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    Evidence on all scales!

DARK MATTER 
IS EVERYWHERE!

)
3…want to know more?! join the DM course, starting Thursday 22nd



…but every massive particle with not-too-weak interactions with 
the SM will be produced thermally, with relic abundance:

1.4. DETECTION METHODS 17
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Within this approximation, in a radiation dominated Universe with an adiabatic expan-
sion, it is possible to find an analytical solution, giving the freeze-out happening at [41]:
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If one plugs in the numbers of a typical WIMP of a mass O 100GeV one indeed gets
xf 20 30 and the relic density:
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This is the advocated famous ”WIMP miracle”: a particle of a typical cross-section gov-
erned by weak interactions and mass on a weak scale gives correct thermal relic density.
This result should be taken however with a grain of salt. Not only it depends on several
assumptions and is related only to the simplified case without co-annihilations, but also
inspected in more detail shows that in fact the mass of the WIMP should be rather a bit
closer to a TeV scale and in concrete realizations rather fine-tuned, see e.g. [47]. This
weakens a bit the motivation of a WIMP as a manifestation of new weak scale physics.
Nevertheless, this simple computations shows why so much e↵ort is devoted to studies of
the weakly interacting massive particles.

1.4 Detection methods

The prospects for experimental searches for the dark matter very strongly relies on its
nature. If it is (nearly) decoupled from our visible SM sector we can probe it only via
gravity-strength interactions. In this case it is extremely hard to measure any of its
properties. On the other hand, if the dark matter has anything to do with the new
physics suggested by the open issues in the SM, other detection channels are possible. In
the case of a WIMP, its properties lead to possible observable scattering on the nuclei in
direct detection (DD) and additional source of cosmic rays in indirect detection (ID).

Dark matter could be created in many different ways…

It is very natural to expect that this mechanism is 
responsible for the origin of all of dark matter

…but even if not, it still is present nevertheless and it’s important 
to be able to correctly determine thermal population abundance 
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THE ORIGIN OF DARK MATTER

Lee, Weinberg ’77; + others



THERMAL RELIC DENSITY  
STANDARD APPROACH
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time evolution of         in kinetic theory: 

freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling time

assumptions for using Boltzmann eq: classical limit, molecular chaos,...
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the collision term integra
tedLiouville operator in 

FRW background

…for derivation from thermal QFT see e.g., M. Beneke, F. Dighera,  AH;   JHEP 1410 (2014) 45 



THERMAL RELIC DENSITY  
THE COLLISION TERM
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for               CP invariant process:

where the thermally averaged cross section:
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THERMAL RELIC DENSITY  
BOLTZMANN EQ.

Re-written for the comoving number density:

Recipe: 
compute annihilation cross-section, 
take a thermal bath average, 
throw it into BE… and voilà
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THERMAL RELIC DENSITY  
”EXCEPTIONS”
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1. Three ”exceptions”

2. Non-standard cosmology

3. Bound State Formation

4. 3      2 and 4      2 annihilation

5. Second era of annihilation

6. Semi-annihilation

7. Cannibalization

8. …
In other words: whenever studying non-minimal scenarios ”exceptions” appear — 

but most of them come from interplay of new added effects, 
while do not affect the foundations of modern calculations

recent e.g., Petraki at al. ’15, ’16;   An et al. ’15, ’16;   Cirelli et al. ’16; …

e.g., D’Agnolo, Ruderman ’15;   Cline at al. ’17;  Choi at al. ’17;  …

D’Eramo, Thaler ’10; …

Feng et al. ’10;   Bringmann et al. ’12; … 

many works… very recent e.g., D’Eramo, Fernandez, Profumo ’17

e.g., Kuflik et al. ’15;   Pappadopulo et al. ’16; … 

Griest, Seckel ’91
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Co-annihilation
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Griest, Seckel ’91

needed to be efficient for mechanism to work

setting the relic density

assumed in computation

due to efficient conversion processes one can 
trace only number density of sum of the states 
with shared conserved quantum number using 

weighted annihilation cross section
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needed to be efficient for mechanism to work

setting the relic density

assumed in computation

DM abundance is an effect of complete 
decay of heavier state which freezes-out 

as standard WIMP
Feng, Rajaraman, Takayama ’03
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needed to be efficient for mechanism to work

setting the relic density

assumed in computation

Co-decaying DM decouples when relativistic but then one 
of the dark sector states decays and this 

effect important as long as conversions are
Dror, Kuflik, Ng ’16
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assumed in computation

