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Gravitational waves

Gravitational waves (GW) are ripples in
space-time that fulfill the wave equation.

For a weak field expansion of the metric g
Juv — Nuv =+ h,ul/
One finds an equation of motion of the form
ST
he~ 222G
C4

For localised sources, the quadrupole
moment dominates GW production
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GWs carry energy-momentum of size

(binary system) . 39 (3 1= mima/(my + ms)
EGW = — —,LL27“4w6 <« high frequency helps
5 ¢ tremendously
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To Max Born:

Together with a young
collaborator, | arrived at the
interesting result that gravitational
waves do not exist, though they
had been assumed a certainty to
the first approximation. This
shows that the nonlinear field
equations can show us more, or
rather limit us more, than we have
believed up till now,

A.E. 1936

We (Mr. Rosen and ) had sent
you our manuscript for publication
and had not authorized you to
show it to specialists before it is
printed. | see no reason to
address the — in any case
erroneous — comments of your
anonymous expert. On the basis
of this incident I prefer to publish
the paper elsewhere.

A.E. 1936

1955, Feynman’s sticky beats argument



Interferometers

: 1 aim for f ~ 100 Hz
TLETOT A — cavity with F = 100
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— phase shift very small
— Pochel’s cell
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Interferometers

MITTOor A noise:
- guantum (shot noise)
- seismic noise

- thermal noise
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LIGO |/ Virgo
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Binary mergers

: 322G 5 4 ¢

EGW — E_'u rw The energy loss leads to a change in the
C frequency according to
Large frequency good for GW E
production, remember Kepler: »3 G M5
fGW X 615
w?r® = G(my + ma)
chirp mass
and .
2T faw = 2w (m1m2)3/5
M = 7
o (M1 + mo)

— small radius important




Black holes

Black holes are formed via the collapse of spial ' [F—
= down
very massive stars > M
Schwarzschild radius _1op |
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2 0.5 H = Black hole separation 43 _5
g 0.4 _.—Black hole relative velocity =12 *é
Using this in Keplers law, we see that v ~ ¢ at $o3k ; | . g &
. v
the merger and that LIGO can see BHs with e R i =

Time (s)

~ 10 solar masses ~ 100 Hz



BH - BH mergers

GW150914
3 ;g Using the equations from before on
% ool finds a chirp mass of ~ 35M®
®05 .
A-Lof=memw T Around the peak amplitude the
030 035 040 045 orbital separation of the two bodies
Time (s) was ~ 350 km
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“for decisive contributions to the LIGO detector and the observation of gravitational waves”



Masses in the Stellar Graveyard

in Solar Masses

Known Neutron Stars
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LIGO-Virgo Neutron Stars




Neutron stars result from the explosion of supernovae with masses of
between 10-30 solar masses. Their mass is typically about 2 solar
masses and their radius about 10 km.

They can be understood as a super large nucleus with 10%° neutrons
and no protons.

The structure of the neutron star is due to the balance of the strong
force and the gravitational force — neutron star equation of state
determines the relation between mass and radius.

Neutron stars are believed to Spin axis | U _
constitute the observed (milli sec) | | [ P g
pulsars. fiel ines 7
Pulsars lead to the first indirect
observation of GWs in the 70s
— Hulse-Taylor binary

© NASA
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GW170817
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GW170817
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SNR > 32

masses are about 1.2 — 1.6 solar
masses each

Orbital separation at the end again
~0O(100 km). Cannot be black hole.

— must be neutron stars?

Virgo did’'nt see much but was very
Important

- localisation

- polarisation

What about EM couterparts?



Gamma ray burst
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A strong (not so strong actually
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Cosmic pie

Atoms
Dark
4.6% Energy
Dark 71.4%
Matter
24%

TODAY

Dark energy and dark matter is only observed through their
gravitational forces. CC problem.

Do we really need them?
Perhaps modified gravity can accout for it?



Modified gravity landscape
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Modified gravity landscape
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Hubble parameter

Due to the expansion of the Universe, distant
objects seem to recede from any observer
according to the Hubble law e
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In order to determine H, one needs v, (via
Doppler effect) and d.

0
28
13

GW events can act as standard sirens since 3
their signal in principle encodes their
distance. (c.f. standard candles of

supernovae) Results are not yet
_ competitive due to
The redshift (Doppler) can be measured by degeneracy with
identifying the host galaxy which in this case inclination. This will change
was easy due to the EM couterparts. with a larger number of
events
problems:
- pecular motions - LSS catalogues Vg =~ 3000 km/s

- d degenerate with inclination — polarisation

d ~ 43 Mpc



QCD equation of state
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The equation-of-state of quark matter is poorly known for finite
chemical potential.

