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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS
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separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO
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by two mirrors, acting as test masses, separated by
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difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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stay tuned - 3rd run started April 2019
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3 satellites, 2.5 mio km apart 
ESA mission 
launch ~ 2030

currently ideas for 
3rd generation of 
ground based detectors 
are being developed 
(ET, Cosmic Explorer)
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(400 Mpc = 109 ly away)

how far back 
can we probe?

CMB 
(photon decoupling)

open questions 
of particle physcis

?
primordial gravitational waves
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Introduction to  gravitational wave physics 

The stochastic gravitational wave background (SGWB) 

Probing the particle physics driving cosmic inflation
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perturbations of the background metric: 

governed by linearized Einstein equation 

a useful plane wave expansion: 

ds2 = a2(⌧)(⌘µ⌫ + hµ⌫(x, ⌧))dx
µdx⌫

(h̃ij = ahij , TT - gauge)

Some useful properties of GWs

perturbations of the homogeneous background metric

ds
2 = a

2(⌧)(⌘µ⌫ + hµ⌫(x, ⌧))dx
µ
dx

µ

governed by linearized Einstein equation (h̃ij = ahij , TT - gauge)
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k � aH : hij ⇠ cos(!⌧)/a , k ⌧ aH : hij ⇠ const.
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source: anisotropic 
(not spherical symmetric) 

stress-energy tensor

scale factor: cosmological expansion
flat metric

GW

Any GW signal is a convolution of a primordial spectrum  
with the subsequent cosmological evolution
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Hunting for primordial GWs

tensor anisotropies  
on last scattering surface

polarization of CMB photons 
through Thomson scattering

GW travels freely until today

distortion of space as GW 
passes detector

 8

- ground-based interferometers 
- space-based interferometers 
- pulsar timing arrays

CMB direct

- Lensing: T -> E 
- dust contaminates  
    primordial signal 
-  B - modes most sensitive

sensitive to CMB scales sensitive to GW with f ~1 / (detector size)
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transcendent signals:  merger of compact objects 

(black holes, neutron stares,  
  white dwarfs, …)

stationary  signals:  sum of unresolved transcendent  
sources 

cosmological stochastic background

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016
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In the following: focus on stationary signals
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Introduction to  gravitational wave physics 

The stochastic gravitational wave background (SGWB) 

Probing the particle physics driving cosmic inflation
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Properties of GWs - II

Observable quantities:

⌦GW =
1

⇢c

@⇢GW(k, ⌧)

@ ln k
, ⇢GW(⌧) =

1

32⇡G

D
ḣij (x, ⌧) ḣ

ij (x, ⌧)
E

In principle: Calculate Tµ⌫ , work through equations above
In practice:

⇢GW(⌧) = ⇢
qu

GW
(⌧) + ⇢

cl

GW
(⌧) .

classical sources (e.g. preheating, cosmic strings):

hij(k, ⌧) = 16⇡G
1

a(⌧)

Z
⌧

⌧i

d⌧
0
a(⌧ 0)G(k, ⌧, ⌧ 0)⇧ij(k, ⌧
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inflation (e.g. stochastic source):
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observational quantity in direct detection:

Besides transient events (eg BH mergers) we also expect a stationary, isotropic  
stochastic gravitational wave background (noise): 

cosmological event 
or unresolved  

astrophysical sources 
(or instrument noise)

CMB: Penzias & Wilson, ‘64

probed by 2-point (cross-) correlation 
of detector time stream
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~1 for cosmological sources

in a radiation dominated Universe,
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PTA 
LISA 
ET/CE 
LIGO

probing early Universe physics at energy scales far beyond particle colliders
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LISA as a probe for particle physics G. Nardini

Figure 1: Left panel: The value of the frequency peak fp in the parameter space T?–b/H? for bubble
velocities vw = 0.99. On the background (colored bands) the frequencies the forthcoming GW detectors
are sensitive to; the stronger the color, the better the sensitivity. The blue area is excluded by the BBN
bound. Right panel: Sensitivity curves of the current and forthcoming GW experiments and the SGWB
signals (dotted curves) sourced by the FOPT benchmark scenarios with g? = 106, b/H? = 3, and T?/GeV
and vw being respectively 3 and 0.99 (dotted purple line), 3 and 0.05 (dotted gray line), 120 and 0.99
(dotted magenta line), 120 and 0.05 (dotted orange line), 104 and 0.99 (dotted blue line), and 104 and 0.05
(dotted green line). The dotted-dashed lines correspond to the power-law sensitivity curves of PPTA &
EPTA & NANOGRAV (at frequencies f ⇠ nHz) and aLIGO O1 (at frequencies f ⇠ 100 Hz); the solid lines
correspond to the sensitivity curves Wsens( f ) of SKA observing 100 milli-second pulsars (dark red), SKA
observing 2000 milli-second pulsars (light red), LISA (orange), ET (yellow), and aLIGO-aVirgo-KAGRA
network at its final design (green). The BBN bound rules out the FOPT SGWB signals touching the blue
area.

many orders of magnitude, as shown in Fig. 1 (left panel). Fig. 1 also shows h2WGW( f ) for some
illustrative FOPT scenarios (dotted curves in the right panel).

LISA is particularly sensitive, but not limited, to FOPT at the electroweak scale. Due to the
frequency broadband of WGW( f ), LISA can detect FOPTs with 10�3 GeV . T⇤ . 107 GeV and
b/H? up to 103 when bubbles are ultrarelativistic, vw ' 1 [1]. For the same reason, a FOPT signal
detected at LISA can in principle be observed at the most diverse frequencies. On the other hand,
depending on the FOPT parameter region, other experiments can have better chances to detect the
signal. In view of this feature we now estimate the parameter reach of the current and forthcoming
GW network (Section 2), sketch how well LISA can reconstruct the FOPT signal (Section 3) and
comment on the implications that such a reconstruction has on the whole GW detector network
(Section 4).