Conversion driven freeze-out

12

Garny, Heisig, Lulf,  Vogl ’17

Co-scattering
D’Agnolo, Pappadopulo, Ruderman ’17

only one of the dark sector states annihilates 
efficiently, but also conversions stop being 

efficient which blocks co-annihilation
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Kuflik et al. ’15
Cannibalization secluded dark sector, with efficient 3-2 

annihilation leading to DM zero chemical 
potential and keeping DM at much higher 

temperature than SM plasma



WHAT IF NON-MINIMAL SCENARIO?
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D’Eramo, Thaler ’10
Semi-annihilation new type of annihilation precess that 

can dominate the freeze-out dynamics; 
occurs when new „flavour” or 

„baryon” structure in dark sector
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e.g., D’Agnolo, Ruderman ’15;   
Cline at al. ’17;  Choi at al. ’17; 

Forbidden-like DM annihilation to a state heavier than DM, 
possible from tail of the Boltzmann 

distribution or when 3-2 processes are 
non-negligible 



KINETIC DECOUPLING



FREEZE-OUT VS. DECOUPLING

DM
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annihilation (elastic) scattering
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The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),
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To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,
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for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑

spins

∣

∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)

× tr
(

(̸p′ +Mµ)γν (̸p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(̸k′ +me)γ
ν (̸k +me)γ

λ
)scatt

↔ − tr
(

(̸p2 −me)γ
ν (̸p1 +me)γ

λ
)pair

,

tr
(

(̸p′ +Mµ)γν (̸p+Mµ)γλ
)scatt

↔ − tr
(

(̸p′1 +Mµ)γν (̸p
′

2 −Mµ)γλ
)pair

,

(8)

and hence
∑

spins

∣

∣Mscatt
∣

∣

2
↔

∑

spins

∣

∣Mpair
∣

∣

2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣

∣Mscatt
∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just

2

crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

Freeze-out = decoupling !

7

WIMP interactions with heat bath of SM particles:
� SM

SM SM SM�

� �

(annihilation) (scattering)

n�Boltzmann suppression of 
scattering processes much more frequent
continue even after chemical decoupling (“freeze-out”) at Tcd � m�/25

Kinetic decoupling much later:
Random walk in 
momentum space
� Ncoll � m�/T

Schmid, Schwarz, & Widerin,  PRD ’99; Green, Hofmann & Schwarz, JCAP ’05, ...

�r(Tkd) � Ncoll/�el ⇥ H�1(Tkd)

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

f� ⇠ a(µ)f eq
�

Two consequences:

1. During freeze-out (chemical decoupling) typically:
2. If kinetic decoupling much, much later: possible impact on the matter power spectrum

i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem
see e.g., Bringmann, Ihle, Karsten, Walia ’16 17



IMPLICATIONS OF KINETIC DECOUPLING

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

The smallest protohalos

12

Similar effect from 
baryonic oscillations

Cutoff in power spectrum       
corresponds to smallest 
gravitationally bound 
objects in the universe

Free streaming of WIMPs 
after      washes out density 
contrasts on small scales

tkd

Strong dependence on particle physics properties, 
no “typical” value of                         !Mcut � 10�6M⇥ (see also Profumo, Sigurdson 

& Kamionkowski, PRL ’06)

Loeb & Zaldarriaga, PRD ’05 
Bertschinger, PRD ’06

e.g. Green, Hofmann & Schwarz, JCAP ’05
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Free-streaming of DM after KD washes 
out density contrasts at small scales 
(similarly to baryonic oscillations)

Cut-off in the power spectrum 
corresponding to smallest 

gravitationally bound objects 

Green, Hofmann, Schwarz ’05

E.g. for SUSY neutralino:
Bringmann ’09

„Typical” values for WIMPs are relatively small  small substructures expected

but bad for missing satellites problem

moment of KD leaves important imprint on the Universe)



A                 IN A NUTSHELL
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freeze-out 

�ann > H

�ann < H

�ann ⇠ H

DM in equilibrium

chemical decoupling timeT

kinetic decoupling
ty

pi
ca

lly

ca
n 

it
 h

ap
pe

n?

