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What is Dark Matter?

Energy density of the universe:

bullet cluster

rotation curves bullet cluster

CMB anisotropies grav. lensing

▪ Overwhelming evidence for gravitational interaction of dark matter
▪ No conclusive hint for other interactions with the Standard Model
▪ Electrically and color-neutral: Interactions at most via weak force

[Planck 2015]

1

ΩDMh2 = 0.1198± 0.0015
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Dark matter = a WIMP ? 
(Weakly Interacting Massive Particle)

bullet cluster

WIMP paradigm attractive:

▪ Works with simple/natural models ("WIMP miracle")
▪ Independent of largly unconstrained/unknown   
   physics of the very early universe (inflation/reheating)
▪ Robust predicions
▪ Testable at collider, direct and indirect detection 
   experiments
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WIMP paradigm: How to explain the dark 
matter density?

▪ Relic from thermal abundance
▪ Consider cosmological history of Universe:

Today
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WIMP paradigm: How to explain the dark 
matter density?

Today

Particle physics
+cosmology:
Extrapolate to early 
hot Universe

 

▪ Relic from thermal abundance
▪ Consider cosmological history of Universe:
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▪ Relic from thermal abundance
▪ Consider cosmological history:

WIMP paradigm: How to explain the dark 
matter density?

Today

▪ Successful example: Big Bang Nucleosynthesis

➔ Explains primordial abundances of light elements

M
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WIMP paradigm: How to explain the dark 
matter density?

Today

Particle physics
+cosmology:
Extrapolate to early 
hot Universe

 

Temperatures 1-100 GeV  (~1013 -1015 K)

▪ Relic from thermal abundance
▪ Consider cosmological history of Universe:
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WIMP freeze-out



Boltzmann equations for particle densities 1

Eχ (∂t −Hp ∂p) fχ(p, t) = C [fχ]

Relativistic Liouville operator for
homogeneous, isotropic Universe Collision operator

DM distribution functions

Cosmology Particle Physics

[Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, 
Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]
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1

Eχ (∂t −Hp ∂p) fχ(p, t) = C [fχ]

nχ(t) =

�
dΠp fχ(p, t)

�σv� ∝
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dΠχσv f

eq
f
eq

dnχ

dt
+ 3Hnχ = −�σv�therm

�
n
2
χ − n

eq
χ

2
�

Integrated equation for                                      :

Assumption:

Boltzmann equations for particle densities

1

p2
f χ 1

p 1

dnχ

dt
+ 3Hnχ = −�σv�ann

�
n
2
χ − n

eq
χ

2
�

(Boltzmann distribution established  
in kinetic equilibrium)

Cosmology Particle Physics

[see e.g. Binder, Bringmann, Gustafsson, Hryczuk 2017
 for general solutions without kinetic eq.]

[Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, 
Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]
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Boltzmann equations for particle densities
1

dnχ

dt
+ 3Hnχ = −�σv�ann
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n
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χ − n

eq
χ
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[Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, 
Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]
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1

Γann := nχ�σv�ann

1

H ≷ Γann

Annihilation rate: X

X

SM

SM



Boltzmann equations for particle densities
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1

H � Γann ⇒ nχ ∝ T
3
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Γann � H ⇒ nχ = n
eq
χ ∝ T

3/2e−mχ/T

non-
rel.
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eq
χ ∝ T

3/2e−mχ/T
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WIMP dark matter freeze-out
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.
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Massive Particle) [19], as opposed to the WIMP.
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small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.
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equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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Remark:  Why do heavy SM particles not freeze-out?

(DM decay forbidden by symmetry)

1

Γdecay ∝ T 0
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Figure 1. 95% C.L. upper limits on the DM annihilation cross section �σv� for all possible annihilation
channels into pairs of SM particles from CR antiprotons (solid blue curves) and from dwarf spheroidal
galaxies (dashed red curves). For the the leptonic channels the CR limits are flavor blind. Note
the different scales on the vertical axes when comparing the limits of the leptonic (upper row) and
non-leptonic annihilation channels.
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DM Models span huge range in mass and coupling!

Here: Focus on GeV-TeV range (WIMP-like)
but explore smaller couplings

➔ naturally accomodate WIMP search null-results
▪ small coupling ⇒ overproduction of DM?

▪ briefly review two such scenarios 
▪ present conversion-driven freeze-out

Jan Heisig (RWTH Aachen University)                                    9                                      Theory Seminar, UiO, Nov 22, 2017

Other avenues beyond WIMPs: Secluded dark matter [Pospelov, Ritz,  Voloshin 2007; !Feng, !Kumar !2008],  
Asymmetric !dark matter [Kaplan, !Luty, !Zurek, !2009],  SIMPs [Hochberg, Kuflik, Volansky, Wacker, 2014], Co-
Decaying dark matter [Dror, Kuflik, Ng, 2016], Forbidden dark matter [D’Agnolo, Ruderman, 2015], Pseudo-
Dirac dark matter [Davolia, De Simone, Jacquesa, Sanz 2017], ELDERs [Kuflik, Perelstein, Rey-Le Lorier, Tsai, 2016 & 2017], ...



Freeze-in scenario
[McDonald 2002; Choi, Roszkowski 2005; 
Petraki, Kusenko 2008; Hall, Jedamzik, March-
Russell, West, 2009]
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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SuperWIMP scenario
[Feng, Rajaraman, Takayama 2003]
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500GeV, m�b = 510GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the

considered scenario, for small couplings, �b�b† annihilation

is the only efficient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

Ω
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1
0
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decay only

Ωh2 = 0.12

FIG. 4. Relic density as a function of the coupling λχ, for

mχ = 500GeV, m�b = 510GeV. The dotted blue line is the

result that would be obtained when assuming CE. The red

line shows the full solution including all conversion rates, the

gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence

on initial conditions, Yχ(1) = (0−100)× Y
eq
χ (1). The central

curves correspond to Yχ(1) = Y
eq
χ (1).

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 6. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.

For the solutions providing the right relic density, dur-

ing typical freeze-out (i.e. when T ∼ mχ/30) the con-

Y
1

λ ∼ 10−12
�

ΩDMh2

0.12

�1/2

DM production from decay 
of heavier thermal relic

➔ even smaller couplings

Γ
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in

(right panel), for three different values of the interaction rate between the visible sector and DM

particles χ in each case. The arrows indicate the effect of increasing the rate Γ of the two processes.

In the left panel x = mχ/T and gray dashed line shows the equilibrium density of DM particles. In

the right panel x = mσ/T , where σ denotes the particle decaying into DM, and the gray dashed line

shows the equilibrium density of σ. In both panels Y = nχ/s, where s is the entropy density of the

baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed

that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to

the DM annihilation cross section. This can be understood by recalling that in the freeze-out

scenario DM particles are initially in thermal equilibrium with the visible sector and the

stronger the interaction between them is, the longer the DM particles remain in equilibrium

and thus the more their abundance gets diluted before the eventual freeze-out. This can also

be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal

equilibrium with the visible sector. However, if the coupling between the visible sector and

DM particles is very small, typically y � O(10
−7

) or less [258, 259], interactions between them

are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.

Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].

In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting

Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly

small, and the observed abundance is produced by bath particle decays, for instance by

σ → χχ, where σ is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].

The freeze-in yield is active until the number density of σ becomes Boltzmann-suppressed,

nσ ∝ exp(−mσ/T ). The comoving number density of DM particles χ then becomes a constant

and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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to the Hubble rate as a function of x = mχ/T for mχ = 500GeV, m�b = 510GeV, λχ ≈ 2.6 × 10−7
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the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 6. Below this curve a choice of λχ
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ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
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         E.g. gravitino as 
            a superWIMP:
       

         thermal scattering
            during reheating
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Figure 2: Points of the (17 + 1)-dimensional pMSSM scan in the mG̃-TR plane. Left panel: Dominant
contribution to the thermal gravitino production associated with M3 (blue points), M2 (green points)
and M1 (yellow points). Right panel: Ratio between the non-thermal and thermal contribution to the
gravitino abundance, Ωnon-th

G̃
/Ωth

G̃
.

yields Y ! 10−13 for TR ! 109 GeV. For these points the non-thermal contribution to
the gravitino production is of the same order of magnitude as the thermal contribution
and cannot be neglected.

