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Outline of Talk

@ Introduce 2D anyons — ideal or extended

® Emergence of anyons in physics

© The ideal anyon gas

® Discussion
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Identical particles and statistics in 2D

Particle exchange in 2D:  W: (R)N — C

\P(Xl,...,Xj,...,Xk,...,XN)E(C
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Identical particles and statistics in 2D

Particle exchange in 2D:  W: (R)N — C
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Identical particles and statistics in 2D

Particle exchange in 2D:  W: (R)N — C

V(X1 Xy Xy oo, XN) = EU(X1, 00 Xy o, Xy -0, XN)
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Identical particles and statistics in 2D

Particle exchange in 2D:  W: (R)N — C

\If(Xl,...,Xj,...,Xk,...,XN) :em”\If(xl,...,xk,...,xj,...,xN)

k e®™ € U(1) any phase
PRI ES \ ------- : a=0: bosons
X Xk o = 1: fermions
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Identical particles and statistics in 2D

Particle exchange in 2D:  W: (R)N — C

\If(Xl,...,Xj,...,Xk,...,XN) :em”\If(xl,...,xk,...,xj,...,xN)

K e®™ € U(1) any phase
PRI ES \ ------- : a=0: bosons
X Xk o = 1: fermions

anyons: ‘fractional’-statistics quasiparticles in confined systems
— expected to arise e.g. in fractional quantum Hall systems

~1970 Souriau; Streater & Wilde ... Leinaas & Myrheim '77; Goldin, Menikoff & Sharp '81; Wilczek '82 ...
Reviews by Frohlich '90, Wilczek '90, Lerda '92, Myrheim '99, Khare '05, Ouvry '07, Stern '08, Hansson et al "17...

Past rigorous QM studies by  Baker, Canright & Mulay '93,  Dell'Antonio, Figari & Teta '97
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Modelling anyons concretely — anyon gauge
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Modelling anyons concretely — anyon gauge

1

Think: free kinetic energy Ty = % Z;V:l(—ivj)Z acting on multi-valued

0 =UT, U= ][ =]] 2.

j<k i<k |z] N zk’

ei2pam ei(2p+1)a7r
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Modelling anyons concretely — magnetic gauge

Bosons (U € L2,) in R? with Aharonov-Bohm magnetic interactions:

sym

. h? & ‘ (x —xp) "

Toi=502 Di Di=-iVitadi(x), Ajx)=> T — &
Jj=1 k#j
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Modelling anyons concretely — magnetic gauge

Bosons (U € L2,) in R? with Aharonov-Bohm magnetic interactions:

sym
. n 9 ‘ (x —xp)*
J=1 k#j
These are ideal anyons. One can also model R-extended anyons:
1
X — Xj
A0 = 3 TR fxln i max(lxl R)
ki hIR
B R—0
= curl aA =21« Z 732;'“ e Z Oxy,
k#j k#j
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Modelling anyons concretely — magnetic gauge

Bosons (U € L2

Sym) in R? with Aharonov-Bohm magnetic interactions:

h2 ‘ (x — xp) "
- _mZDJZ’ Dj = —iVi+alA;(x;), Aj(x) = ——
=1

_ 2
oy Ix — x|

These are ideal anyons. One can also model R-extended anyons:

(x —xp) "
Af(x) = Z PR x| r := max{|x|, R}
ki kiR
= curlaAf = 2na Z B%’;k 520 9na Z Oxy
e ki

We would like to understand the N-anyon ground state ¥, and energy

Eo(N) :=infspec Hy, Hy=To+V = Z( D2+V(x]))
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How to create an anyon in the lab?
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How to create an anyon in the lab?

e Need several particles!
e Need 2D!
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
cf. e.g. Forte, 1991

-

I strong pot.
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
cf. e.g. Forte, 1991

© - - 25, WEE C

e Two species of particles in a plane (bosons or fermions)
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
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© - - 25, WEE C

e Two species of particles in a plane (bosons or fermions)

e Strong perpendicular magnetic field B = LLL
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How to create anyons in the lab?

— avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

DL, Rougerie, Phys. Rev. Lett., 2016
cf. e.g. Forte, 1991

oC B - .-
- © - - - 25, WEE C

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
cf. e.g. Forte, 1991

e Two species of particles in a plane (bosons or fermions)

e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

= Effective Hamiltonian with a reduced magnetic field and
a=ap+1/n
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
cf. e.g. Forte, 1991

Zj eC

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

= Effective Hamiltonian with a reduced magnetic field and
a=ap+1/n
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
Take two different species of quantum particles in a strong
magnetic field B > 0: ‘tracer’ particles at xj—1. . € R?2

in a large sea of ‘bath’ particles at yr—1.n € R2, N> M.

HMHEY = L3, (R*M) © LY, (R*Y)
M N
Hyyn=Hy ®1 +]1®HN+ZZW12(XJ' —= Yk),
j=1 k=1
Mo
Hy =Y o (px, +eA(x;))”  + Z Wi (x; — x;),
j=1 1<i<j<M
iy}
Hy=>_ 5 Py, + A)?  + Y Walyi—y))
k=1 1<i<j<N
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984
Take two different species of quantum particles in a strong
magnetic field B > 0: ‘tracer’ particles at xj—1. . € R?2

in a large sea of ‘bath’ particles at yr—1.n € R2, N> M.

HIHN = L (R*) © L3 (R*Y)
M N
Hyyn=Hy®1+1 ®HN+ZZW12(X]' —Yk),
j=1k=1
M 2
1 . eB
HM = Z 2— (—1ij + 7)(;_) + Z W].l( - X])
=1 " 1<i<j<M
Ny B |\
Hy = Z B —iVy, + 5 Yk + Z Waa(yi — y;)
k= 1<i<j<N
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How to create anyons in the lab?

Ansatz:  U(X,Y) = &(X)cqn(X) U (X, Y),

with a Laughlin wave function coupled to quasi-holes at x; = z;:

v00Y) = [ [Lerwor T1 (e P S,

j=lk=1 1<i<j<N
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How to create anyons in the lab?

Ansatz:  U(X,Y) = &(X)cqn(X) U (X, Y),

with a Laughlin wave function coupled to quasi-holes at x; = z;:

TI(X,Y) H H H (wi—w;)" B w24
j=1k=1 1<i<j<N

Claim: for N > M:

(U, Hye ) ~ <<1>, Hf\?q>> + BN/2,

where
Moy B, 1 2
Hif = Z o (ij + 5(6 - E)le + ozAf(xﬁ) + Z Wit (xi—x;)
Jj=1 1<i<j<M

is an effective Hamiltonian describing M anyons with oo = 1/n,

~ /2/B.
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

U(z,w) = D(2)c(z) [ [ (5 — @) [[ (@i — @) e B/

ik i<k
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

Zj eC

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

U(z,w) = ®(z)c(2) H(zj — )" H(@i )" e B/
jvk i<k
= Effective Hamiltonian for ® with a reduced magnetic field and
a=ay+1/n
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How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

Zj eC

e Two species of particles in a plane (bosons or fermions)
e Strong perpendicular magnetic field B = LLL
e Strong repulsion between particles = Laughlin state

U(z,w) = ®(z)c(2) H(zj — )" H(@i )" e B/
j»k i<k
= Effective Hamiltonian for ® with a reduced magnetic field and
a=a9+1/n
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Understanding the zero-temperature ideal anyon gas

\

\

Bose—Einstein
Condenstate

Fermi
Sea

cold bosons cold fermions

anyons?

2-body: Leinaas, Myrheim, 1977; Wilczek, 1982; Arovas, Schrieffer, Wilczek, Zee, 1985

3- and 4-body numerics: Sporre, Verbaarschot, Zahed, 1991-92; Murthy, Law, Brack, Bhaduri, 1991
Approximations: average-field theory, lowest Landau level, dilute

Hundreds of papers...
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Compare with the ideal Bose gas in 2D

Know: ¥g = @Npg, o lowest state of Hj = —Apg2 + V(x)
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Compare with the ideal Bose gas in 2D

Know: ¥g = @Npg, o lowest state of Hj = —Apg2 + V(x)
The free Bose gas in a box Q = [0, L]*:

A~

H = (—AQ)Di’iCh'et, wo(z,y) = sin(mx /L) sin(my/L),

<‘II07IA{N\IJO> 27T2 2
EO(N,L):W :NAOZNﬁ:27T %
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Compare with the ideal Bose gas in 2D