If KD happens around CD

)

what would be the 
relic density?

how to even 
compute that?

need for refined
treatment of solving
the Boltzmann eq.

PIT FALL

f� ⇠ a(µ)f eq
�assuming kinetic equilibrium at chemical decoupling:

CLO = �h���̄!ijvrelieq
�
n�n�̄ � neq

� neq
�̄

�

19



EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:
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Fermion final states:
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f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:
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where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}

m2
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s

2

4m2
f

� t

(t�m2
h

)2
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

20



EARLY KD AND RESONANCE

21

our work wasn’t the first to realize that resonant annihilation can lead to early kinetic decoupling…

… but we developed a dedicated accurate method/code to deal with this and other similar situations

Feng, Kaplinghat, Yu ’10 — noted that for Sommerfeld-type resonances KD can happen early

Dent, Dutta, Scherrer ’10 — looked at potential effect of KD on thermal relic density

Since then people were aware of this 
effect and sometimes tried to estimate it 
assuming instantaneous KD, e.g., in the 
case of Sommerfeld effect in the MSSM:

A
H

, Iengo, U
llio ’11

but no systematic studies of decoupling 
process were performed, until… 

…models with very late KD become popular, in part to solve „missing satellites” problem
van den Aarssen et al ’12; Bringmann et al ’16, x2; Binder et al ’16

this progress allowed for better approach to early KD scenarios as 
well and was applied to the resonant annihilation case in

Duch, Grządkowski ’17
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HOW TO DESCRIBE KD?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilation

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
typically overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:
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s
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�
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v
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|D
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(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (9).
Fermion final states:

vrel�f f̄ =
�2
s

m2
f

4⇡
Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:
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where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}
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4m2
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)2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

y ⌘ m
�

T
�

s2/3
(17)
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�el & H & �ann (19)
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SCATTERING
The elastic scattering collision term:

2

tion II B), and finally introduce our framework for a fully
numerical solution (Section IIC). Section III is devoted
to a thorough application of these methods to the Scalar
Singlet model. We comment on our results in Section IV,
and discuss potential other areas of application, before we
conclude in Section V. In two Appendices we discuss in
detail the evolution of the Singlet DM phase-space den-
sity for selected parameter points (App. A) and comment
on the semi-relativistic form of the scattering operator in
the Boltzmann equation (App. B).

II. THERMAL PRODUCTION OF DARK
MATTER

Let us denote the DM particle by �, and its phase-
space density by f

�

(t,p). The evolution of f
�

is gov-
erned by the Boltzmann equation which, in an expand-
ing Friedmann-Robertson-Walker universe, is given by
[17, 18]

E (@
t

�Hp ·rp) f� = C[f
�

] . (1)

Here, H = ȧ/a is the Hubble parameter, a the scale fac-
tor, and the collision term C[f

�

] contains all interactions
between DM and SM particles f . For WIMPs, we are
to leading order interested in two-body processes for DM
annihilation and elastic scattering, C = Cann+Cel, where

Cann =
1

2g
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Z
d3p̃

(2⇡)32Ẽ
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and
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.

In the above expressions, |M|2 refers to the respective
squared amplitude, summed over all spin and other in-
ternal degrees of freedom, as well as all SM particles f .
We assume the SM particles to be in thermal equilib-
rium, such that their phase-space distribution is given
by g±(!) = 1/ [exp(!/T )± 1]. Note that we have ne-
glected Bose enhancement and Pauli blocking factors for
f
�

here, as we assume DM to be nonrelativistic; momen-
tum conservation then implies that, in Cann, we can also
neglect these factors for the SM particles.