In figure 3 we show the effect of the bounds imposed on the (17 + 1)-dimensional
parameter space in the ττ̃1-Yτ̃1 plane and in the mG̃-TR plane. The blue and yellow
points are rejected by the HSCP searches and by the additional bounds from flavor and
precision observables, HiggsBounds and CCB bounds, respectively, as they have been
described in section 4.1. The red points are rejected by the BBN bounds or the bounds
from the diffuse gamma ray spectrum. The left panel of figure 3 reveals the effect of
the BBN bounds on our parameter space. The border-line between the green and red
points falls down relatively rapidly for life-times above 1000 sec according to the stronger
bounds from hadrodissociation processes as well as bound-state effects. For life-times
above 106 sec photodissociation processes become most restrictive. As a consequence we
do not find allowed points with ττ̃1 > 107 sec in our scan. However, the point density
starts to dilute for ττ̃1 > 107 sec as a consequence of our logarithmic prior in the scan over
the gravitino mass (rather than over the stau life-time). Further, we do not encounter
any point which is allowed by all other constraints but lies close to the bound on the
yield imposed by the diffuse gamma ray spectrum. The spot of red points in the region
Y ! 10−12 and ττ̃1 " 102 sec stems from the energy release of mesons originating from
tau decays.

Note that the BBN constraints from [28] show almost no dependents on the hadronic
branching ratios for ττ̃1 > 105 sec and for the typically achieved hadronic branching
ratios in this region that are well below Bh = 10−2. Hence, the BBN constraints are not
sensitive to the precise computation of Bh in this region.

The right panel of figure 3 shows the parameter points in the mG̃-TR plane. The

14

[JH, 2014]

Jan Heisig (RWTH Aachen University)                                  10                                      Theory Seminar, UiO, Nov 22, 2017



Conversion-driven freeze-out
[Garny, JH, Lülf,  Vogl 2017]

[see also D’Agnolo, Pappadopulo, Ruderman, 2017]



Revisiting WIMP co-annihilation

X1 X2

λ1 λ2

m1  < m2 

Δm ≪ m1,2

dark matter co-annihilation partner

Annihilation
X1 ➞ SM +

X1

X1

SM
λ1

SM

X1

SM (SM)
λ2

SM

SM

X2

X2

X2

Conversion
X1 ➞ X2

Co-annihilation
X2 ➞ SM

[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Revisiting WIMP co-annihilation
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

annihilations

conversions (scattering)

conversions (decay)

X1

X1

SM
λ1

SM
λ2

SM

SM

X2

X2

1

dni

dt
+ 3Hni =−

N�

j=1

�σijvij�
�
ninj − n

eq
i n

eq
j

�

−
�

j �=i

�
�σ�

Xijvij� (ninX − n
eq
i n

eq
X )− (i ↔ j)

�

−
�

j �=i

[Γij (ni − n
eq
i )− (i ↔ j)]

X1

SM
X2

X1

SM SM

X2

Coupled set of Boltzmann equations: 

Usually (e.g. SUSY): λ1 ~ λ2 ~ gSM   ⇒ conversions always efficient

▪ Drives solutions into chemical equilibrium in dark sector, i.e.

1

ni

nj
=

neq
i

neq
j
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Revisiting WIMP co-annihilation
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

Assumption of chemical equilibrium
⇒ reduction to single, uncoupled Boltzmann equation*:

1

dn

dt
+ 3Hn = −�σv�eff

�
n
2 − n

2
eq

�
,

                   entire dark sector

1

�σv�eff effective ann. cross section 

1

n :=
�

i ni
X1

X1

SM
λ1

SM

λ2

SM

SM

X2

X2

1

Ωh2 ∝ 1

�σv�eff

*) Solved by numerical tools [DarkSUSY, micrOMEGAs, MadDM]
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Conversion-driven freeze-out

Annihilation
X1 ➞ SM
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X2

X2

X2

Conversion
X1 ➞ X2

Co-annihilation
X2 ➞ SM

Consider λ1 ≪ λ2:  X1 ⟷ X2
eq.?

large ratenegligable

[Garny, JH, Lülf,  Vogl 2017]
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Conversion-driven freeze-out

Annihilation
X1 ➞ SM

Conversion
X1 ➞ X2

Co-annihilation
X2 ➞ SM

Consider λ1 ≪ λ2:  X1 ⟷ X2
eq.?

large rate
bottleneck!

negligable

[Garny, JH, Lülf,  Vogl 2017]

➔ Relic density is set by the size of the conversion rate
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➔ Relic density is set by the size of the conversion rate

X1

X1
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λ1

SM
λ2

SM

SM

X1

SM (SM)

X2

X2

X2
λ2λ1

No chemical e
quilibrium!

Coupled syst
em to be solved

Jan Heisig (RWTH Aachen University)                                  14                                      Theory Seminar, UiO, Nov 22, 2017



General back-of-the-envelope estimate:

Conversion rate (just) efficient at freeze-out:
1

cτ =
1

Γdecay
>∼

1

H(x � 30)
∼ 1−100 cm

⇒ X2 decay-length: 

(for masses 100GeV to a few TeV)

1

Γconv = Γdecay + Γscatter ∼ H(x � 30)



General back-of-the-envelope estimate:

Conversion rate (just) efficient at freeze-out:
1

cτ =
1

Γdecay
>∼

1

H(x � 30)
∼ 1−100 cm

⇒ X2 decay-length: 

(for masses 100GeV to a few TeV)

⇒ Long-lived particles at LHC!

"LLP-
miracle"

1

Γconv = Γdecay + Γscatter ∼ H(x � 30)
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-

annihilating dark matter. We explore the possible failure of this assumption and find a new

conversion-driven freeze-out mechanism. Considering a representative simplified model inspired

by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space

with very small couplings accommodating the measured relic density. In this region freeze-out takes

place out of chemical equilibrium and dark matter self-annihilation is thoroughly inefficient. The

relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.

Due to the small dark matter coupling the parameter region is immune to direct detection but

predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)

in the Universe is one of the most pressing questions in

particle- and astrophysics. Despite impressive efforts to

uncover its interactions with the Standard Model (SM)

of particle physics in (in)direct detection and accelerator

based experiments, DM remains elusive and, so far, our

understanding is essentially limited to its gravitational

interactions (see e.g. [1, 2]). It is therefore of utmost

interest to investigate mechanisms for the generation of

DM in the early Universe that go beyond the widely stud-

ied paradigm of thermal freeze-out, and that can point

towards non-standard signatures.

In this spirit we subject the well-known co-annihilation

scenario [3] to further scrutiny and investigate the im-

portance of the commonly made assumption of chem-

ical equilibrium (CE) between the DM and the co-

annihilation partner. This requires solving the full set of

coupled Boltzmann equations which has been performed

in the context of specific supersymmetric scenarios [4, 5].

Here we consider a simplified DM model and explore the

break-down of CE in detail finding a new, conversion

driven solution for DM freeze-out which points towards

a small interaction strength of the DM particle with the

SM bath. While the smallness of the coupling renders

most of the conventional signatures of DM unobservable,

new opportunities for collider searches arise. In partic-

ular we find that searches for long-lived particles at the

LHC are very powerful tools for testing conversion-driven

freeze-out.

