the clusters in these catalogs, one degree corresponds to a linear scale of 10 Mpc
- This means that a (large?) fraction of the correlation signal seems to be not physically associated to the clusters
- Instead, it can be produced by AGNs or SFGs residing in the larger scale structures that surround the high density peaks where clusters reside

Angular power spectrum

Branchini, Camera, Cuoco, NF, Regis, Viel, Xia, ApJS 228 (2017) 8

Energy dependence

Branchini, Camera, Cuoco, NF, Regis, Viel, Xia, ApJSuppl 228 (2017) 8

Energy dependence

- <u>Large scales</u> (2-halo dominates): the signal is contributed by sources with hard energy spectra, consistent with that of the BL Lacs
- <u>Small scales</u> (1-halo domínates): sígnal could be contributed by different types of sources
 - At high (E > 10 GeV) energies the dominant sources have hard spectra (probably the same BL Lac population)
 - At smaller energies, the correlation signal shows a hint of contribution by sources with softer spectra. These can be non-BL LacAGNs, SFGs and/or the ICM (or DM)

Conclusions

- In order to separate a DM non-gravitational signal from other astrophysical emissions, a filter based on the DM properties (i.e. the associated gravitational potential) appears to be very promising
- Cross-correlations offer an emerging opportunity:
 - DM particle signal: multiwavelenght emission
 - DM gravitational tracers: cosmic-shear, LSS surveys
- Gamma rays x cosmic shear is the cleanest possibility and it appears to be powerful

Conclusions

- Gamma-rays/gravity-tracers correlations start to emerge:
 - Cross-correlation with galaxy catalogs (3.50)
 - Cross-correlation with CMB-lensing (3.00)
 - Cross-correlation with cluster catalogs (4.7σ)
- For cosmic shear, first relevant observational opportunity soon with DES
- High-sensitivity will require Euclid/LSST, coupled with the total accumulated Fermi statistics (opportunity for CTA?)

Talk based on:

Camera, Fornasa, NF, Regis, *ApJ* 771 (2013) *L5* Camera, Fornasa, NF, Regis, *JCAP* 1506 (2015) 029 Troester et al., *MNRAS* 467 (2016) 2706

NF, Regis, Front. Physics 2 (2014) 6

NF, Regis, Perotto, Camera, ApJ 802 (2015) L1

Regis, Xia, Cuoco, NF, Branchini, Viel, *PRL 114 (2015) 241301* Cuoco, Xia, Regis, NF, Branchini, Viel, *ApJS 221 (2015) 29*

Zechlin, Cuoco, Donato, NF, Vittino, *ApJS 225 (2016) 18* Zechlin, Cuoco, Donato, NF, Regis, *ApJL 826 (2016) L31*

Ando, Fornasa, NF, Regis, Zechlin, *arXiv:0701.06988*

Branchini, Camera, Cuoco, NF, Regis, Viel, Xia, ApJS 228 (2017) 8

gamma + cosmic shear gamma + cosmic shear gamma + cosmic shear

general theory

gamma + CMB lensing

gamma + LSS gamma + LSS

gamma 1pPDF gamma 1pPDF

gamma autocorrelation

gamma + clusters