2. Synergy between different GW observatories

Pulsar time array experiments such as PPTA, EPTA and NANOGRAV are currently testing
the frequency band O(1)–O(103) nHz, while present ground-based interferometers are probing
the O(10)–O(104) Hz range. The lack of detection in the collected data [7, 8, 9, 10] rules out

2

4

FIG. 1. The left panel shows the predicted median background for the BNS (red) and BBH (green) models described in the
text, the total (combined) background (blue), and the Poisson error bars (grey shaded region) for the total background. We also
show expected PI curves for observing runs O2, O3, and design sensitivity (see the main text for details about the assumptions
made for these observing runs). Virgo is included in O3 and beyond. The PI curves for O3 and beyond cross the Poisson error
region, indicating the possibility of detecting this background or placing interesting upper limits on the evolution of the binary
merger rates with redshift. In the right panel, we plot the signal-to-noise ratio as a function of observing time for the median
total background (blue curve) and associated uncertainty (shaded region). The median of the predicted total background can
be detected with SNR = 3 after 40 months of observation time, with LIGO-Virgo operating at design sensitivity (2022 – 2024).
The markers indicate the transition between observing runs. We only show 12 months of the Design phase here, although for
the calculation of the PI curves it is assumed to be 24 months long (see [45]).

The BBH background is di↵erent in nature even
though the resulting energy density spectrum is simi-
lar. BBH events create a highly non-stationary and non-
Gaussian background (sometimes referred to as a pop-
corn background in the literature), i.e. individual events
are well separated in time, on top of the continuous back-
ground from contributed BNS inspirals. The duration of
the waveform is much smaller for these massive sources
(14 s on average in the band above 10 Hz, considering
both the power law mass distribution and the distribu-
tion in redshift [46]) and much less than the time interval
between events (223+352

�115
s on average) resulting in rare

overlaps.

Table I shows the estimated energy density at 25 Hz
for each of the BNS, BBH and Total backgrounds. We
also show the average time between events ⌧ for each
of these backgrounds as well as the average number of
overlapping sources at any time �, and the associated
Poisson error bounds. The inverse of ⌧ gives the rate of
events in Universe in s�1.

Conclusion — The first gravitational wave detection of
a binary neutron star system implies a significant contri-
bution to the stochastic gravitational wave background
from BNS mergers. Assuming the median merger rates,
the background may be detected with SNR = 3 after 40
months of accumulated observation time, during the De-
sign phase (2022+)[45]. In the most optimistic case, an
astrophysical background may be observed at a level of

3� after only 18 months of observation, during O3, the
next observing run.
There are additional factors which may lead to an

even earlier detection. First, the presence of additional
sources, for example black hole-neutron star systems, will
further add to the total background. Even small contri-
butions to the background can decrease the time to detec-
tion significantly. Second, the analysis we have presented
here assumes the standard cross-correlation search. Spe-
cialized non-Gaussian searches may be more sensitive,
particularly to the BBH background [47, 48]. Unlike a
standard matched filter search, non-Gaussian pipelines
do not attempt to find individual events, but rather to
measure the rate of sub-threshold events independently
of their distribution.
A detection of the astrophysical background allows for

a rich set of follow-up studies to fully understand its com-
position. The di↵erence in the time-domain structure of
the BBH and BNS signals may allow the BNS and BBH
backgrounds to be measured independently. After de-
tecting the background, stochastic analyses can address
whether the background is isotropic [49–51], unpolarized
[52], and consistent with general relativity [53]. Finally,
understanding the astrophysical background is crucial to
subtract it and enable searches for a background of cos-
mological origin [46].
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limit from the European Pulsar Timing Array (EPTA) [78], and the expected sensitivity of

the future Square Kilometre Array (SKA) [79]. We see that the strongest current bound on

these GW spectra comes from EPTA and implies Gµ . 2⇥ 10�11. Other recent estimates

of the GW spectrum from a scaling cosmic string network relative to current and future

searches includes Refs. [67, 80, 81].

2.3 Connecting GW frequencies to loop formation and emission times

The GW spectra shown in Fig. 2 all share a characteristic shape, with a dropo↵ at lower

frequencies and a flattening at higher ones. This shape is related to the cosmological

background evolution when the loops contributing to a given frequency were formed and

emitted GWs [20]. In this section, we connect the GW frequency seen today to the time

at which the dominant contribution to that frequency was emitted by the string network.

Later, we show how this connection can be used to test the evolution of the very early

universe.

We begin with a simple analytic estimate of the frequency-time connection. (See also

Ref. [82].) For this, it is su�cient to focus exclusively on the k = 1 mode which we find

to be the dominant one in the cases of interest. We also set tF ! 0 for now, and return

to non-zero values later on. The expression of Eq. (2.14) involves an integral over the

GW emission time t̃, with the contribution to the signal over the time interval (t̃, t̃ + dt̃)
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LISA as a probe for particle physics G. Nardini

Figure 1: Left panel: The value of the frequency peak fp in the parameter space T?–b/H? for bubble
velocities vw = 0.99. On the background (colored bands) the frequencies the forthcoming GW detectors
are sensitive to; the stronger the color, the better the sensitivity. The blue area is excluded by the BBN
bound. Right panel: Sensitivity curves of the current and forthcoming GW experiments and the SGWB
signals (dotted curves) sourced by the FOPT benchmark scenarios with g? = 106, b/H? = 3, and T?/GeV
and vw being respectively 3 and 0.99 (dotted purple line), 3 and 0.05 (dotted gray line), 120 and 0.99
(dotted magenta line), 120 and 0.05 (dotted orange line), 104 and 0.99 (dotted blue line), and 104 and 0.05
(dotted green line). The dotted-dashed lines correspond to the power-law sensitivity curves of PPTA &
EPTA & NANOGRAV (at frequencies f ⇠ nHz) and aLIGO O1 (at frequencies f ⇠ 100 Hz); the solid lines
correspond to the sensitivity curves Wsens( f ) of SKA observing 100 milli-second pulsars (dark red), SKA
observing 2000 milli-second pulsars (light red), LISA (orange), ET (yellow), and aLIGO-aVirgo-KAGRA
network at its final design (green). The BBN bound rules out the FOPT SGWB signals touching the blue
area.

many orders of magnitude, as shown in Fig. 1 (left panel). Fig. 1 also shows h2WGW( f ) for some
illustrative FOPT scenarios (dotted curves in the right panel).