Assuming CP invariance, and using the fact that in
thermal equilibrium annihilation and creation processes
should happen with the same frequency, the annihilation
term given by Eq. (2) can be further simplified to [9]
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where v = vMøl ⌘ (EẼ)�1[(p · p̃)2 �m4
�

]1/2 is the Møller
velocity, which in the rest frame of one of the DM
particles coincides with the lab velocity vlab = [s(s �
4m2

�

)]1/2/(s� 2m2
�

).
The scattering term, on the other hand, is in general

considerably more di�cult to manage. Analytic expres-
sions have, however, been obtained in the highly non-
relativistic limit of the DM particles, and assuming that
the momentum transfer in the scattering process is much
smaller than the DM mass [12, 18–22]:
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where the momentum exchange rate is given by
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�

+ 2!m
�

+m2
f

. Here, �
T

=
R
d⌦(1 �

cos ✓)d�/d⌦ is the standard transfer cross section for
elastic scattering. In Appendix B, we discuss how
the scattering term is expected to change in the semi-
relativistic case, i.e. when the assumption of highly non-
relativistic DM is slightly relaxed. For reference, we will
in the following use
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when explicitly addressing this regime.

A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in

dn
�

dt
+ 3Hn

�

= g
�

Z
d3p

(2⇡)3E
Cann[f�] , (9)

which has to be solved for the DM number density

n
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�

Z
d3p/(2⇡)3 f

�

(p) (10)

(note that Cel vanishes once it is integrated over). In
order to evaluate the r.h.s. of this equation, the usual
assumption [9] is that during chemical freeze-out one can
make the following ansatz for the DM distribution:

f
�

= A(T )f
�,eq =

n
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n
�,eq

f
�,eq , (11)

Expanding in NR and small momentum transfer:
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portion of phase-space, with almost vanishing relative
DM momenta. This implies not only that we always have
h�vi > h�vi2 in this regime, but also that the e↵ect of
the resonance rapidly becomes negligible.

Lastly, it is interesting to note that for
p
s & m

h

the annihilation rate e↵ectively features a 1/v2 veloc-
ity dependence. This is similar to resonant Sommerfeld-
enhanced annihilation, which leads to a suppressed relic
density after a prolonged freeze-out phase [30]. This
can clearly be seen in the evolution of Y (x) in Fig. 6,
for m

S

⇠ m
h

/2, where the di↵erences between the nu-
merical and the coupled Boltzmann approach are mostly
due to the late-time di↵erences in y(x) – which in turn
come about because of the rather significant di↵erences
in f

�

(q) at large values of x (c.f. Fig. 5).

Appendix B: Semi-relativistic kinetic theory

In this Appendix, we discuss how to generalize the
highly non-relativistic elastic scattering term in Eq. (5)
to incorporate the most important relativistic correc-
tions needed for the numerical implementation of the full
Boltzmann equation. Throughout, we refer to this result
as ‘semi-relativistic’ scattering.

The starting point is to expand the full collision term
Cel in small momentum transfer compared to the typi-
cal DM momentum – similar to what is done in order
to arrive at Eq. (5), but not only keeping lowest-order
terms in p2/m2

�

⇠ T/m
�

. From this, we can derive a
Fokker-Planck scattering operator in a relativistic form
(for details, see [21]):

Cel ' E

2
rp ·

"
�(T,p) (ETrp + p) f

�

#
. (B1)

Being a total divergence, this scattering operator man-
ifestly respects number conservation, as it should. An-
other important property, which one can directly read
o↵ from the part inside the brackets, is that it fea-
tures a stationary point given by the relativistic Maxwell-
Boltzmann distribution,

f eq
�

/ e�E/T . (B2)

The non-relativistic limit of Eq. (B1) gives the scat-
tering operator (5), but in this limit the stationary
point would instead be the non-relativistic version f eq

�

/
exp[�p2/(2m

�

T )] — which would cause a problem in
the full BE as this does not correspond to the actual

equilibrium distribution fed into the annihilation term of
Eq. (37).