Know: ¥g = @Npg, o lowest state of Hj = —Apg2 + V(x)
The free Bose gas in a box Q = [0, L]*:

A~

H = (—AQ)Di’iCh'et, wo(z,y) = sin(mx /L) sin(my/L),

<‘II07IA{N\IJO> 27T2 2
EO(N,L):W :NAOZNﬁ:27T %

= Energy per area:

Eo(N,L) 21%
e Y

as N — oo and L — oo with fixed density g = N/L?.
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Compare with the ideal Fermi gas in 2D

Know: ¥ = /\fc\]:_o1 Ok, @k lowest states of Hj = —Agz + V(x)
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Compare with the ideal Fermi gas in 2D

Know: ¥ = /\fc\]:_o1 Ok, @k lowest states of Hj = —Agz + V(x)

The free Fermi gas in a box Q C R2: (Weyl asymptotics)

N2
Eo(N,L) = Z A~ 21— = 2mo® L?
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Compare with the ideal Fermi gas in 2D

Know: ¥ = /\fc\]:_o1 Ok, @k lowest states of Hj = —Agz + V(x)

The free Fermi gas in a box Q C R2: (Weyl asymptotics)
Eo(N,L) = Z N ~ 27TN—2 = 2710° L?
’ L

= ThomaS—Fermi apprOXimation: (Thomas, Fermi, 1927 — precursor to modern DFT)

(W, (Tae1 + V)W) ~ /

o (27T 0wy(x)% + V(x)g%(x)> dx
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Compare with the ideal Fermi gas in 2D

Know: ¥ = /\fc\]:_o1 Ok, @k lowest states of Hj = —Agz + V(x)

The free Fermi gas in a box Q C R2: (Weyl asymptotics)
N2 2712
Eo(N,L) = Z A ~ 271'? =27mp° L

= ThomaS—Fermi apprOXimation: (Thomas, Fermi, 1927 — precursor to modern DFT)

(W, (Tae1 + V)W) ~ /

o (27T 0wy(x)% + V(x)g%(x)> dx

The Lieb—Thirring inequality: (Lieb, Thirring, 1975)

<\Ij7 (Tazl + ‘A/)\II> Z /

- (CLT ou(x)? + V(x),g\p(x)> dx
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Compare with a relaxed Pauli principle

If v particles allowed in each state: ¥y =®" A" ¢y,
The free Fermi gas in a box Q C R2: (Weyl asymptotics)

S (
Eo(N,L) = A ~ 2TV
k=0

—_

N/v)?

g =22l

= ThomaS—Fermi apprOXimation: (Thomas, Fermi, 1927 — precursor to modern DFT)

(o, (Toe1 + V)W) ~ /

- (27T v oy (x)2 4 V(%) g%(x)> dx

The Lieb—Thirring inequality: (Lieb, Thirring, 1975)

(U, (Tpe1 + V)W) > /R ] (CLT v Log(x)? + V(x)g\y(x)>dx
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Average-field approximation

Huge past literature: see e.g. Wilczek 1990 review

For anyons one may consider an average-field approximation
(o, (B + V)0~ [ (2710l oufa)? + Vixoufx))dx.
R

where B = curl «A; = 2map with LLL energy/particle ~ |B].
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Average-field approximation

Huge past literature: see e.g. Wilczek 1990 review

For anyons one may consider an average-field approximation
(o, (B + V)0~ [ (2710l oufa)? + Vixoufx))dx.
R
where B = curl «A; = 2map with LLL energy/particle ~ |B].

A particular almost-bosonic limit « = /N — 0 leads to

el i= [ (|9 + BAIED 660 + Vo)) x.

where curl A[[y|?] = 27[+|?> and 3 the only parameter.

DL, Rougerie, 2015; Correggi, DL, Rougerie, 2017; Chern-Simons coupled to non-rel. matter ~1980
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Average-field approximation for almost-bosonic anyons

“Less bosonic” anyons would then amount to 5 = aN — oo.

Theorem: As § — oo
E3(8) = EXF(B) + lower order,

where ETY () is the minimum of the Thomas—Fermi functional

TF = (& X2 X X X)ax = 1.
o= [ (00500 + Val) dx, [ obxax=1

Furthermore, e(1,1) > 27, with e(3, p) = e(1,1)3p? the energy
per area of the homogeneous problem at density p.