LISA is particularly sensitive, but not limited, to FOPT at the electroweak scale. Due to the
frequency broadband of WGW( f ), LISA can detect FOPTs with 10�3 GeV . T⇤ . 107 GeV and
b/H? up to 103 when bubbles are ultrarelativistic, vw ' 1 [1]. For the same reason, a FOPT signal
detected at LISA can in principle be observed at the most diverse frequencies. On the other hand,
depending on the FOPT parameter region, other experiments can have better chances to detect the
signal. In view of this feature we now estimate the parameter reach of the current and forthcoming
GW network (Section 2), sketch how well LISA can reconstruct the FOPT signal (Section 3) and
comment on the implications that such a reconstruction has on the whole GW detector network
(Section 4).

2. Synergy between different GW observatories

Pulsar time array experiments such as PPTA, EPTA and NANOGRAV are currently testing
the frequency band O(1)–O(103) nHz, while present ground-based interferometers are probing
the O(10)–O(104) Hz range. The lack of detection in the collected data [7, 8, 9, 10] rules out

2

4

FIG. 1. The left panel shows the predicted median background for the BNS (red) and BBH (green) models described in the
text, the total (combined) background (blue), and the Poisson error bars (grey shaded region) for the total background. We also
show expected PI curves for observing runs O2, O3, and design sensitivity (see the main text for details about the assumptions
made for these observing runs). Virgo is included in O3 and beyond. The PI curves for O3 and beyond cross the Poisson error
region, indicating the possibility of detecting this background or placing interesting upper limits on the evolution of the binary
merger rates with redshift. In the right panel, we plot the signal-to-noise ratio as a function of observing time for the median
total background (blue curve) and associated uncertainty (shaded region). The median of the predicted total background can
be detected with SNR = 3 after 40 months of observation time, with LIGO-Virgo operating at design sensitivity (2022 – 2024).
The markers indicate the transition between observing runs. We only show 12 months of the Design phase here, although for
the calculation of the PI curves it is assumed to be 24 months long (see [45]).

The BBH background is di↵erent in nature even
though the resulting energy density spectrum is simi-
lar. BBH events create a highly non-stationary and non-
Gaussian background (sometimes referred to as a pop-
corn background in the literature), i.e. individual events
are well separated in time, on top of the continuous back-
ground from contributed BNS inspirals. The duration of
the waveform is much smaller for these massive sources
(14 s on average in the band above 10 Hz, considering
both the power law mass distribution and the distribu-
tion in redshift [46]) and much less than the time interval
between events (223+352

�115
s on average) resulting in rare

overlaps.

Table I shows the estimated energy density at 25 Hz
for each of the BNS, BBH and Total backgrounds. We
also show the average time between events ⌧ for each
of these backgrounds as well as the average number of
overlapping sources at any time �, and the associated
Poisson error bounds. The inverse of ⌧ gives the rate of
events in Universe in s�1.

Conclusion — The first gravitational wave detection of
a binary neutron star system implies a significant contri-
bution to the stochastic gravitational wave background
from BNS mergers. Assuming the median merger rates,
the background may be detected with SNR = 3 after 40
months of accumulated observation time, during the De-
sign phase (2022+)[45]. In the most optimistic case, an
astrophysical background may be observed at a level of

3� after only 18 months of observation, during O3, the
next observing run.
There are additional factors which may lead to an

even earlier detection. First, the presence of additional
sources, for example black hole-neutron star systems, will
further add to the total background. Even small contri-
butions to the background can decrease the time to detec-
tion significantly. Second, the analysis we have presented
here assumes the standard cross-correlation search. Spe-
cialized non-Gaussian searches may be more sensitive,
particularly to the BBH background [47, 48]. Unlike a
standard matched filter search, non-Gaussian pipelines
do not attempt to find individual events, but rather to
measure the rate of sub-threshold events independently
of their distribution.
A detection of the astrophysical background allows for

a rich set of follow-up studies to fully understand its com-
position. The di↵erence in the time-domain structure of
the BBH and BNS signals may allow the BNS and BBH
backgrounds to be measured independently. After de-
tecting the background, stochastic analyses can address
whether the background is isotropic [49–51], unpolarized
[52], and consistent with general relativity [53]. Finally,
understanding the astrophysical background is crucial to
subtract it and enable searches for a background of cos-
mological origin [46].

Acknowledgments — The authors gratefully acknowledge
the support of the United States National Science Foun-

Figure 2. Gravitational wave spectrum from a cosmic string network with ↵ = 0.1 and Gµ =
10�11

, 10�13
, 10�15

, 10�17. Also shown are the current sensitivities of LIGO and EPTA (solid
bounded regions), and the projected future sensitivities of LISA, DECIGO/BBO, ET/CE, and
SKA (dash bounded regions).

limit from the European Pulsar Timing Array (EPTA) [78], and the expected sensitivity of

the future Square Kilometre Array (SKA) [79]. We see that the strongest current bound on

these GW spectra comes from EPTA and implies Gµ . 2⇥ 10�11. Other recent estimates

of the GW spectrum from a scaling cosmic string network relative to current and future

searches includes Refs. [67, 80, 81].

2.3 Connecting GW frequencies to loop formation and emission times

The GW spectra shown in Fig. 2 all share a characteristic shape, with a dropo↵ at lower

frequencies and a flattening at higher ones. This shape is related to the cosmological

background evolution when the loops contributing to a given frequency were formed and

emitted GWs [20]. In this section, we connect the GW frequency seen today to the time

at which the dominant contribution to that frequency was emitted by the string network.

Later, we show how this connection can be used to test the evolution of the very early

universe.