The structure of the paper is as follows: We begin by

introducing a simplified model for co-annihilations before

we present the Boltzmann equations which govern the

DM freeze-out. Next, we investigate conversion-driven

solutions to the Boltzmann equations and confront the

regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize

our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-

tween the DM and its co-annihilation partner will in gen-

eral depend on the details of the considered model, the

key aspects of the phenomenology can be expected to be

universal. As a representative case we choose a simpli-

fied model for DM interacting with quarks. We extend

the matter content of the SM minimally by a Majorana

fermion χ, being a singlet under the SM gauge group,

and a scalar quark-partner �q, mediating the interactions

with the SM and acting as the co-annihilation partner.

The interactions of the new particles among themselves

and with the SM are given by [6]

Lint = |Dµ�q|2 − λχ�qq̄
1− γ5

2
χ+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant

derivative, which contains the interactions of �q with the

gauge bosons as determined by its quantum numbers,

and λχ is a Yukawa coupling. Here we choose q = b and

Y = − 1
3 . For the coupling λχ = 1

3

√
2 e
cos θW

≈ 0.17 our

simplified model makes contact with the Minimal Super-

symmetric SM where �b can be identified with a right-

handed sbottom and χ with a bino-like neutralino. How-

ever, we will vary λχ in our analysis. Nevertheless, we

will refer to the scalar mediator as sbottom, denoted by

�b, even though it does not share all the properties of a

super-partner of the b-quark. Note that choosing a top-

partner instead yields similar results although quantita-

tive differences arise due to the large top mass.

An explicit example

▪ Specific model:

▪ SUSY-inspired simplified model:
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500GeV, m�b = 510GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the

considered scenario, for small couplings, �b�b† annihilation

is the only efficient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point

Ω
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decay only

Ωh2 = 0.12

FIG. 4. Relic density as a function of the coupling λχ, for

mχ = 500GeV, m�b = 510GeV. The dotted blue line is the

result that would be obtained when assuming CE. The red

line shows the full solution including all conversion rates, the

gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence

on initial conditions, Yχ(1) = (0−100)× Y
eq
χ (1). The central

curves correspond to Yχ(1) = Y
eq
χ (1).

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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line shows the full solution including all conversion rates, the

gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence
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eq
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in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.

 Choose Majorana DM and scalar bottom-partner

▪ Yukawa-type interaction:
Rates for standard coupling (λ = λ0)

j
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SM SM

χ b̃1
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χ

Freeze out!

CE satisfied!

Γ
H
= 1
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provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
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mχ). These values lie far beyond the sensitivity of direct
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χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-
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solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6
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the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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is a free parameter here [see Ibarra et al. 2009 for SUSY realization] 
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Numerical solution of full coupled system

▪ SUSY coupling                :
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▪ Very small coupling                          :
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▪ Scan of the coupling:

Numerical solution of full coupled system

Conversion-driven freeze-out: solution (mχ = 500 GeV, mb̃ = 510 GeV)

χ-reduction only via (inefficient) conversion
Species freeze out at very different temperatures
Relic density larger than in CE (matches Planck!)
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Allowed parameter space
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FIG. 5. Dependence on the initial conditions for Yχ at x = 1.
We show solutions for the choices Yχ(1) = [0, 1, 100]×Y eq

χ (1),
and otherwise the same parameters as in Fig. 3.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T ∼ mχ/30) the con-
version rates have to be on the edge of being efficient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, Γ�b, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray
dotted lines in Fig. 7. It ranges from 25 cm to below
2.5 cm for increasing mass difference (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal efficiency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of cτ � 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
LHC data are superimposed in Fig. 7. For mass split-
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FIG. 6. Viable parameter space in the plane spanned by
mχ and ∆mχ�b = m�b − mχ. We adjust λχ such that Ωh2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling λχ/10

−7 (decay length cτ) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

tings below mb (below gray dashed curve) the 2-body
decay is not allowed and the resulting R-hadrons can be
considered detector-stable. Towards large mass splittings
(smaller life-times) the limits fall off significantly provid-
ing no constraint above ∆mχ�b � 13GeV.

On the other hand, a large number of experimen-
tal results for a sbottom-neutralino simplified model ex-
ist assumong a prompt sbottom decay, see e.g. [26–29].
While most of these searches are not applicable to non-
prompt decays, monojet searches, targeting small mass
splittings, have been performed that do not rely on the
prompt decay of the sbottom [30, 31]. We superimpose
the (stronger) limit from [31] that uses 3.2 fb−1 of 13 TeV
data.

CONCLUSION

In this work we have considered the possibility that
the common assumption of chemical equilibrium during
DM freeze-out does not hold. For definiteness, we have
focused on a simplified model with particle content in-
spired by supersymmetry, comprising a neutral Majorana
fermion as DM candidate and a colored scalar particle
that mediates a coupling to bottom quarks. For small
mass splitting between the mediator and the DM parti-
cle, the freeze-out is dominated by self-annihilation of the
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the (stronger) limit from [31] that uses 3.2 fb−1 of 13 TeV
data.

CONCLUSION
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DM freeze-out does not hold. For definiteness, we have
focused on a simplified model with particle content in-
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that mediates a coupling to bottom quarks. For small
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LHC constraints

LLP Workshop | Karri Folan DiPetrillo | 18.10.2017

The ATLAS Detector 12

Many thanks to  
Heather Russell for the 
ATLAS and LLP figures!
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500GeV, m�b = 510GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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curves correspond to Yχ(1) = Y
eq
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in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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Figure 8: Upper cross section limits at 95% CL on various signal models for the tracker-only

analysis (left column) and tracker+TOF analysis (right column). The top row is for the data at√
s = 7 TeV, the middle row is for the data at

√
s = 8 TeV, the bottom row shows the ratio of

the limit to the theoretical value for the combined dataset. In the legend, ’CS’ stands for the

charge-suppressed interaction model.
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α = −4/3αs or α = 1/6αs, respectively. The gg final
state is slightly more complicated since it can be in a
singlet or octet representation. After summing over the
different contributions the total Sommerfeld correction
factor for this case reads [9]

S0 → 2

7
S0

�����
α=−4/3αs

+
5

7
S0

�����
α=1/6αs

. (5)

Since this channel dominates the annihilation rates by
orders of magnitude, we only take the correction for an-
nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly
ionizing tracks the can be performed in a rather inclu-
sive manner. They have been interpreted for lepton-
like heavy stable charged particles (HSCPs) and R-
hadrons [14–17]. Here we derive LHC constraints on the
model by reinterpreting the results of [14] for detector-
stable R-hadrons for finite decay lengths cτ . To this end
we compute the weighted fraction of R-hadrons that de-
cay after traversing the relevant parts of the detector in a
Monte Carlo simulation as follows. For a given R-hadron
in an event i this fraction is

F i
pass = e−�/(cτβγ) , (6)

where � = �(η) is the travel distance to pass the respec-
tive part of the detector which depends on the pseudo-
rapidity η while γ is the Lorentz factor according to the
velocity β. We use a simple cylindrical approximation
for the CMS tracker2 with a radius and length of 1.1 m
and 5.6 m, respectively. For the weighting we compute3

Fpass =

�
i F i

passPi
onPi

off�
i Pi

onPi
off

, (7)

where Pi
on and Pi

off are the probabilities of the respective
event to be triggered and pass the selection cuts, respec-
tively, and the sum runs over all generated events. We
use the tabulated probabilities Pi

on,Pi
off for lepton-like

HSCPs following the prescription in [18] (see also [19]
for details of the implementation of isolation criteria and
validation). We expect this to be a good approxima-
tion as the selection criteria for lepton-like HSCPs and

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [14] finding the higher sensitivity for the former one.

3 For simplicity we display the formula for one R-hadron candi-
dates per event, for events with two candidates we follow the
prescription in [18] (with the replacement Pi

off → F i
passPi

off in
the respective sum in the numerator of Eq. (7)).

R-hadrons are identical and differences in the overall de-
tector efficiency cancel out in Eq. (7). We simulate events
with MadGraph5_aMC@NLO [20], performing show-
ering and hadronization with Pythia 6 [21].