In general, the momentum transfer rate �(T,p) in
Eq. (B1) depends on the DM momentum p. However,
the stationary point is independent of �, which moti-
vates us to restrict ourselves to the leading order term
�(T ) ⌘ �(T,0), neglecting any momentum dependence,
and use the non-relativistic limit in Eq. (B1) only to eval-
uate the momentum transfer rate �(T ) as it appears in

Eq. (6). To this order, we could thus also replace the
leading E in Eq. (B1) by m

�

; here, we choose to still
keep it as it leads to a much more compact analytical
form of the equation governing the DM temperature (see
below). Explicitly performing the first partial derivative
in Cel then leads to the final form of our semi-relativistic
Fokker-Planck operator as given by Eq. (8). This opera-
tor is our default choice for the numerical implementation
of the full Boltzmann equation.
As already pointed out in Section IIC, it is manda-

tory for the full phase-space calculation to have a scat-
tering operator with a fixpoint that matches the equilib-
rium distribution of Eq. (B2) assumed in the annihilation
term. For the coupled integrated Boltzmann system, on
the other hand, this issue is fully addressed by using the
relativistic temperature definition of Eq. (21) — rather
than its non relativistic version typically adopted in the
literature in the context of kinetic decoupling — because
this automatically leads to the correct fixpoint T

�

= T
for both the semi-relativistic Eq. (8) and, to the lowest
order, for the non-relativistic version Eq. (5); see the dis-
cussion in Section II B.
Another advantage of our semi-relativistic Fokker-

Planck operator is that the di↵erential equation for T
�

,
often quoted when discussing kinetic decoupling, takes a
very simple form even beyond the highly non-relativistic
limit. To see this, let us for the moment ignore the im-
pact of annihilations, and take the second moment of the
Boltzmann equation with this operator (using the rela-
tivistic definition of T

�

). This leads to

Ṫ
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,

which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implement-
ing the replacement given in Eq. (35). Let us repeat that
the r.h.s. of the above equation only takes this particu-
lar form with our default choice of the semi-relativistic
Fokker-Planck term, whereas the moment appearing on
the left hand side is an exact result. This equation is in
general not closed in terms of T

�

. However, if we make
the ansatz of a Maxwellian DM phase-space distribution,
c.f. Eq. (34), we get a relation between the di↵erent mo-
mentum moments,

5hp2/E2i � 2hp4/E4i = hp4/E3i/T
�

, (B4)

such that the di↵erential equation closes in terms of T
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.
Indeed, introducing
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it takes a very simple form:
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More generally, Fokker-Planck scattering operator 
(relativistic, but still small momentum transfer):

equilibrium functions for SM particles

Semi-relativistic: assume that scattering 
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is momentum independent

Bringmann, Hofmann ’06

Binder et al. ’16

physical interpretation: 
scattering rate
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f(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is neq
�

= m3
�

g
�

K2(x)/(2⇡
2x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
Boltzmann equation can be written as:

y0

y
= �Y 0

Y

✓
1� h�vreli2

h�vreli

◆
�
✓
1� x

3

g0⇤S
g⇤S

◆
2m

�

c(T )

Hx

✓
1� yeq

y

◆
, (2)

with

c(T ) =
1

12(2⇡)3m4
�

T

X

X

Z
dk k5!�1 g±

�
1⌥ g±

� Z 0

�4k2

(�t)
1

8k4
|M|2 . (3)

To summarize we get coupled equations:

Y 0

Y
= �

1� x

3
g

0
⇤S

g⇤S

Hx
sY

 
h�vreli|

x=m

2
�/(s

2/3
y) �

Y 2
eq

Y 2
h�vreli|x

!
(4)

y0

y
= �

1� x

3
g

0
⇤S

g⇤S

Hx

"
2m

�

c(T )

✓
1� yeq

y

◆
(5)

�sY

 ⇣
h�vreli � h�vreli2

⌘

x=m

2
�/(s

2/3
y)

�
Y 2
eq

Y 2

⇣
h�vreli � h�vreli2

⌘

x

!#
.

The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,

V =
1

2
µ2
S

S2 +
1

2
�
s

S2|H|2 . (6)

After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving

m
s

=

r
µ2
S

+
1

2
�
s

v20 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be m
h

= 125.09GeV and �vis = 4.21MeV.