We begin with a simple analytic estimate of the frequency-time connection. (See also

Ref. [82].) For this, it is su�cient to focus exclusively on the k = 1 mode which we find

to be the dominant one in the cases of interest. We also set tF ! 0 for now, and return

to non-zero values later on. The expression of Eq. (2.14) involves an integral over the

GW emission time t̃, with the contribution to the signal over the time interval (t̃, t̃ + dt̃)

proportional to

d⌦GW(f) / dt̃⇥ I(t̃, f) ⌘ dt̃⇥ 1

f
t
�4
i

✓
ai

ã
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Fig. 1. Planck 2018 CMB angular power spectra, compared with the base-⇤CDM best fit to the Planck TT,TE,EE+lowE+lensing
data (blue curves). For each panel we also show the residuals with respect to this baseline best fit. Plotted areD` = `(` + 1)C`/(2⇡)
for TT and T E, C` for EE, and L2(L + 1)2C��L /(2⇡) for lensing. For TT , T E, and EE, the multipole range 2  `  29 shows the
power spectra from Commander (TT ) and SimAll (T E, EE), while at ` � 30 we display the co-added frequency spectra computed
from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to their best-fit values in the
base-⇤CDM cosmology. For the Planck lensing potential angular power spectrum, we show the conservative (orange dots; used in
the likelihood) and aggressive (grey dots) cases. Note some of the di↵erent horizontal and vertical scales on either side of ` = 30
for the temperature and polarization spectra and residuals.

Section 4 is devoted to constraining slow-roll parameters and
to a Bayesian model comparison of inflationary models, tak-
ing into account the uncertainties in connecting the inflation-
ary expansion to the subsequent big-bang thermalized era. In
Sect. 5 the potential for standard single-field inflation is recon-
structed using two di↵erent methodologies. Section 6 describes
the primordial power spectrum reconstruction using three dif-
ferent approaches. In Sect. 7, the parametric search for features
in the primordial scalar power spectrum is described, including
a dedicated study of the axion monodromy model. In Sect. 8,
the Planck power spectrum data are combined with information
from the Planck bispectrum in a search for oscillations in the
primordial spectra. The constraints on isocurvature modes are
summarized in Sect. 9. Section 10 updates and extends the con-
straints on anisotropic inflationary models of inflation. We sum-
marize our conclusions in Sect. 11, highlighting the key results
and the legacy of Planck for inflation.

2. Methodology and data

The general theoretical background and analysis methods ap-
plied in this paper closely match those of the previous Planck
inflation papers (PCI13; PCI15). Consequently, in this section
we provide only a brief summary of the methodology and focus
on changes in the Planck likelihood relative to previous releases.

2.1. Cosmological models and inference

For well over a decade, the base-⇤CDM model has been estab-
lished as the simplest viable cosmological model. Its six free
parameters can be divided into primordial and late-time parame-
ters. The former describe the state of perturbations on observable
scales (corresponding to a wavenumber range of 10�4 Mpc�1 .
k . 10�1 Mpc�1 today) prior to re-entering the Hubble radius
around recombination. In base ⇤CDM, the initial state of per-
turbations is assumed to be purely adiabatic and scalar, with the
spectrum of curvature perturbations given by the power law

lnPR(k) = ln As + (ns � 1) ln(k/k⇤) ⌘ lnP0(k), (3)
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Fig. 1. Planck 2018 CMB angular power spectra, compared with the base-⇤CDM best fit to the Planck TT,TE,EE+lowE+lensing
data (blue curves). For each panel we also show the residuals with respect to this baseline best fit. Plotted areD` = `(` + 1)C`/(2⇡)
for TT and T E, C` for EE, and L2(L + 1)2C��L /(2⇡) for lensing. For TT , T E, and EE, the multipole range 2  `  29 shows the
power spectra from Commander (TT ) and SimAll (T E, EE), while at ` � 30 we display the co-added frequency spectra computed
from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to their best-fit values in the
base-⇤CDM cosmology. For the Planck lensing potential angular power spectrum, we show the conservative (orange dots; used in
the likelihood) and aggressive (grey dots) cases. Note some of the di↵erent horizontal and vertical scales on either side of ` = 30
for the temperature and polarization spectra and residuals.

Section 4 is devoted to constraining slow-roll parameters and
to a Bayesian model comparison of inflationary models, tak-
ing into account the uncertainties in connecting the inflation-
ary expansion to the subsequent big-bang thermalized era. In
Sect. 5 the potential for standard single-field inflation is recon-
structed using two di↵erent methodologies. Section 6 describes
the primordial power spectrum reconstruction using three dif-
ferent approaches. In Sect. 7, the parametric search for features
in the primordial scalar power spectrum is described, including
a dedicated study of the axion monodromy model. In Sect. 8,
the Planck power spectrum data are combined with information
from the Planck bispectrum in a search for oscillations in the
primordial spectra. The constraints on isocurvature modes are
summarized in Sect. 9. Section 10 updates and extends the con-
straints on anisotropic inflationary models of inflation. We sum-
marize our conclusions in Sect. 11, highlighting the key results
and the legacy of Planck for inflation.

2. Methodology and data

The general theoretical background and analysis methods ap-
plied in this paper closely match those of the previous Planck
inflation papers (PCI13; PCI15). Consequently, in this section
we provide only a brief summary of the methodology and focus
on changes in the Planck likelihood relative to previous releases.