We use the cross section predictions from NLL-

Fast [22] and rescale the signal by Fpass. The 95%
CL exclusion limits are then obtained from a compari-
son to the respective cross section limits from searches for
(top-squark) R-hadrons presented in [14]. The results are
shown in Fig. 2. We show limits for two models regard-
ing the hadronization and interaction of the R-hadron
with the detector material, the generic model [23, 24]
and Regge (charge-suppressed) model [25, 26] as the red
solid and blue dashed line, respectively.

In addition to the results for the 8 TeV LHC we show
results from an analogous reinterpretation of the prelimi-
nary results from 12.9 fb−1 of data from the 13 TeV LHC
run [15]. Since the tabulated probabilities in [18] are only
provided for 8TeV we use these also for the analysis of the
13 TeV simulation assuming a similar detector efficiency
for R-hadrons in both runs.
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FIG. 2. Regions excluded at 95% CL by a reinterpretation

of the searches for detector stable top-squark R-hadrons with

CMS at the 8TeV and 13TeV LHC (tracker-only analysis).

The fraction of R-hadrons passing the tracker is ex-
ponentially suppressed for small life-times significantly
weakening the respective sensitivity. However, there are
two competing factors that nevertheless result in mean-
ingful limits for cτ smaller than the detector size. On
the one hand, for small masses the production cross sec-
tion rises quickly. On the other hand, for smaller masses
a larger fraction of R-hadrons is significantly boosted
enhancing the travel distance in the detector. How-
ever, this (latter) effect does not significantly enhance
the sensitivity as the signal efficiency for largely boosted
R-hadrons decreases rapidly (as tracks become indistin-
guishable from minimal ionizing tracks for β → 1).
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Figure 6: Exclusion region at 95% CL as a function of squark mass and the squark–neutralino mass difference for

(left) the decay channel b̃1 → b+χ̃0

1
and (right) q̃→ q+χ̃0

1
(q = u, d, c, s). The dotted lines around the observed limit

indicate the range of observed limits corresponding to ±1σ variations of the NLO SUSY cross-section predictions.

The shaded area around the expected limit indicates the expected ±1σ ranges of limits in the absence of a signal.

the cross section and a ±3% change in the acceptance. In addition, the uncertainty in the integrated

luminosity is included.

Figure 7 (left) shows the observed and expected 95% CL exclusion limits in the mχ–mA parameter plane

for a simplified model with an axial-vector mediator, Dirac WIMPs, and couplings gq = 1/4 and gχ = 1.

A minimal mediator width is assumed. In addition, observed limits are shown using ±1σ theoretical

uncertainties in the signal cross sections. In the on-shell regime, the models with mediator masses up

to 1 TeV are excluded. This analysis loses sensitivity to the models in the off-shell regime, where the

decay into a pair of WIMPs is kinematically suppressed. The perturbative unitarity is violated in the

parameter region defined by mχ >
√
π/2 mA [95]. The masses corresponding to the correct relic density

as measured by the Planck and WMAP satellites [35, 36], in the absence of any interaction other than the

one considered, are indicated in the figure as a line that crosses the excluded region at mA ∼ 880 GeV and

mχ ∼ 270 GeV. The region towards lower WIMP masses or higher mediator masses corresponds to dark

matter overproduction. On the opposite side of the curve, other WIMP production mechanisms need to

exist in order to explain the observed dark matter relic density.

In Fig. 7 (right) the results are translated into 90% CL exclusion limits on the spin-dependent WIMP–

proton scattering cross section as a function of the WIMP mass, following the prescriptions explained

in Refs. [41, 42], and are compared to results from the direct-detection experiments XENON100 [96],

LUX [97], and PICO [98, 99]. This comparison is model-dependent and solely valid in the context of

this particular Z�-like model. In this case, stringent limits on the scattering cross section of the order of

10
−42

cm
2

up to WIMP masses of about 300 GeV are inferred from this analysis, and complement the re-

sults from direct-detection experiments for mχ < 10 GeV. The loss of sensitivity in models where WIMPs

are produced off-shell is expressed by the turn of the exclusion line, reaching back to low WIMP masses

and intercepting the exclusion lines from the direct-detection experiments at around mχ = 80 GeV.
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tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the
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gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence

on initial conditions, Yχ(1) = (0−100)× Y
eq
χ (1). The central

curves correspond to Yχ(1) = Y
eq
χ (1).

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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α = −4/3αs or α = 1/6αs, respectively. The gg final
state is slightly more complicated since it can be in a
singlet or octet representation. After summing over the
different contributions the total Sommerfeld correction
factor for this case reads [9]

S0 → 2

7
S0

�����
α=−4/3αs

+
5

7
S0

�����
α=1/6αs

. (5)

Since this channel dominates the annihilation rates by
orders of magnitude, we only take the correction for an-
nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly
ionizing tracks the can be performed in a rather inclu-
sive manner. They have been interpreted for lepton-
like heavy stable charged particles (HSCPs) and R-
hadrons [14–17]. Here we derive LHC constraints on the
model by reinterpreting the results of [14] for detector-
stable R-hadrons for finite decay lengths cτ . To this end
we compute the weighted fraction of R-hadrons that de-
cay after traversing the relevant parts of the detector in a
Monte Carlo simulation as follows. For a given R-hadron
in an event i this fraction is

F i
pass = e−�/(cτβγ) , (6)

where � = �(η) is the travel distance to pass the respec-
tive part of the detector which depends on the pseudo-
rapidity η while γ is the Lorentz factor according to the
velocity β. We use a simple cylindrical approximation
for the CMS tracker2 with a radius and length of 1.1 m
and 5.6 m, respectively. For the weighting we compute3

Fpass =

�
i F i

passPi
onPi

off�
i Pi

onPi
off

, (7)

where Pi
on and Pi

off are the probabilities of the respective
event to be triggered and pass the selection cuts, respec-
tively, and the sum runs over all generated events. We
use the tabulated probabilities Pi

on,Pi
off for lepton-like

HSCPs following the prescription in [18] (see also [19]
for details of the implementation of isolation criteria and
validation). We expect this to be a good approxima-
tion as the selection criteria for lepton-like HSCPs and

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [14] finding the higher sensitivity for the former one.

3 For simplicity we display the formula for one R-hadron candi-
dates per event, for events with two candidates we follow the
prescription in [18] (with the replacement Pi

off → F i
passPi

off in
the respective sum in the numerator of Eq. (7)).

R-hadrons are identical and differences in the overall de-
tector efficiency cancel out in Eq. (7). We simulate events
with MadGraph5_aMC@NLO [20], performing show-
ering and hadronization with Pythia 6 [21].

We use the cross section predictions from NLL-

Fast [22] and rescale the signal by Fpass. The 95%
CL exclusion limits are then obtained from a compari-
son to the respective cross section limits from searches for
(top-squark) R-hadrons presented in [14]. The results are
shown in Fig. 2. We show limits for two models regard-
ing the hadronization and interaction of the R-hadron
with the detector material, the generic model [23, 24]
and Regge (charge-suppressed) model [25, 26] as the red
solid and blue dashed line, respectively.

In addition to the results for the 8 TeV LHC we show
results from an analogous reinterpretation of the prelimi-
nary results from 12.9 fb−1 of data from the 13 TeV LHC
run [15]. Since the tabulated probabilities in [18] are only
provided for 8TeV we use these also for the analysis of the
13 TeV simulation assuming a similar detector efficiency
for R-hadrons in both runs.

200 400 600 800 1000 1200
0.01

0.1

1

10

100

cτ
[m

]
m�q [GeV]

Reinterpretation CMS R-hadron search

—
—

—–Regge model

—
——

–

generic model

8
T
eV

13
T
eV

FIG. 2. Regions excluded at 95% CL by a reinterpretation

of the searches for detector stable top-squark R-hadrons with

CMS at the 8TeV and 13TeV LHC (tracker-only analysis).