�vrel =
2�2

s

v20p
s

|D
h

(s)|2�
h

(
p
s) , (8)

where

|D
h

(s)|2 ⌘ 1

(s�m2
h

)2 +m2
h

�2
h

(m
h

)
. (9)

• For m
s

< m
h

/2, the width in the propagator D
h

(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�2
s

v20
32⇡m

h

�
1� 4m2

s

/m2
h

�1/2
, (10)

• For m
s

> m
h

, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign
w.r.t. [?], as pointed out by P. Gondolo):

vrel�hh

=
�2
s

16⇡s2v
s


(a2

R

+ a2
I

)sv
s

v
h

� 4�
s

v20

✓
a
R

� �
s

v20
s� 2m2

h

◆
log

����
m2

s

� t+
m2

s

� t�

����

+
2�2

s

v40svsvh
(m2

s

� t�)(m2
s

� t+)

�
, (11)

where v
i

=
p
1� 4m2

i

/s, t± = m2
s

+m2
h

� 1
2s(1⌥ v

s

v
h

), and

a
R

⌘ 1 + 3m2
h

(s�m2
h

)|D
h

(s)|2

a
I

⌘ 3m2
h

p
s�

h

(m
h

)|D
h

(s)|2. (12)

1

h�vreli2 ⌘
g2
�

3Tm
�

n2
�

Z
d3p

(2⇡)3

Z
d3p̃

(2⇡)3
p2vrel�

�̄�!X̄X

f(E)f(Ẽ) (1)
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where ↵
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is the strong coupling for which we take the value ↵
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= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:
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A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)
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Figure 1. The left panel shows the phaseplot and solution for the WIMP temperature

evolution, for mχ ∼ 100 GeV and |M|
2

∼ g4
Y (mχ/ω)2, expressed in the dimensionless

variables introduced in Eqs. (8, 9). At T ! Tkd, any departure from thermal
equilibrium (Tχ = T ) is restored almost immediately (except for a short period around
the QCD phase transition); for T " Tkd, the WIMPs decouple from the thermal bath
and cool down with the Hubble expansion as Tχ ∝ a−2.

In the right panel, the effective number of relativistic degrees of freedom is plotted
as a function of the temperature, implementing the results of [25] for the evolution of
this quantity during the QCD phase transition; for reference, the decoupling of muons
and electrons is also indicated.

from this behaviour (except for a short period during the QCD transition, see below,

when the rapidly changing effective number of degrees of freedom does not allow this).

In principle, the scattering with all types of SM particles contributes to c(T ), see
Eq. (A.8). This picture is a bit complicated by the fact that kinetic decoupling in some

cases can take place close to, or even above the QCD phase transition, the details of

which are not yet fully understood. Lattice calculations, however, start to converge at

a value for the critical temperature of Tc ≈ 170 MeV for the most interesting case of

two light (up and down) and one more massive (strange) quark flavour [23] and indicate

that the plasma can be described by free quarks and gluons only for T " 4Tc [24]. For
the effective number of degrees of freedom during the transition, we adopt the results

of [25] as displayed in the right panel of Fig. 1. As scattering partners are concerned,

we conservatively restrict ourselves to leptons and, for T > 4Tc, to the three lightest

quarks.

The resulting range in Tkd for neutralino dark matter, obtained after having

performed the extensive scan described in Section 2, is shown in Fig. 2 as a function of

the mass mχ and gaugino fraction Zg ≡ |N11|2 + |N12|2 (in our case dominated by the
Bino fraction). The gray band indicates the QCD phase transition; values for Tkd inside

or above this band should be interpreted as upper bounds on the decoupling temperature

since the scattering with some of the hadronic degrees of freedom was not taken into

account. On the other hand, as the coupling of WIMPs to hadrons is usually smaller

than to leptons, the difference between this upper bound and the actual value of Tkd is

not expected to be very big; note also that the scattering with bound QCD states like,

Vector bosons:

vrel�VV =
�2
s

s

8⇡
�
V

v
V

|D
h

(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (9).
Fermion final states:

vrel�f f̄ =
�2
s

m2
f

4⇡
Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

X
q

= 3

"
1 +

 
3

2
log

m2
q

s
+

9

4

!
4↵

s

3⇡

#
, (15)

where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}

m2
f

�2
s

2

4m2
f

� t

(t�m2
h

)2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

y ⌘ m
�

T
�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T
�

⌘ g
�

3m
�

n
�

Z
d3p

(2⇡)3
p2f

�

(p) (24)