2.1. Cosmological models and inference

For well over a decade, the base-⇤CDM model has been estab-
lished as the simplest viable cosmological model. Its six free
parameters can be divided into primordial and late-time parame-
ters. The former describe the state of perturbations on observable
scales (corresponding to a wavenumber range of 10�4 Mpc�1 .
k . 10�1 Mpc�1 today) prior to re-entering the Hubble radius
around recombination. In base ⇤CDM, the initial state of per-
turbations is assumed to be purely adiabatic and scalar, with the
spectrum of curvature perturbations given by the power law

lnPR(k) = ln As + (ns � 1) ln(k/k⇤) ⌘ lnP0(k), (3)
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

we lack access to sub-CMB scales

Planck Collaboration: The cosmological legacy of Planck

-160 160 µK0.41 µK

Fig. 6. The Planck CMB sky. The top panel shows the 2018, SMICA temperature map. The middle panel shows the polarization field
as rods of varying length, superimposed on the temperature map, when both are smoothed at the 5� scale. This smoothing is done
for visibility purposes, but the enlarged region presented in Fig. 7 shows that the Planck polarization map is dominated by signal at
much smaller scales. Both these CMB maps have been masked and inpainted in regions where residuals from foreground emission
are expected to be substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution
temperature map. The bottom panel shows the Planck lensing map (derived from r�, i.e., the E mode of the lensing deflection
angle), specifically a minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the
unmasked area covers 80.7 % of the sky, which is larger than that used for cosmology.
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If furthermore H›2 π e, we can immediately obtain the value of the gravitational wave mode at (and
beyond) horizon crossing as
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where in the last step we have inserted Eq. (4.44), replacing the cosine with a factor of 1/2. For the
parameter point of Fig. 4.3 this yields x w(“)

+2
(x)

--
x.1

ƒ 3.7 ◊ 103, agreeing with the full numerical
solution up to an order one factor. We emphasize that due to helicity conservation only one of the two
metric tensor modes is enhanced in this manner, resulting in a chiral gravitational wave spectrum.
In a similar manner, the ‘freeze-out’-like behaviour visible for the gauge field modes in Fig. 4.3 can
be traced back to the coupling to the metric tensor perturbation through to top-right element of
M+2. On far super-horizon scales, the contribution from the frozen gravitational wave mode becomes
comparable to the contribution from the decaying gauge field modes in the in the equation of motion
for the gauge fields. In this regime, the derivative terms are suppressed by a factor of ›≠2 compared
to the M+2 terms. The amplitude of w(e)

+2
can then be estimated by comparing the two terms in the

first line of M+2 to get
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For the parameter point of Fig. 4.3 this yields w(e)

+2
(x æ 0) ƒ 10≠2 ◊ w(“)

+2
(x æ 0), in good agreement

with the full numerical result. For the parameter example of this paper, the contribution of the
far super-horizon modes to both the energy and variance of the gauge fields is negligible, due to a
suppression both in amplitude and momentum compared to the modes crossing the horizon at the
same time. Consequently, these are well described by employing the solutions of Eq. (4.28). On the
other hand, if the gauge coupling is very small, this description is no longer accurate and the gauge
and gravity sector need to be treated as a fully coupled system. In this regime, the gauge field/gravity
interactions induce an exchange of energy between the e±2 modes and gravitational waves [45,46].
Both the scalar and tensor sector preserve the usual scaling behaviour of de Sitter space. In the
limit of constant H and ›, we obtain a scale-invariant scalar and tensor power spectrum. The slow
variation of H and › obtained in any realistic inflation model will lead to deviations from this exact
scale invariance. We will discuss this in more detail in the next section.

5 A worked example

To illustrate the results obtained so far, we will discuss an explicit parameter example in this section.
The most natural scalar potential for an axion is a periodic potential, breaking the shift symmetry of
the axion down to a discrete symmetry due to non-perturbative e�ects,
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In the following we will take m = 7.5 ◊ 10≠6 MP and ⁄ = 1.1 ◊ 10≠13 (corresponding to V 1/4

0
ƒ

8.3 ◊ 10≠3 MP and f„ ƒ 9.2 MP ). This parameter choice ensures the correct normalization of the
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strongly enhanced GW spectrum  
at small scales 

maximally polarized, non-gaussian
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end of inflation

inflaton scalar potential:

see also [Binétruy, Domcke, Pieroni ’16]
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dual fermion & gauge field production

U(1) gauge symmetry  +  massless Dirac fermion +  pseudo Goldstone boson + chiral anomaly:

Sec. 5 we discuss possible impacts of our results on axion inflation and leptogenesis, before concluding

in Sec. 6. Details on our notation and the conventions used can be found in App. A.

2 Setup

2.1 Toy model

For simplicity, we consider the following toy model throughout this paper:

S =
Z
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�

, (2.1)

where� is a real pseudo-scalar field that could be an inflaton (but not necessarily), Âµ is a U(1) gauge

field, and  ̂ is a massless Dirac fermion with charge Q under this U(1) group. We will assume that,

while the vector current is conserved, the axial current is anomalous. The dual field strength is de-

fined by ˆ̃F µ⌫ ⌘ ✏µ⌫⇢� F̂⇢�/2 with ✏0123 = +1. The F̂ ˆ̃F term is suppressed below the scale ↵/ fa where

↵ = g 2/(4⇡) denotes the gauge coupling of the U (1) group. Throughout this paper, we take the FLRW

metric with vanishing curvature, ds 2 = dt 2
�a 2(t )dx2 = a 2(⌘)(d⌘2

�dx2)with a being the scale factor.

This implies the following vierbein, e a
µ = a�a

µ and e µa = �
µ
a /a ; where µ runs over ⌘, x , y , and z . The

covariant derivative acting on  ̂ involves the spin connection!µa b :
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a H �̂0
ò
 ̂, (2.2)

where we have inserted the FLRW metric in the second equality with H being the Hubble parameter,

H ⌘ ȧ/a . The gamma matrices with a hat fulfill {�̂µ, �̂⌫} = g µ⌫, while those without a hat satisfy that

in the flat spacetime {�a ,�b
} = ⌘a b . They are related through �̂µ = e µa �a = �µ/a . See Ref. [41] for an

introduction to QFT on curved space time as well as App. A for our notations and conventions.