The fraction of R-hadrons passing the tracker is ex-
ponentially suppressed for small life-times significantly
weakening the respective sensitivity. However, there are
two competing factors that nevertheless result in mean-
ingful limits for cτ smaller than the detector size. On
the one hand, for small masses the production cross sec-
tion rises quickly. On the other hand, for smaller masses
a larger fraction of R-hadrons is significantly boosted
enhancing the travel distance in the detector. How-
ever, this (latter) effect does not significantly enhance
the sensitivity as the signal efficiency for largely boosted
R-hadrons decreases rapidly (as tracks become indistin-
guishable from minimal ionizing tracks for β → 1).
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Figure 6: Exclusion region at 95% CL as a function of squark mass and the squark–neutralino mass difference for

(left) the decay channel b̃1 → b+χ̃0

1
and (right) q̃→ q+χ̃0

1
(q = u, d, c, s). The dotted lines around the observed limit

indicate the range of observed limits corresponding to ±1σ variations of the NLO SUSY cross-section predictions.

The shaded area around the expected limit indicates the expected ±1σ ranges of limits in the absence of a signal.

the cross section and a ±3% change in the acceptance. In addition, the uncertainty in the integrated

luminosity is included.

Figure 7 (left) shows the observed and expected 95% CL exclusion limits in the mχ–mA parameter plane

for a simplified model with an axial-vector mediator, Dirac WIMPs, and couplings gq = 1/4 and gχ = 1.

A minimal mediator width is assumed. In addition, observed limits are shown using ±1σ theoretical

uncertainties in the signal cross sections. In the on-shell regime, the models with mediator masses up

to 1 TeV are excluded. This analysis loses sensitivity to the models in the off-shell regime, where the

decay into a pair of WIMPs is kinematically suppressed. The perturbative unitarity is violated in the

parameter region defined by mχ >
√
π/2 mA [95]. The masses corresponding to the correct relic density

as measured by the Planck and WMAP satellites [35, 36], in the absence of any interaction other than the

one considered, are indicated in the figure as a line that crosses the excluded region at mA ∼ 880 GeV and

mχ ∼ 270 GeV. The region towards lower WIMP masses or higher mediator masses corresponds to dark

matter overproduction. On the opposite side of the curve, other WIMP production mechanisms need to

exist in order to explain the observed dark matter relic density.

In Fig. 7 (right) the results are translated into 90% CL exclusion limits on the spin-dependent WIMP–

proton scattering cross section as a function of the WIMP mass, following the prescriptions explained

in Refs. [41, 42], and are compared to results from the direct-detection experiments XENON100 [96],

LUX [97], and PICO [98, 99]. This comparison is model-dependent and solely valid in the context of

this particular Z�-like model. In this case, stringent limits on the scattering cross section of the order of

10
−42

cm
2

up to WIMP masses of about 300 GeV are inferred from this analysis, and complement the re-

sults from direct-detection experiments for mχ < 10 GeV. The loss of sensitivity in models where WIMPs

are produced off-shell is expressed by the turn of the exclusion line, reaching back to low WIMP masses

and intercepting the exclusion lines from the direct-detection experiments at around mχ = 80 GeV.
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Figure 8: Upper cross section limits at 95% CL on various signal models for the tracker-only

analysis (left column) and tracker+TOF analysis (right column). The top row is for the data at√
s = 7 TeV, the middle row is for the data at

√
s = 8 TeV, the bottom row shows the ratio of

the limit to the theoretical value for the combined dataset. In the legend, ’CS’ stands for the

charge-suppressed interaction model.
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3

α = −4/3αs or α = 1/6αs, respectively. The gg final
state is slightly more complicated since it can be in a
singlet or octet representation. After summing over the
different contributions the total Sommerfeld correction
factor for this case reads [9]

S0 → 2

7
S0

�����
α=−4/3αs

+
5

7
S0

�����
α=1/6αs

. (5)

Since this channel dominates the annihilation rates by
orders of magnitude, we only take the correction for an-
nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly
ionizing tracks the can be performed in a rather inclu-
sive manner. They have been interpreted for lepton-
like heavy stable charged particles (HSCPs) and R-
hadrons [14–17]. Here we derive LHC constraints on the
model by reinterpreting the results of [14] for detector-
stable R-hadrons for finite decay lengths cτ . To this end
we compute the weighted fraction of R-hadrons that de-
cay after traversing the relevant parts of the detector in a
Monte Carlo simulation as follows. For a given R-hadron
in an event i this fraction is

F i
pass = e−�/(cτβγ) , (6)

where � = �(η) is the travel distance to pass the respec-
tive part of the detector which depends on the pseudo-
rapidity η while γ is the Lorentz factor according to the
velocity β. We use a simple cylindrical approximation
for the CMS tracker2 with a radius and length of 1.1 m
and 5.6 m, respectively. For the weighting we compute3

Fpass =

�
i F i

passPi
onPi

off�
i Pi

onPi
off

, (7)

where Pi
on and Pi

off are the probabilities of the respective
event to be triggered and pass the selection cuts, respec-
tively, and the sum runs over all generated events. We
use the tabulated probabilities Pi

on,Pi
off for lepton-like

HSCPs following the prescription in [18] (see also [19]
for details of the implementation of isolation criteria and
validation). We expect this to be a good approxima-
tion as the selection criteria for lepton-like HSCPs and

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [14] finding the higher sensitivity for the former one.

3 For simplicity we display the formula for one R-hadron candi-
dates per event, for events with two candidates we follow the
prescription in [18] (with the replacement Pi

off → F i
passPi

off in
the respective sum in the numerator of Eq. (7)).

R-hadrons are identical and differences in the overall de-
tector efficiency cancel out in Eq. (7). We simulate events
with MadGraph5_aMC@NLO [20], performing show-
ering and hadronization with Pythia 6 [21].

We use the cross section predictions from NLL-

Fast [22] and rescale the signal by Fpass. The 95%
CL exclusion limits are then obtained from a compari-
son to the respective cross section limits from searches for
(top-squark) R-hadrons presented in [14]. The results are
shown in Fig. 2. We show limits for two models regard-
ing the hadronization and interaction of the R-hadron
with the detector material, the generic model [23, 24]
and Regge (charge-suppressed) model [25, 26] as the red
solid and blue dashed line, respectively.

In addition to the results for the 8 TeV LHC we show
results from an analogous reinterpretation of the prelimi-
nary results from 12.9 fb−1 of data from the 13 TeV LHC
run [15]. Since the tabulated probabilities in [18] are only
provided for 8TeV we use these also for the analysis of the
13 TeV simulation assuming a similar detector efficiency
for R-hadrons in both runs.
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FIG. 2. Regions excluded at 95% CL by a reinterpretation

of the searches for detector stable top-squark R-hadrons with

CMS at the 8TeV and 13TeV LHC (tracker-only analysis).

The fraction of R-hadrons passing the tracker is ex-
ponentially suppressed for small life-times significantly
weakening the respective sensitivity. However, there are
two competing factors that nevertheless result in mean-
ingful limits for cτ smaller than the detector size. On
the one hand, for small masses the production cross sec-
tion rises quickly. On the other hand, for smaller masses
a larger fraction of R-hadrons is significantly boosted
enhancing the travel distance in the detector. How-
ever, this (latter) effect does not significantly enhance
the sensitivity as the signal efficiency for largely boosted
R-hadrons decreases rapidly (as tracks become indistin-
guishable from minimal ionizing tracks for β → 1).
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
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. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the

considered scenario, for small couplings, �b�b† annihilation

is the only efficient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point
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result that would be obtained when assuming CE. The red

line shows the full solution including all conversion rates, the

gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence

on initial conditions, Yχ(1) = (0−100)× Y
eq
χ (1). The central

curves correspond to Yχ(1) = Y
eq
χ (1).

