Dark matter capture, neutrino observatories, and subdominant WIMPs

Based on Phys. Rev. D **95**, 043007 [1611.09665] (2017) w/ S. Baum, K. Freese, and P. Stengel

LUCA VISINELLI

Oskar Klein Centre for Cosmoparticle Physics Stockholm University & NORDITA

Luca Visinelli, Stockholm University & NORDITA

Work done with:

SEBASTIAN BAUM	KATHERINE FREESE	PATRICK STENGEL	
STOCKHOLM UNIVERSITY	STOCKHOLM UNIVERSITY	STOCKHOLM UNIVERSITY	
	U. MICHIGAN	U. MICHIGAN	

Ways to look for WIMP Dark Matter

Fig. from J. Conrad

Luca Visinelli, Stockholm University & NORDITA

Capture in Massive Bodies

Fig. from J. Edsjö

Capture in Massive Bodies

Fig. from J. Edsjö

Number of captured particles

WIMP annihilation rate:
$$\Gamma_A = \langle \sigma v \rangle_{\text{ann}} \int d^3 r \, n^2(\vec{r}, t)$$
WIMP number density

The number of captured WIMP at time t obeys

Number of captured particles

WIMP annihilation rate:
$$\Gamma_A = \langle \sigma v \rangle_{\text{ann}} \int d^3 r \, n^2(\vec{r}, t)$$

The number of captured WIMP at time t obeys

$$\frac{dN}{dt} = -C_A N^2 - C_E N + C$$
This is where all the details are hidden away...
interaction details, e.g. nuclear form factors
chemical composition of the capturing body
WIMP velocity distribution
...
WIMP-proton scattering cross-section
for *s* = SI/SD
Capture Rate
$$C = K^s(m_\chi)\sigma_p^s\rho_\chi^{\rm loc}$$
Local WIMP density

. . .

$$\frac{dN}{dt} = -C_A N^2 - C_E N + C$$
 with the time scale at which annihilation & capture rates equate
$$\tau_{\rm ann} = 1/\sqrt{CC_A}$$

Capture Rate, Earth

University of Oslo, 2017/08/16

Chemical Composition of the Earth used

Isotope	Mass Fraction			Potential
i	$x_i \ (\%)$			ϕ_i
	Mantle	Core	Total	
Fe	6.26	85.5	32.0	1.59
Ο	44.0	0.0	29.7	1.28
Si	21.0	6.0	16.1	1.33
Mg	22.8	0.0	15.4	1.28
Ni	0.20	5.2	1.82	1.63
Ca	2.53	0.0	1.71	1.28
Al	2.35	0.0	1.59	1.28
S	0.03	1.9	0.64	1.62
Cr	0.26	0.9	0.47	1.50
Na	0.27	0.0	0.18	1.30
Р	0.009	0.2	0.07	1.63
Mn	0.10	0.30	0.08	1.54
С	0.01	0.20	0.07	1.64
Н	0.01	0.06	0.03	1.35

Capture in Massive Bodies

Fig. from J. Edsjö

Subdominant WIMPs

WIMPs could make up all or a fraction $f_{\chi}=\rho_{\chi}^{\rm loc}/\rho_{\rm DM}^{\rm loc}$ of the observed DM

Assumptions:

Standard 'freeze-out' scenario

S-wave annihilation

No significant contribution from co-annihilation

Following Steigman+ 1204.3622

Capture in Massive Bodies

Fig. from J. Edsjö

Signals at neutrino observatories

Neutrino observatories (mainly) detect Cherenkov light from muons

Muon flux at detector:

$$\Phi^{\mathrm{DM}}_{\mu} = \Gamma_A \times Y(m_{\chi}, \mathcal{B}^X_{\chi})$$

Luca Visinelli, Stockholm University & NORDITA

University of Oslo, 2017/08/16

Signals at neutrino observatories

Neutrino observatories (mainly) detect Cherenkov light from muons

Muon flux at detector:

$$\Phi^{\mathrm{DM}}_{\mu} = \Gamma_A \times Y(m_{\chi}, \mathcal{B}^X_{\chi})$$

Yield obtained from Monte Carlo simulations

We use results from WimpSim (Blennow+ 0709.3898)

Luca Visinelli, Stockholm University & NORDITA

University of Oslo, 2017/08/16

University of Oslo, 2017/08/16

University of Oslo, 2017/08/16

What's new?

Effect of subdominant WIMP DM on WIMP capture and annihilation (bounds on indirect detection cross section)

$$\Phi_{\mu} \propto \begin{cases} \langle \sigma v \rangle_{\text{ann}} \left(\sigma_{p}^{s} \right)^{2} f_{\chi}^{2} \propto \left(\sigma_{p}^{s} \right)^{2} f_{\chi} & \text{for } t_{\odot} \lesssim \tau_{\text{ann}}, \\ \sigma_{p}^{s} f_{\chi} & \text{for } t_{\odot} \gtrsim \tau_{\text{ann}}. \end{cases}$$

$$\sigma_p^s \propto \begin{cases} f_{\chi}^{-1/2} & \text{for } t_{\odot} \lesssim \tau_{\text{ann}}, \\ f_{\chi}^{-1} & \text{for } t_{\odot} \gtrsim \tau_{\text{ann}}, \end{cases}$$

Bounds on direct detection cross section scale as $\sigma_p^* \propto f_\chi^{-1}$

What's new?

Effect of subdominant WIMP DM on WIMP capture and annihilation

Updated chemical composition of the Earth w.r.t. previous

Main effect from inclusion of ⁵⁵Mn, ²⁵Mg, and ²⁹Si

Bounds roughly factor three stronger than with 'old' composition

Results shown are valid for:

Vanilla freeze-out production with s-wave annihilation and no significant contribution from co-annihilation

Isospin conserving WIMP-proton interactions

Nuclear Form Factors used: Helm for SI, thin-shell approximation for SD (other form-factor models lead to ~10 % changes)

Maxwellian WIMP velocity distribution boosted to the Solar System frame

WIMP thermalization time-scales much shorter than the capture time-scales

Conclusions

WIMP capture and annihilation in massive bodies may yield detectable neutrino signals

Yields strongest current bounds on SD interactions from capture and annihilation in the Sun

Complimentary search channel to direct detection, collider searches and other indirect detection methods (different systematics!)

Bounds from capture in the Earth on SD scattering cross-section improved by ~factor 3

Interesting channel for sub-dominant WIMP DM. Scaling behaviour is as simple (but different) as for direct & other indirect detection techniques