As is well known, massless fermions and gauge fields are conformal. That is, their dynamics does

not depend on the scale factor, a . To use this property explicitly, we redefine the fields as follows:  ⌘

a 3/2 ̂, (Âµ) = (A0,�A) ⌘ (Aµ), and (Âµ) = (A0/a 2,A/a 2) ⌘ (Aµ)/a 2, where the index of the comoving

field A is raised/lowered by ⌘µ⌫, while for the physical field Â this is done by g µ⌫. By means of these

rescaled fields, one may rewrite the action as follows:
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. (2.3)

Note here that the index of co-moving objects, such as Fµ⌫ and �µ, is raised/lowered by the flat metric;

F µ⌫ =⌘µ⇢⌘⌫�F⇢� and �µ =⌘µ⌫�⌫. In the rest of this paper, we usually raise/lower the index by ⌘µ⌫. If

we would like to use g µ⌫ instead, we will explicitly write down the metric as done in the kinetic term

of the scalar field.

Let us define the electric and magnetic fields here. The physical electric and magnetic fields, Ê,B̂,

4

where

J µ� ⌘ fa g µ⌫@⌫�, (2.12)

K µCS ⌘
↵

⇡
✏µ⌫⇢�A⌫@⇢A�. (2.13)

Let us move on to the fermions. Classically, for massless fermions, we have two independent sym-

metries, U(1)L ⇥U(1)R. However, their axial summation is modified in the presence of an anomaly

while the vector one is kept intact, U(1)L ⇥U(1)R ! U(1)V:  7! e i✓V . KM: Note here that the CS

coupling with the inflaton, �Fµ⌫F̃ µ⌫, never changes the symmetry structure of our setup. Thus one

may derive the ABJ anomaly equation as done in Fujikawa’s method [?, ?]. The equations of motion

for the vector/axial currents are given by

0= @µ J µ , (2.14)
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, (2.15)
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Here we have clarified the relation of these currents in terms of the original field before the rescaling.

In our notation (See App. A), the vector/axial current is given by the right-handed current plus/minus

the left-handed current: J µ /5 = J µR ± J µL with JH ⌘ �
µ
PH for H = R, L. Throughout this paper, we

write down the charge densities with respect to those quantities as

q• ⌘
1
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Z
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Also, one can reorganize Eqs. (2.11) and (2.15) to obtain the following current equation:
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Åp
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ã
=�
p
�g fa V 0. (2.21)

This fact is related to the redundancy of the description of the system. By performing the chiral rota-

tion, we can replace the CS term with a term proportional to�@µ J µ5 :
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In this frame, the shift symmetric charge is q� +q5/2Q 2 which is consistent with Eq. (2.21). While the

two theories [Eqs. (2.1) and (2.22)] are inequivalent classically, the anomalous equation (2.15) makes

6

chiral rotation

Chiral anomalies in the SM:

 pion decay

 baryon and lepton number (B + L)

�µ� �

�

Aµ A�

URV

R

Figure 2: The diagram leading to Eq. (3.16).

From this, we can obtain the fermion propagator in the presence of �̇ 6= 0. By plugging the propagator

into the self energy, one can estimate the impact of �̇. In the following, we will be interested in the UV

part of the loop integral, and hence one may regard a �̇ as essentially constant. Also, we assume that

the phase space density of the fermion gets suppressed for a sufficiently large momentum. Hence,

the self energy with a large loop momentum may be regarded as the vacuum state for these particles.

After some computation, we arrive at

i⇧µ⌫Ret(P )�
↵a �̇
⇡ fa

✏0µ�⌫(�i P�) ! @⌫

Å
↵�

⇡ fa
F̃ ⌫µ
ã

, (3.16)

which reproduces the equation of motion for Aµ as obtained from Eq. (2.1), see Eq. (3.2) or Eq. (3.1).

Here P denotes the external momentum in the Fourier-transformed propagator. The connection more

evident in the language of Feynman diagrams. The relevant diagram is nothing but the one which

leads to the triangle anomaly as can be seen from Fig. 2. To sum up, the two theories, Eqs. (2.3) and

(2.22), are independent classically, and hence we have to look at the loop contributions to see the

equivalence explicitly from the equations of motion.

3.2 Chiral fermion production from the helical gauge field

Now we are in a position to discuss the fermion production in the presence of the helical gauge field.

The aim of this section is twofold. On the one hand, the production of fermions is expected from the

anomalous current equation given in Eq. (2.15). On the other hand, we expect another production

channel in the presence of a strong electric field, namely the Schwinger effect. We would like to clarify

the relation among them and also reproduce the result inferred by Eq. (2.15) directly from the equation

of motion for the fermions.

The rigorous way to study this fermion production may be to track the real time evolution of all the

correlators, such as gauge bosons and fermions, simultaneously in the presence of the slowly rolling�,

starting for instance from first principles like the closed-time-path formalism [43–45]. This treatment

is however beyond the scope of this paper. Instead, we would like to approximate the situation. This

allows us to investigate the process intuitively and analytically.

In flat spacetime, the approximation we will employ is easy to understand: stop the gauge field

production at a given time t , take one patch within a correlation length of the generated gauge field,

12

�Fµ⌫F̃µ⌫ (@µ�) ̄�
µ�5 (53)

(54)

L = �
1

2
@µ�@

µ�� V (�) + i ̄�µ@µ �
�

2fa
@µ ( ̄�

µ�5 )| {z }
J
µ
5

�@µJ
µ

5 ! �̇ J0
5

⇡0 ! ��

0 6= @µJ
µ

5 = �
1

16⇡2
Fµ⌫F̃

µ⌫

5

dual production of 
helical gauge fields 
and chiral fermions

 21

�Fµ⌫F̃µ⌫ (@µ�) ̄�
µ�5 (53)

(54)

L = �
1

2
@µ�@

µ�� V (�) + i ̄�µ@µ �
�

2fa
@µ ( ̄�

µ�5 )| {z }
J
µ
5

�@µJ
µ

5 ! �̇ J0
5

⇡0 ! ��

5

!R =

8
<

:
±
p

p2z + 2ngQB for n = 1, 2, . . . ,

pz for n = 0 ,

!L =

8
<

:
±
p
p2z + 2ngQB for n = 1, 2, . . . ,

�pz for n = 0 ,

(Aµ) = (0, 0,�Bx,Et)