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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FIG. 2. Relic density as a function of the coupling λχ, for
mχ = 500GeV, m�b = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Yχ(1) = (0−100)× Y eq

χ (1). The central
curves correspond to Yχ(1) = Y eq

χ (1).
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FIG. 3. Dependence on the initial conditions for Yχ at x = 1.
We show solutions for the choices Yχ(1) = [0, 1, 100]×Y eq

χ (1),
and otherwise the same parameters as in Fig. 1.

between �b and χ to provide the right relic density. The
value of λχ ranges from 10−7 to 10−6 (from small to large
mχ). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T ∼ mχ/30) the con-
version rates have to be on the edge of being efficient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, Γ�b, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray
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FIG. 4. Viable parameter space in the plane spanned by
mχ and ∆mχ�b = m�b − mχ. We adjust λχ such that Ωh2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling λχ/10

−7 (decay length cτ) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

dotted lines in Fig. 4. It ranges from 25 cm to below
2.5 cm for increasing mass difference (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal efficiency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of cτ � 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
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In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal efficiency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of cτ � 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-

annihilating dark matter. We explore the possible failure of this assumption and find a new

conversion-driven freeze-out mechanism. Considering a representative simplified model inspired

by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space

with very small couplings accommodating the measured relic density. In this region freeze-out takes

place out of chemical equilibrium and dark matter self-annihilation is thoroughly inefficient. The

relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.

Due to the small dark matter coupling the parameter region is immune to direct detection but

predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)

in the Universe is one of the most pressing questions in

particle- and astrophysics. Despite impressive efforts to

uncover its interactions with the Standard Model (SM)

of particle physics in (in)direct detection and accelerator

based experiments, DM remains elusive and, so far, our

understanding is essentially limited to its gravitational

interactions (see e.g. [1, 2]). It is therefore of utmost

interest to investigate mechanisms for the generation of

DM in the early Universe that go beyond the widely stud-

ied paradigm of thermal freeze-out, and that can point

towards non-standard signatures.

In this spirit we subject the well-known co-annihilation

scenario [3] to further scrutiny and investigate the im-

portance of the commonly made assumption of chem-

ical equilibrium (CE) between the DM and the co-

annihilation partner. This requires solving the full set of

coupled Boltzmann equations which has been performed

in the context of specific supersymmetric scenarios [4, 5].

Here we consider a simplified DM model and explore the

break-down of CE in detail finding a new, conversion

driven solution for DM freeze-out which points towards

a small interaction strength of the DM particle with the

SM bath. While the smallness of the coupling renders

most of the conventional signatures of DM unobservable,

new opportunities for collider searches arise. In partic-

ular we find that searches for long-lived particles at the

LHC are very powerful tools for testing conversion-driven

freeze-out.

The structure of the paper is as follows: We begin by

introducing a simplified model for co-annihilations before

we present the Boltzmann equations which govern the

DM freeze-out. Next, we investigate conversion-driven

solutions to the Boltzmann equations and confront the

regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize

our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-

tween the DM and its co-annihilation partner will in gen-

eral depend on the details of the considered model, the

key aspects of the phenomenology can be expected to be

universal. As a representative case we choose a simpli-

fied model for DM interacting with quarks. We extend

the matter content of the SM minimally by a Majorana

fermion χ, being a singlet under the SM gauge group,

and a scalar quark-partner �q, mediating the interactions

with the SM and acting as the co-annihilation partner.

The interactions of the new particles among themselves

and with the SM are given by [6]

Lint = |Dµ�q|2 − λχ�qq̄
1− γ5

2
χ+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant

derivative, which contains the interactions of �q with the

gauge bosons as determined by its quantum numbers,

and λχ is a Yukawa coupling. Here we choose q = b and

Y = − 1
3 . For the coupling λχ = 1

3

√
2 e
cos θW

≈ 0.17 our

simplified model makes contact with the Minimal Super-

symmetric SM where �b can be identified with a right-

handed sbottom and χ with a bino-like neutralino. How-

ever, we will vary λχ in our analysis. Nevertheless, we

will refer to the scalar mediator as sbottom, denoted by

�b, even though it does not share all the properties of a

super-partner of the b-quark. Note that choosing a top-

partner instead yields similar results although quantita-

tive differences arise due to the large top mass.

Another explicit example

▪ Specific model:

▪ SUSY-inspired simplified model:
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500GeV, m�b = 510GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the

considered scenario, for small couplings, �b�b† annihilation

is the only efficient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling λχ, for

mχ = 500GeV, m�b = 510GeV. The dotted blue line is the

result that would be obtained when assuming CE. The red

line shows the full solution including all conversion rates, the

gray dashed line corresponds to the solution when only decays

are considered. The shaded areas highlight the dependence

on initial conditions, Yχ(1) = (0−100)× Y
eq
χ (1). The central

curves correspond to Yχ(1) = Y
eq
χ (1).

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct
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4

r
e
la

t
iv

e
r
a
t
e
Γ
/
H

mX1/T

X2X2 → SM

X2 → X1 SM

a
b
u
n
d
a
n
c
e

mX1/T

X1X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500GeV, m�b = 510GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 4 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 4. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the
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is the only efficient annihilation channel. Hence the min-
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in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 7. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

between �b and χ to provide the right relic density. The

value of λχ ranges from 10−7
to 10−6

(from small to large

mχ). These values lie far beyond the sensitivity of direct

or indirect detection experiments.
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▪ Difference: Top-quark non-negligible mass!
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Viable parameter space: �t case

BBN limits [Jedamzik ’08]

HSCP searches [CMS ’13,CMS ’16]

Long-term LHC likely to test

complete parameter space!
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Scrutinizing some assumptions



Dependence on Initial Conditions
Dependence on initial conditions

Equilibrium values at x = 1 not guaranteed
Check dependence on actual starting values for χ abundance

! " # $ %&
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%&&
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Decay only
Full conversion

100

0

100

Planck

CE

Y

x

Full conversion

Yχ

Y eq
χ

Yb̃

Coupled solution insensitive in range

Yχ(1) = (0 − 100) × Y eq
χ (1)
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Dependence on initial conditions

Equilibrium values at x = 1 not guaranteed
Check dependence on actual starting values for χ abundance
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▪ So far equilibrium density at x=1 assumed
▪ Does DM thermalize? 1

�b-model: mχ = 500GeV , m�b = 510GeV

▪ Insensitive in range 

1

Yχ(1) = (0−100)× Y eq
χ (1)

⇒ Independent of thermal history prior to freeze-out!
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Kinetic equilibrium

[cf. Chen, Kamionkowski, Zhang 2001, 
Bringmann, Hofmann 2006; 
Borzumati, Bringmann, Ullio 2007]

▪ Assumption of thermal distributions (via kinetic equilibrium) 

1

fχ(t, p) = f eq(t, p)
n(t)

neq(t)

▪ WIMPs: kinetic equilibrium estabished through efficient 
  elastic scatterings with SM particles:

X

SM SM

X (kinetic decoupling
takes place well after 
freeze-out)
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Kinetic equilibrium

▪ Assumption of thermal distributions (via kinetic equilibrium) 

1

fχ(t, p) = f eq(t, p)
n(t)

neq(t)

▪ WIMPs: kinetic equilibrium estabished through efficient 
  elastic scatterings with SM particles:

X

SM SM

X

▪ Inefficient for DM in conversion-driven freeze-out!