These properties are important for neutron stars, in particular the
relation between mass and radius and the maximal mass that is
stable agains gravitational collaps into a BH.

The EoS can in principle be tested via teh GW signal of a neutron
star merger from the late stage where finite size effects and tidal
forces play a role.



QCD equation of state
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Unfortunatel, the very last stage of
the merger could not be observed
and much stronger bounds can be — Hanford
expeted from future events.  Hvineston
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Future space spaces telescopes

The LISA Project




Electroweak phase transition

gravitational

] baryogenesis
waves -




@ First-order phase transition

The free energy (as a function
nature of the phase transition:

Wi<h=) at

/\

of the Higgs vev) decides the

T == 100 GZeWV

/BN

Wil<ch=>) at T -~ 100 ZeV

V[l<h>) at
second- order\ \ /

o/

Vil<h=) at T - 100 QFeV

N
\J / first-order

crossover




@ First-order phase transitions

e first-order phase transitions proceed by
bubble nucleations

* in case of the electroweak phase
transition, the "Higgs bubble wall”
separates the symmetric from the broken
phase

- this is a violent process ( v, = O(1))
that drives the plasma out-of-equilibrium

e bosons that are strongly coupled to the
Higgs tend to make the phase transition
stronger



Gravitational waves from

the phase transition

[Grojean, Servant '06] O = Pyac / Orad, [~ 'r_l, vy, A

(ou h? T =100 GeV
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i LISA LIGO
10717 ¢ ; b
-12 | ,"f
10 i BBO'Corr
107 oo T NG NG ““u“.uj,:':_EAIE_BJ}JgJ_CJlﬁ GeV

1018 |

1018

10% 102 1072 10 1 10 100 iHiz)



GWs by sound waves

[Hindmarsh et.al. '13]

For small wall velocities, the system can be
descibed using hydrodynamics. v. <K C

dpgyldlnk (T.)

16—08 (3)1

01 | B

ko (T)

The overall features
are quite similar to
the envelope
approximation.

Amplitude Is
Increased by a
factor p/H



Update on sensitivity to

stochastic GW backc

mao [GeV] | T, [vn/T, [ LoT, | A0, [ a, [ B/H. | v,

450 83.665 | 2.408 | 3.169 | 0.0126 | 0.024 | 3273.41 | 0.15

460 76.510 | 2.770 | 2.632 | 0.0083 | 0.035 | 2282.42 | 0.20

480 57.756 | 3.983 | 1.714 | 0.0037 | 0.104 | 755.62 | 0.30

1079 ‘ ‘ . 483 53.549 | 4.349 | 1.556 | 0.0031 | 0.140 | 557.77 | 0.35
— N2A5SMSL6 ] 485 50297 | 4668 | 1.441 | — | 0.179 | 434.80 | 0.45

o —  N2AIMS5L6 1 1 —
10-10p Aol 87 6.270 | 5.120 | 1.309 | — 0250 | 30631 | ~c,

[Dorsch, Huber, TK, No. '16]

[A. Petiteau, unpublished]

0.1 1 10 100

A dedicated analysis of the LISA analysis team for stochastic
sources increases the sensitivity. Long lasting, broad
spectra are easier to observe than localized, short-lived
sources.



LISA cosmology working group

report

T (GeV) = 100.0
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Science with the space-based interferometer eLISA II:
Gravitational waves from cosmological phase transitions

[C. Caprini et al. '15]



Cosmic strings

If a grand unified theory (GUT) was broken to the Standard
Model gauge group, cosmic strings have been eventually
produced

k[Mpc™']
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These can produce sizable GWs depending on if they decay
mostly gravitationally (Nambu-Goto strings) or into particles
(Abelian Higgs strings)



Generically, tensor modes (read GWSs) from inflation are
strongly constrained from CMB observations.

Furthermore, single field inflation predicts a red-tilt in the
GW spectrum from inflation due to consistency relations.

40 30 20 10

107

10-14

o 'l i i I " i L " " !
107 10 0.1 100
{[Hz]

Still, in some models, the late stage of inflation can
produce sizable GWs, e.g. though a coupling to
vector fields (axion inflation)



Summary

modified gravity cosmological phase

transition
Hubble parameter co:m?c gtri?]gs
QCD equation of state inflation

... astrophysics ... astrophysics




Summary

Mt. lkenoyama
(Kamioka, Hida, Gifu)

m% _ Kamiland

GSFC - JPL

$esa
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