0 =


�
@2

@t2
+

@2

@x2
� (gQBx� py)

2
� (gQEt+ pz)

2
+ gQ (B ± iE)�z

�
�R/L

Q = 1 , g = 1/
p
2

�̈+ 3H�̇+ V 0
(�) =

↵

fa
h ~E · ~Bi

Jµ

5 =  ̄�µ�
5 

7



Particle production in the Early Universe Valerie Domcke (DESY, Hamburg)

dual fermion & gauge field production

 22

helical gauge field production

(chiral) fermion production

backreaction on gauge field production

one helicity of gauge field acquires tachyonic mass 


parallel E,B fields; constant & homogeneous on scales << H-1

fermion production in constant E,B background


quantum `Schwinger - type’ production  ( ->  anomaly equation)

fermions are accelerated in gauge field background


induced current inhibits gauge field production

Kyohei Mukaida - DESY

‣ Induced current and EoM for gauge field

‣ Suppressed gauge field production

Backreaction from Fermion
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GW spectrum

no or very heavy fermions
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production of long-range, classical gauge fields 
under certain conditions, these can survive until EW phase transition
baryogenesis from decaying magnetic fields @ EW phase transition
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The SGWB is our cosmic history book:

all `sufficiently violent’ events are recorded, since the Big Bang

different epochs correspond to different frequencies

every record is a convolution of the actual event with the subsequent cosmological history

It is very hard to decipher!

Axion inflation

Axion as a PNGB with shift-symmetric couplings

enhanced GW spectrum at sub-CMB scales with characteristic features


connected to open questions in particle cosmology
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If furthermore H›2 π e, we can immediately obtain the value of the gravitational wave mode at (and
beyond) horizon crossing as
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where in the last step we have inserted Eq. (4.44), replacing the cosine with a factor of 1/2. For the
parameter point of Fig. 4.3 this yields x w(“)

+2
(x)

--
x.1

ƒ 3.7 ◊ 103, agreeing with the full numerical
solution up to an order one factor. We emphasize that due to helicity conservation only one of the two
metric tensor modes is enhanced in this manner, resulting in a chiral gravitational wave spectrum.
In a similar manner, the ‘freeze-out’-like behaviour visible for the gauge field modes in Fig. 4.3 can
be traced back to the coupling to the metric tensor perturbation through to top-right element of
M+2. On far super-horizon scales, the contribution from the frozen gravitational wave mode becomes
comparable to the contribution from the decaying gauge field modes in the in the equation of motion
for the gauge fields. In this regime, the derivative terms are suppressed by a factor of ›≠2 compared
to the M+2 terms. The amplitude of w(e)

+2
can then be estimated by comparing the two terms in the
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For the parameter point of Fig. 4.3 this yields w(e)

+2
(x æ 0) ƒ 10≠2 ◊ w(“)

+2
(x æ 0), in good agreement

with the full numerical result. For the parameter example of this paper, the contribution of the
far super-horizon modes to both the energy and variance of the gauge fields is negligible, due to a
suppression both in amplitude and momentum compared to the modes crossing the horizon at the
same time. Consequently, these are well described by employing the solutions of Eq. (4.28). On the
other hand, if the gauge coupling is very small, this description is no longer accurate and the gauge
and gravity sector need to be treated as a fully coupled system. In this regime, the gauge field/gravity
interactions induce an exchange of energy between the e±2 modes and gravitational waves [45,46].
Both the scalar and tensor sector preserve the usual scaling behaviour of de Sitter space. In the
limit of constant H and ›, we obtain a scale-invariant scalar and tensor power spectrum. The slow
variation of H and › obtained in any realistic inflation model will lead to deviations from this exact
scale invariance. We will discuss this in more detail in the next section.

5 A worked example

To illustrate the results obtained so far, we will discuss an explicit parameter example in this section.
The most natural scalar potential for an axion is a periodic potential, breaking the shift symmetry of
the axion down to a discrete symmetry due to non-perturbative e�ects,
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strongly enhanced GW spectrum  
at small scales 

maximally polarized, non-gaussian

�N⇤ additional e-folds, implying that for a given scalar potential, the point where the CMB

probes this scalar potential is shifted. Note that this does not change the total amount of

e-folds (NCMB ' 60) after the CMB scales exited the horizon, but these are now divided

among N⇤ efolds of standard inflation governed by the Hubble friction and �N⇤ e-folds of

inflation governed by the gauge field induced friction, see also Fig. 1.

2.2 Scalar and tensor perturbations

Expressing the pseudoscalar field as �(t, x) = �(t) + ��(x, t) the equation of motion for the

scalar fluctuations reads:
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At large scales, gauge contributions are small and the spectrum approaches the scale-invariant

spectrum of the standard vacuum fluctuations during inflation. At small scales, the gauge

contributions dominate and the spectrum is given by:
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Note that the gauge fields a↵ect the scalar spectrum in twofold way: by modifying the

background slow-roll equation of motion and by modifying the equation of motion for the

fluctuations directly. A more refined calculation of the solution to Eq. (11) can be found

in [8], with which the estimate above agrees up to an order one factor.

The tensor fluctuations are governed by the linearized Einstein equation [21]:
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Figure 5.5: Scalar power spectrum. Our semi-analytical estimate (5.16) in the non-abelian regime is shown as a dotted
orange line. For reference, we show the standard contribution of the vacuum fluctuations which also well describe the
results of the linearized analysis (solid gray) and the (non-linear) contribution in the abelian regime (dashed blue). Same
parameters as in Fig. 5.2.

in the non-abelian regime (dotted orange). The ‘strong backreaction regime’, where the simplified
expression in the second line of Eq. (5.16) applies is reached only around N ƒ 10. For reference, we
show also corresponding estimate in the abelian regime (dashed blue) [12],
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as well as the standard vacuum contribution (solid gray line, obtained by setting the last parenthesis in
Eq. (5.8) to 1), which agrees well with the results obtained from the linearized analysis. The horizontal
gray line indicates the observed value at the CMB scales.