▪ Mediator is in kinetic equilibirum

1

∝ λ4
χ
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Unintegrated BME [see also Rutherman+ ’17, Bringmann+ ’17]

Consider unintegrated BME for χ (geff = const., only conversions, no annihilations)

Hx∂x fχ(q,x) = �C(q,x)

�
f

eq
χ

Yb̃
Y eq

b̃
− fχ

�

For decay with massless b-quark: �C available analytically!
Use separation of variables and variation of constants to find solution

fχ(q,x) = f
eq

χ (q,x)
Yb̃
Y eq

b̃
−

� x

x0

d
�
f

eq
χ (q,y)Yb̃(y)/Y

eq
b̃ (y)

�

dy
× exp

�
−

� x

y

�C(q,z)
zH(z)

dz

�
dy

Caution: Yb̃ needed!
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Unitegrated Boltzmann equation
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Iterative solution
Don’t solve the coupled system at once, but iteratively!
Start with “guess” for Yb̃, e.g. solution from integrated BME with KE

Yχ

Yb̃

fχ

Y 0
b̃

4

Iterative solution of the coupled system

The solution Eq. (13) of the Boltzmann equation for

fχ(q, x) requires as an input the evolution of the mediator

abundance, Y�b(x). The latter can be obtained by solving

the corresponding integrated Boltzmann equation, which

in turn involves Yχ(x), that is determined by integrat-

ing fχ(q, x) over all momentum modes. Therefore the

equations for fχ(q, x) and Y�b(x) form a coupled set of

equations.

Here we solve this coupled set of differential equations

in an iterative process. We start with an initial “guess” for

Y�b(x), which we take to be the solution when assuming

kinetic equilibrium (see below for a discussion of differ-

ent choices). We then solve for fχ(q, x) on a momentum-

grid, and numerically compute Yχ(x) using Eq. (13) as

described in the last subsection. With this solution for

Yχ(x) we recalculate Y�b(x) using the integrated Boltz-

mann equation. We subsequently iterate between solv-

ing for fχ(q, x) and Y�b(x), until we encounter sufficient

convergence. In order to solve the differential Boltzmann

equation in an acceptable time, we neglect the bottom

mass and choose heff and geff to be evaluated at x = 50
and constant for all times. We do not expect a strong

dependence on these simplifications.

The resulting evolution of the abundance Yχ(x) for

the benchmark point mχ = 500GeV, m�b = 510GeV is
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FIG. 2. Upper panel: Evolution for the resulting abundance
of �b (blue) and χ (red) of the differential (solid) and integrated
(dotted) Boltzmann equation. The dashed curves denote the
equilibrium abundances. Lower panel: Ratio of the two abun-
dances for χ. The red solid line shows the converged result
while the orange thick and thin curves denote the first and
the following iterations, respectively. Only the decay term is
considered.

shown in Fig. 2 (upper panel) as a red solid curve. We

compare the result to the solution of the coupled inte-

grated Boltzmann equation (red dotted curve) obtained

under the same approximations. We adjust the coupling

λχ = 4.03×10−7
such as to obtain the measured DM relic

density for the solution of the coupled integrated Boltz-

mann equation. The lower panel of Fig. 2 shows the ra-

tio of the differential and integrated solutions for Yχ(x).
While the dark matter abundance differs by up to a fac-

tor of two at intermediate times, the final relic abundance

agrees well with the corresponding result when assuming

kinetic equilibrium, with deviations below the 10% level.

The main reason is that, for the process and the kine-

matical situation that is relevant here, the collision term

does not depend strongly on the momentum mode (see

Fig. 3, dot-dashed lines). In the same figure, we also

show the result for fχ(q, x) at various times x (blue lines),

which indeed differs from an equilibrium distribution (in-
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FIG. 3. Collision operator (normalized by the Hubble rate,
green dot-dashed curves) and the phase space distribution of
the differential (blue solid) and integrated (red dashed) solu-
tion as a function of the momentum mode q for three differ-
ent times, x = 15, 63 and 100. The phase space distribution
are normalized to the integral over the differential solution,
q
2
fχ /

�
q
2
f

diff
χ dq. Only the decay term is considered.
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Iterative solution
▪ Do not solve coupled system at once but interatively 

▪ Start with "guess" for      : solution of integrated equations

1

Y�b
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Deviation from thermal distributionDeviations from thermal distribution

Early: only redshifting

Conversion inset: C more effective
for smaller x → smaller abundance

Decay re-thermalizes distribution
during freeze-out

4

Iterative solution of the coupled system

The solution Eq. (13) of the Boltzmann equation for

fχ(q, x) requires as an input the evolution of the mediator

abundance, Y�b(x). The latter can be obtained by solving

the corresponding integrated Boltzmann equation, which

in turn involves Yχ(x), that is determined by integrat-

ing fχ(q, x) over all momentum modes. Therefore the

equations for fχ(q, x) and Y�b(x) form a coupled set of

equations.

Here we solve this coupled set of differential equations

in an iterative process. We start with an initial “guess” for

Y�b(x), which we take to be the solution when assuming

kinetic equilibrium (see below for a discussion of differ-

ent choices). We then solve for fχ(q, x) on a momentum-

grid, and numerically compute Yχ(x) using Eq. (13) as

described in the last subsection. With this solution for

Yχ(x) we recalculate Y�b(x) using the integrated Boltz-

mann equation. We subsequently iterate between solv-

ing for fχ(q, x) and Y�b(x), until we encounter sufficient

convergence. In order to solve the differential Boltzmann

equation in an acceptable time, we neglect the bottom

mass and choose heff and geff to be evaluated at x = 50
and constant for all times. We do not expect a strong

dependence on these simplifications.

The resulting evolution of the abundance Yχ(x) for

the benchmark point mχ = 500GeV, m�b = 510GeV is
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shown in Fig. 2 (upper panel) as a red solid curve. We

compare the result to the solution of the coupled inte-

grated Boltzmann equation (red dotted curve) obtained

under the same approximations. We adjust the coupling

λχ = 4.03×10−7
such as to obtain the measured DM relic

density for the solution of the coupled integrated Boltz-

mann equation. The lower panel of Fig. 2 shows the ra-

tio of the differential and integrated solutions for Yχ(x).
While the dark matter abundance differs by up to a fac-

tor of two at intermediate times, the final relic abundance

agrees well with the corresponding result when assuming

kinetic equilibrium, with deviations below the 10% level.

The main reason is that, for the process and the kine-

matical situation that is relevant here, the collision term

does not depend strongly on the momentum mode (see

Fig. 3, dot-dashed lines). In the same figure, we also

show the result for fχ(q, x) at various times x (blue lines),

which indeed differs from an equilibrium distribution (in-
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▪ small x: redshift only

▪ Conversion inset: 
   thermalization starts

▪ Close-to-thermal
   distribution
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Initial guess
Yb̃ thermalizes χ! → large impact!
Justifiable guess for iteration start? 5

! !" !"" !"""

!"!#$

!"!#!

!"!!$

!"!!!

!"!$

!"!!

Y

x

Ωh2 = 0.12

! !" !"" !"""
!"!!#

!"!!$

!"!!"

!"!%

!"!&

Y
x

Ωh2 = 0.12

FIG. 4. Evolution of the abundance of �b (blue solid) and χ (red solid) for two different choices of the starting point of the

iteration, shown in the two panels, respectively. Left panel: Initial mediator abundance set to the equilibrium abundance,

Y�b(x) = Y eq
�b

. The thick and thin orange solid curves denote the first and the following iterations, respectively. The orange

dotted curve shows the integrated solution obtained for Y�b(x) = Y eq
�b

. Right panel: Initial χ abundance set to the equilibrium

abundance at relativistic temperatures, Yχ(x) = Y eq
χ (x <∼ 1). The thick and thin orange solid curves denote the initial

abundance and the following iterations, respectively. Only the decay term is considered. As in Fig. 2 the dashed curves denote

the equilibrium abundances.

dicated by the red dashed lines) at intermediate times
(upper and middle panel in Fig. 3). Nevertheless, around
the time when the dark matter abundance freezes out,
the remaining decays of thermalized �b tend to restore an
equilibrium distribution (lowest panel).