Conjecture: ¢(1,1) > 27

Correggi, DL, Rougerie, 2017
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Average-field approximation for almost-bosonic anyons

Continued study of the average-field functional £¥[¢] is work in
progress with M. Correggi, R. Duboscq and N. Rougerie.

Numerical simulations of |t/o|? at 8 = 318 by Romain Duboscq.
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Universal bounds: A local exclusion principle for anyons

ei2pam ei(2p+1)a7r

Recall: 2-particle exchange phase (2p + 1)« times 7.
But anyons can also have pairwise relative angular momenta +2gq.
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Universal bounds: A local exclusion principle for anyons

ei2pam ei(2p+1)a7r

. P\l
Recall: 2-particle exchange phase (2p + 1)« times 7.
But anyons can also have pairwise relative angular momenta +2gq.
= effective statistical repulsion oL, solovej, 2013

1 «
Vaar(r) = |2p+ e = 2" 5 > —5, 1= [x; =%y
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Universal bounds: A local exclusion principle for anyons

00 02 04 06 0.8 0 &

o = min min |((2p+ 1)ae — 2
N p€{0,1,....,N—2} q€Z 2p ) al

{ 1 if a =L is a reduced fraction with 11 odd,

0, otherwise.
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Universal bounds for the homogeneous anyon gas

DL, Solovej, 2011-'13, Larson, DL, 2016-'18, DL, Seiringer, 2017
Work in progress with Qvarfordt extends to non-abelian anyons.

Define the ground-state energy per particle and unit density

o Eo(N, L) e(0) = 0,
COEMNTNG ay=o
N/L?=p

Theorem: There exist constants 0 < C7 < Cy < oo such that for
any 0 < a <1,
Cra < e(a) < Cha,
and as a — 0, -
1/3
e(a) > Zoz(l - 0O(« / ))
e(a) > mon (1 — O(ozi/?’))

Conjecture: optimal C7 and C5 cannot both be 27.
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Lieb—Thirring inequalities for anyons

Dyson, Lenard, 1967
DL, Solovej, 2011-'13; LT with general local exclusion developed by Nam, Portmann, Solovej, 2013-'15;
Larson, DL, 2016-'18; DL, Seiringer, 2017

Theorem (LT inequality for ideal anyons)

There exists a constant 0 < C' < 2w such that for any 0 < o < 1
and any N-anyon wave function ¥ on R?,

(0, T,%) > Ca / 2Q\I;(X)2dx.
R

Hence

(U, Hy W) > /

- (Cozgq,(x)2 + V(X)Q@(X))dx

i.e. a universal lower bound of the form of average-field theory.
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Discussion

e Extended case
e Harmonic trap

e Clustering trial states
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Hardy inequality

Statistical repulsion gives rise to the following “Hardy inequality”:

A 402
N 2 -2
1<j<k<N
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Extended case

We use a magnetic Hardy inequality with symmetry
(cf. Laptev, Weidl, 1998; Hoffmann-Ostenhof?, Laptev, Tidblom, 2008; Balinsky...)
to consider the enclosed flux inside a two-particle exchange loop,
subtracted with arbitrary pairwise angular momenta. Unwanted
oscillation can be controlled by smearing (but analysis is tricky!)
1 2
Vi) = p(r)—5,  plr) = min

VAR
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Extended case (clustering)
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Universal bounds for the extended anyon gas

Consider ground-state energy on a box Q C R?:
Eo(N, Q. 0, ) = inf{ (0, 750) : w e L2QY), W] =1}
In the thermodynamic limit, N, |Q| — oo with g = N/|Q)| fixed,

for dimensional reasons,

EO(Na Qa a, R)

~ —e(a,y)e, 7= RVo.
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Universal bounds for the extended anyon gas

Consider ground-state energy on a box Q C R?:
Eo(N, Q. 0, ) = inf{ (0, 750) : w e L2QY), W] =1}
In the thermodynamic limit, N, |Q| — oo with g = N/|Q)| fixed,

for dimensional reasons,

EO(Na Qa «, R)
N

We define (with Dirichlet b.c.)

—e(a,v)o,  v:=RVo.