2

then 2nd moment of full BE (up to terms          ) gives:

Vector bosons:

vrel�VV =
�2
s

s

8⇡
�
V

v
V

|D
h

(s)|2(1� 4x+ 12x2) , (13)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (9).
Fermion final states:

vrel�f f̄ =
�2
s

m2
f

4⇡
Xfv

3
f |Dh

(s)|2 , (14)

where vf =
p

1� 4m2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

X
q

= 3

"
1 +

 
3

2
log

m2
q

s
+

9

4

!
4↵

s

3⇡

#
, (15)

where ↵
s

is the strong coupling for which we take the value ↵
s

= 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:

Mel(t) =
X

f={q0s,e,µ,⌧}

m2
f

�2
s

2

4m2
f

� t

(t�m2
h

)2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest
scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around
4T

c

⇠ 600 MeV (smallest scattering scenario)

y ⌘ m
�

T
�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T
�

⌘ g
�

3m
�

n
�

Z
d3p

(2⇡)3
p2f

�

(p) (24)

text p2/m2
�

2

impact of annihilation

impact of elastic 
scatterings

First take late KD scenario and consider only temperature evolution - 
i.e. leave out feedback on/from changing number density:

actually: normalized average NR energy - equals temperature at equilibrium



ONE STEP FURTHER…
Now consider general KD scenario, i.e. coupled temperature and number density evolution: 
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,
not based on [?]). In Eq.(3) we use:
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scattering scenario)
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NUMERICAL APPROACH
… or one can just solve full phase space Boltzmann eq.
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where the equilibrium number density in the nonrelativistic regime is neq
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= m3
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g
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K2(x)/(2⇡
2x).

1

discretization, 
~1000 steps

Solved numerically with MatLab

can be extended to e.g. self-scatterings
very stiff, care needed with numerics

Note:

fully general

expanded in NR and small 
momentum transfer
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With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
Boltzmann equation can be written as:
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄2

hS
-dependence of ‡

SI

and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄≠2

hS
, owing to its de-

pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].

Most of the parameter space excluded, but… even such a simple model is hard to kill
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With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
Boltzmann equation can be written as:
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To summarize we get coupled equations:
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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• For m
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, eq. (18) must be supplemented by the extra contribution from SS ! hh (corrected sign
w.r.t. [?], as pointed out by P. Gondolo):
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SCALAR SINGLET DM 
ANNIHILATION VS. SCATTERINGS

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the
Boltzmann equation can be written as:
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due to h ! SS:
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• For m
s

> m
h

, eq. (18) must be supplemented by the extra contribution from SS ! hh (corrected sign
w.r.t. [?], as pointed out by P. Gondolo):
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=
p
1� 4m2

i

/s, t± = m2
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Vector bosons:

vrel�VV =
�2
s

s

8⇡
�
V

v
V

|D
h

(s)|2(1� 4x+ 12x2) , (23)

where x ⌘ M2
V

/s, vV =
p
1� 4x and �

W

= 1, �
Z

= 1
2 and |D

h

(s)|2 is defined in eq. (19).
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Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

with:

Hierarchical Yukawa couplings: strongest coupling to more Boltzmann suppressed quarks/leptons

tabulated 
Higgs width

S

S

h

q,l

q,l

S S

q,l q,l

h

Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios:
QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV

QCD = B - only light quarks contribute to scattering and only down to 4Tc 29
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Significant modification of the observed relic density contour in the Scalar Singlet DM model

essentially the 
only region left 
for this model

larger coupling needed          better chance for closing the last window
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RESULTS
EFFECT

effect on relic density:

effect on relic density: 
up to O(~10)

Why such non-trivial shape of the effect of early kinetic decoupling?         

we’ll inspect the y and Y evolution…

kinetic and chemical decoupling:

ratio approaches 1, 
but does not reach it!