It is interesting to obeserve that the total abundance
obtained from the unintegrated Boltzmann equation is
slightly below the result when assuming kinetic equilib-
rium. This can also be understood from Fig. 3. For high
temperatures, the momentum modes obtained from the
differential solution essentially change only due to red-
shift. In contrast, the kinetic equilibrium distribution
populates somewhat higher modes. By the time when
conversion gets efficient, the collision term is larger for
smaller momentum modes. Therefore, the conversion
into �bs is stronger for the differential solution, rendering
a slightly smaller abundance.

Let us now discuss the impact of the initial “guess” for
Y�b(x) used for the iterative solution. We check that the
converged result is independent of the starting point of
the iteration by using two rather different initial abun-
dances. First, we use the equilibrium abundance Y eq

�b
(x)

as starting point. The results are shown in the left panel
of Fig. 4. The evolution of Yχ(x) obtained in the fist iter-
ation step is shown by the thick orange line, and the suc-
cessive iterations are indicated by the thin orange lines.
The final, converged result (thick red line) agrees well
with the result obtained in Fig. 2. The same is true for
Y�b(x) (solid blue line). On the other hand, we would like
to point out that the first iteration and the converged re-
sult are rather far apart. This means that it is crucial to
solve for the coupled set of equations, allowing for devi-
ations Y�b(x) �= Y eq

�b
(x). For curiosity, we note that if one

would compare the differential with the integrated result

for Yχ(x) while fixing Y�b(x) = Y eq
�b

(x), one would find
an O(10) difference in the final abundance (see orange
dotted versus solid line in the left panel of Fig. 4), while
the corresponding difference for the converged results is
below ∼ 10%. Hence, the partial freeze-out of the me-
diator �b and its subsequent decay into χ are crucial for
the conclusion that the impact of deviations from kinetic
equilibrium on the relic density is small.

Second, we consider an extreme possibility and initially
set Yχ(x) to be constant and equal to the relativistic
equilibrium density. In this case we start the iteration
with the computation of Y�b(x). The resulting iterative
solutions for Yχ(x) are shown in right panel of Fig. 4
(orange lines). Again, the converged result for Yχ(x) (red
solid line) and Y eq

�b
(x) (solid blue line) agree well with

those shown in Fig. 2.
The convergence of the final relic density for the three

different choices of starting points is shown in Fig. 5.
Indeed, the converged results agree, indicating that the
iterative scheme is stable and leads to a unique result.

Next we want to check if the situation changes dras-
tically when including also 2 → 2 scattering processes.
Due to the increase in numerical complexity described
above, we consider the leading process χb ↔ �bg ex-
pected to capture the main effects. In order to estimate
the physical contributions from hard scatterings, we per-
form regularizations on the level of the scattering cross
section by introducing a cut-off smin = (m�b + 1GeV)2

and additionally a regulator at matrix element level of
1/t2 → 1/(t2+(1GeV)4). In addition, we restrict the in-
tegration over the angle θt between b and g in the center-
of-mass frame to cos θt ∈ [−0.9, 0.9].

Again, we solve the couple system in an iterative ap-
proach as described above, but taking scatterings into ac-

YχYb̃

fχ

Y eq
b̃ Y eq

χ (1)
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Testing initial guess
▪ Extreme cases for initial evolutions of abundances

▪ Converge to same solution:

B.
 L

ül
f
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▪ All initial guesses converge to the same solution

▪ Difference to integrated treatment below 10%
▪ Solution of coupled system more important

Results

All initial guesses converge to the same value
Relic density changes only by O(10%)

Solution of coupled system with Yb̃ essential! [cf. Rutherman+ ’17]
6
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FIG. 5. Relic density obtained from the iterative solution as
a function of the iteration step for the three different initial
abundances discussed here: Yχ(x) = Y eq

χ (x <∼ 1) (red points,
converging from above), Y�b(x) = Y eq

�b
(blue points, converg-

ing from below) and Y�b(x) set to the solution of the coupled
integrated Boltzmann equation (green points, starting in the
middle).

count. As before, we then compare the converged result

for the final relic density with the corresponding result

obtained when assuming kinetic equilibrium. We find

that the relative deviations in the resulting relic density

become even smaller as for the decay only case and stay

below 10%. Furthermore, the deviation for Yχ(x) for in-

termediate times become smaller. This is expected, be-

cause scatterings increase the conversion rates at smaller

x.

Altogether, we find that the impact of deviations from

kinetic equilibrium on the final relic abundance is rather

mild, below 10% level. This justifies to use integrated

Boltzmann equations for Yχ(x) and Y�b(x).

SOMMERFELD ENHANCEMENT

In the presence of light degrees of freedom non-

perturbative corrections to the annihilation rates are

known to become relevant in the non-relativistic limit [9,

10]. Between pairs of color charged particles the exchange

of gluons generates a potential which modifies the wave

function of the initial state particles and leads to a non-

negligible correction of the tree-level cross section [11–

14].

To leading order the effect of the QCD potential can

be described by a Coulomb-like potential [15]

V (r) ≈ αs

2r
[CQ − CR − CR� ] (21)

where CR and CR� denote the Casimir coefficients of the

incoming particles while CQ is the Casimir coefficient of

the final state. For a general Coulomb-potential with

V (r) = α/r the s-wave Sommerfeld correction factor S0

is given by [11]

S0 = − πα/β

1− eπα/β
, (22)

where β = v/2 and the total annihilation cross section of

particles moving in this potential is given by σSomm =
S0 · σtree.

1
For final states which are exclusively in a

singlet, i.e. ZZ,W+W−, γγ, or an octet representation,

i.e. γg, Zg, the enhancement is given by Eq. (22) with

α = −4/3αs or α = 1/6αs, respectively. The gg final

state is slightly more complicated since it can be in a

singlet or octet representation. After summing over the

different contributions the total Sommerfeld correction

factor for this case reads [11]

S0 → 2

7
S0

�����
α=−4/3αs

+
5

7
S0

�����
α=1/6αs

. (23)

Since this channel dominates the annihilation rates by

orders of magnitude, we only take the correction for an-

nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly

ionizing tracks can be performed in a rather inclu-

sive manner. They have been interpreted for lepton-

like heavy stable charged particles (HSCPs) and R-

hadrons [16–19]. Here we derive LHC constraints on the

model by reinterpreting the results of [16] for detector-

stable R-hadrons for finite decay lengths cτ . To this end

we compute the weighted fraction of R-hadrons that de-

cay after traversing the relevant parts of the detector in a

Monte Carlo simulation as follows. For a given R-hadron

in an event i this fraction is

F i
pass = e−�/(cτβγ) , (24)

where � = �(η) is the travel distance to pass the respec-

tive part of the detector which depends on the pseudo-

rapidity η while γ is the Lorentz factor according to the

velocity β. We use a simple cylindrical approximation

for the CMS tracker
2

with a radius and length of 1.1 m

1 In principle the Sommerfeld factors have to be determined sepa-
rately for each partial wave. For the model considered here the
total Sommerfeld effect can be approximated to good accuracy
by applying the s-wave correction to the full cross section.

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [16] finding the higher sensitivity for the former one.
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Iterative solution

[cf. D’Agnolo, Pappadopulo, Ruderman, 2017]

Jan Heisig (RWTH Aachen University)                                  31                                      Theory Seminar, UiO, Nov 22, 2017



Summary

▪ Dark matter among key scientific questions

▪ Vanilla WIMP under pressure:  Watch out for avenues 
  beyond WIMPs with new LHC signatures!
▪ Conversion-driven freeze-out: 
  ▪ Shares nice features of WIMPs

  ▪ Accommodates null-results from WIMP-searches

  ▪ H ~ Γ: Lifetimes naturally O(1-100cm) 

     ⇒ Strong motivation for long-lived particles at LHC

▪ Thermalization through mediator establishes kinetic 
   equilibrium
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