. EO(NyanaR)
= 1 f — 2227
e(a,7) amint oN
N/|IQ|=a
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Universal bounds for the extended anyon gas

Theorem ([Larson-DL'16] Bounds for the extended anyon gas)

Up to some universal constant C' > 0,

2 . 2
|ln7fy| + W(](lx*) > 21, v—0, a 7é 0
e(a,7) 2

2m|al, 5 2 1.
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Ideal anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

X A w2
Hy=T,+V = ]; (%(—Nj +aAj)? + T!lez) :
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Ideal anyons in a harmonic trap

Harmonic oscillator Hamiltonian:
N 1 mw?
3 2 9 . 2 2
HNzTa—FV:j;(%(—ZVj—FaA]‘) +T’Xj| )

Rigorous bounds for the ground-state energy Ey(N):

HN|ang mom=1L = W (N + ‘L + OéN(N ) D (Chitra, Sen, 1992)
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Ideal anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

- A ~ ol 1 mw?
=1

Rigorous bounds for the ground-state energy Ey(N):
HN|ang mom.=L = W (N + ‘L + OéN(N 1) D (Chitra, Sen, 1992)
Cl ]&N S EO (N)/(UJN%) S C2 VOJ, N (DL, Solovej, 2013; Larson, DL, 2016)

Cp. with fermions in 2D: Ey(N) ~ \/Tng% as N — oo
Average-field suggests: FEy(NV) ~ ‘/Tgw/\a\ wN? as N — oo
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Anyons in a harmonic trap — exact spectrum

Exact N = 2 spectrum: Leinaas, Myrheim, 1977
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Anyons in a harmonic trap — exact spectrum

Numerical N = 3 spectrum: Murthy, Law, Brack, Bhaduri, 1991; Sporre, Verbaarschot, Zahed, 1991
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Anyons in a harmonic trap — exact spectrum

Numerical N = 4 spectrum: Sporre, Verbaarschot, Zahed, 1992
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Anyons in a harmonic trap — qualitative spectrum

ol

E/w —

(0 = am)
Lundholm Slide 33/37

Schematic N — oo spectrum: Chitra, Sen, 1992
Emergence of anyons




s in a harmonic trap — current lower bounds

jOé*
15
Bo(N) _ ol
5 R .
wiN?2 . .
05 l. . . °

0.0
0.0 0.2 0.4 0.6 0.8

Rigorous lower bounds: DL, Solovej, 2013/'14, improved in Larson, DL, 2016, and DL, Seiringer, 2017 ...
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Upper bounds: many-anyon trial states

V3

v, Vs

N = vK particles arranged into v complete graphs (V,, &)
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Upper bounds: many-anyon trial states

)%t J Vs - T

N = vK particles arranged into v complete graphs (V,, &)
a =L even:

v N
Ya(z) = [T lziel S |TT TI G| I] #o(zr)
k=1

i<k q=1 (j,k)e&,

(cf. Moore-Read (Pfaffian), Read—Rezayi)
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Upper bounds: many-anyon trial states

V1 Va

N = vK particles arranged into v complete graphs (V,, &)
a =L even:

v N
Ya(z) = [T lziel S |TT TI G| I] #o(zr)
k=1

i<k q=1 (j,k)e&,

(cf. Moore-Read (Pfaffian), Read—Rezayi)
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Upper bounds: many-anyon trial states

V1 Va

N = vK particles arranged into v complete graphs (V,, &)

a =L odd:
v K-1
Ya(z) = [Tzl *S{IT TI Gw* N\ ¢k (ziev,)
j<k a=1(j k)e&, k=0

(cf. Moore-Read (Pfaffian), Read—Rezayi)
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Upper bounds: many-anyon trial states

Proposition: For ¥ = ®¢,, ® € HL (R*;R), o = £ even,

v—1

<mjﬁm>:(1—a

N
@21 dx.
+/RQN;|VJ Pl dx

)wN | |% dx
R2N
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Upper bounds: many-anyon trial states

R-extended case: Replace [, [2jx| ™ with e~ 2j<k WROGXE)
Proposition: For the free gas on a box Q C R?, o even

Tf wa = aWg wa )

N N
1
Wr(x) == Z Awg(xj; —xp) =27 Z Br(0) (x5 — Xp).
k=1 k=1

Proposition: For ¥ = ®1),, ® € H}(QV;R), a even

N
<\11,T§\p>:/QN D IV + aWg| @ | [¢al* dx.
j=1
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