DENSITY AND TDM EVOLUTION
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Resonant annihilation most effective for low momenta
             DM fluid goes through ”heating” phase before leaves kinetic equilibrium

co-moving 
number density

for mDM = 62 GeV,   i.e. just below the resonance:

DM 
temperature



DENSITY AND TDM EVOLUTION
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Resonant annihilation most effective for high momenta
             DM fluid goes through fast ”cooling” phase

for mDM = 57 GeV,   i.e. further away from the resonance:

after that when TDM drops to much annihilation not effective anymore



mχ=58 GeV
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WHY SPIKES IN TKD?(

)

varying the 
scattering rate

10% deviation

Effect resembling first order „phase transition” — 
artificial as dependent on a particular choice of TKD definition



FULL PHASE-SPACE BE SOLVER
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Solutions for full phase-space distribution function:

Results of both approaches compatible:
 some deviation from equilibrium shape mildly affects the Y and y evolution

Allows to study the evolution of        and
the interplay between scatterings and annihilation!

f�(p)



mDM = 58 GeV

FULL PHASE-SPACE EVOLUTION
mDM = 62.5 GeV

significant deviation from equilibrium 
shape already around freeze-out

effect on relic density largest, 
both from different T and fDM

large deviations at later times, around 
freeze-out not far from eq. shape

effect on relic density 
~only from different T

black - 
equilibrium 

at TDM

blue - full 
solution for 
fDM at TDM



KD BEFORE CD?

37

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

End (∆r=0.01), int = 2.29e−7

Equilibrium ∆r=0.1
int = 2.10e−7          

x=p/T

x2  f(
r,x

)
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γ
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Start (r0=20),  int = 2.24e−7

Figure 6: LEFT: Evolution, due to annihilation/creation, of the DM phase-
space distribution, f(r, x), from an initial distribution with two bumps (blue
line) at r = 20 to three later times r = 20.001, 20.01, 20.1 (red lines). The
equilibrium distribution at r = 20.1 from Eq. (8) is shown by the black line.
As displayed by the integrated number density (“int =

∫

x2f(r, x)dx”) the
comoving number density is not conserved when DM annihilation/creation
is present.

full-phase space setup however uses the non-relativistic f eq
n.r. (required

by our scattering term). Nevertheless, for the cγ = 0 setup, we can still
consistently use the relativistic f eq. Implementing f eq (temporarily)
reveals that exact agreement, to 3 digits, Ωh2 = 0.0809 is achieved.

In Fig. 7 we present the full phase space distribution (right panel) and
the integrated relic density Yχ derived from Eq. (24) (left panel). It is worth
to point out that this is already a deviation from the standard calculation
— as the phase space distribution differs from equilibrium during freeze-out.
Adding a scattering term would of course drive the momentum distribu-
tion towards the equilibrium distribution, as demonstrated in the previous
section, and for S-wave the f(x) distribution does not impact the relic abun-
dance result. I did not investigate if already this phase-space distribution
deviates from ∝ f eq

n.r.(rf.o., x), where rf.o. is some suitable freeze-out temper-
ature. Decreasing the initial time r0 < 20 did not change the phase space
result, showing that starting at r = 20 is sufficient also for the kinetic freeze-

12

we have already seen that even if scatterings 
were very inefficient compared to annihilation, 
departure from equilibrium for both Y and y 
happened around the same time…

Obvious issue: 
How to define exactly the kinetic and chemical decouplings and what is the significance of such definitions?

Improved question:
Can kinetic decoupling happen much earlier than chemical?

)
turn off scatterings and take s-wave annihilation;
look at local disturbance

annihilation/production precesses drive to 
restore kinetic equilibrium!



WHAT NEXT?
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1. Extend the numerical full phase space BE code to the case 
of scattering on heavy particles

2. Prepare a public release and study some more examples

3. Work on extension to self-scattering

(no small momentum transfer approximation!)

(none of the particles in scattering term has 
equilibrium phase space density)

4. Maybe: in-ealstic scatterings, semi-annihilation, cannibal, … 



CONCLUSIONS
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1. One needs to remember that kinetic equilibrium is a 
necessary assumption for standard relic density calculations

2. Coupled system of Boltzmann equations for 0th and 2nd 
moments allow for a very accurate treatment of the kinetic 
decoupling and its effect on relic density

3. In special cases the full phase space Boltzmann equation can 
be necessary — especially if one wants to trace DM 
temperature as well