5.2.2 Gravitational wave spectrum

Next we turn to the tensor power spectrum. For the purpose of direct gravitational wave searches
(Pulsar timing arrays (PTAs) and interferometers), it is customary to express the stochastic grav-
itational wave background (SGWB) as the energy in gravitational waves per logarithmic frequency
interval normalized to the critical energy density flc [49–51],
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for modes entering during the radiation dominated epoch of the universe, where gk,0

ú (gk,0

ú,s ) denotes
the e�ective number of degrees of freedom contributing to the energy (entropy) of the thermal bath
at the point in time when the mode k entered the horizon and today, respectively. �r = 8.5 ◊ 10≠5

denotes the fraction of radiation energy today. Neglecting the change in the number of degrees of
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Figure 5.6: Stochastic gravitational wave background. Our semi-analytical estimate (5.23) in the non-abelian regime is
shown as dotted orange line. For reference, we show the standard contribution of the vacuum fluctuations (solid gray)and
the (non-linear) contribution in the abelian regime (dashed blue). The results of the linearized analysis are shown as
green dots. Same parameters as in Fig. 5.2.
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where we have made use of the observation that the w(“)

≠2
mode is not enhanced and hence is given by

the usual solution of the Mukhanov-Sasaki equation, w(“)

≠2
(x = 1) = 1.

In Fig. 5.6 we show the resulting SGWB compared to current and upcoming experimental constraints
from pulsar timing arrays [52, 53] and from the interferometer experiments LIGO [54], LISA [55]
and the Einstein Telescope [56]. For reference, we also show the standard vacuum solution (in gray),
obtained by setting w(“,„)(x = 1) = 1, as well as the analytical results from the abelian regime (dashed
blue line),
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A key feature of the non-abelian regime is that the gravitational waves couple to the enhanced gauge-
field mode at the linear level, resulting in the enhanced SGWB at large frequencies [22]. In the abelian
regime, such a source term is absent at the linear level and only appears at the non-linear level. This
is simply because the energy-momentum tensor, the source term of the GW equation of motion, is
bi-linear in the gauge fields and we do not have a background gauge field in the abelian regime. This
non-linear term is of course not captured by the linearized analysis performed here, and hence we
simply include the non-linear contribution in the abelian regime given by Eq. (5.22) a posteriori. Note
that in the non-abelian regime this non-linear contribution is sub-dominant as long as ”A π f . For

51

quasi abelian regime

non-Ab.

regime

scalar power spectrum at CMB scales as well as a tensor-to-scalar ratio in agreement with the Planck
data [2].18 The remaining parameters are then the gauge-field inflaton coupling –/� which directly
controls the size of the parameter › and the gauge coupling e. In the following we choose –/� = 30 and
e = 5◊10≠3. As described in more detail below, the value of the gauge coupling is chosen to minimize
artifacts of our matching procedure between the abelian and non-abelian regime and the value of –/�
is chosen so as to place the phenomenologically interesting regime within the observable last 55 e-folds
of inflation. A generalization of this setup is briefly discussed at the end of Subsection 5.1.
The discussion in this section is organized as follows. In Subsection 5.1 we will discuss the growth of
the gauge field fluctuations with particular emphasis on the tachyonic modes as well as their back-
reaction on the homogeneous background field. Upon determining the range of validity of our linearized
approach, we turn to the scalar and tensor power spectra in Subsection 5.2.

5.1 Growth of gauge field fluctutions

We first recall some key results about the homogeneous background evolution and the gauge field
fluctuations from the previous sections:

• In single field inflation models, and in particular for the scalar potential considered here, the
inflaton velocity „̇ and hence the parameter › increases during inflation.

• In the far past, for › æ 0, the only stable solution for a classical isotropic gauge field background
is the zero solution. General solutions are described by small perturbations around the zero
solution.

• As long as the homogeneous background is su�ciently small, three of the six gauge field modes
are tachyonically enhanced, corresponding to three copies of the abelian limit described in Sec. 2.1
(see Fig. 4.2). In this abelian limit, the variance ÈA2

ab
Í1/2 grows exponentially with › and is well

described by Eq. (2.11).

• When › Ø 2, a stable, non-zero background solution develops (see Sec. 3). We refer to this
second solution as the “c2-solution.” It becomes possible that at some point, large fluctuations
arising from the tachyonically enhanced modes will push the background away from the zero
solution and towards the c2-solution.

• The transition from an approximately-zero homogeneous background field to the c2-solution
occurs once the fluctuations become large enough to trigger the c2-solution, eÈA2

ab
Í1/2 ≥ ›/(≠·),

see Eq. (3.28).19 This is depicted by the solid black line in Fig. 5.1.
18For a discussion of the impact of di�erent types of scalar potentials in abelian axion inflation, see Ref. [16].
19Eq. (3.20) marks the boundary to the oscillatory regime, from where ci-type solutions spiral inwards to their asymp-

totic ci values. As Fig. 3.3 illustrated, for su�ciently large › the c2 solution becomes overwhelmingly likely. In the
unlikely event that the classical background begins to evolve towards a c0 solution, the gauge field background would
be continued to be dominated by ÈA2

abÍ1/2, growing according to Eq. (2.11). The resulting stochastic initial conditions
will eventually trigger a c2-type background. Numerically, the condition eÈA2

abÍ1/2 ≥ ›/(≠·) is basically equivalent to
requiring that the magnitude of the fluctuations be of the same order as the c2 solution and very similar to the require-
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dual fermion & U(1) gauge field production

1] helical gauge field production

2] (chiral) fermion production

3] backreaction on gauge field production

one helicity of gauge field acquires tachyonic mass 


parallel E,B fields; constant & homogeneous on scales << H-1

fermion production in constant E,B background


quantum `Schwinger - type’ production  ( ->  anomaly equation)

fermions are accelerated in gauge field background


induced current inhibits gauge field production

Kyohei Mukaida - DESY

‣ Induced current and EoM for gauge field

‣ Suppressed gauge field production
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dual fermion & U(1) gauge field production

scalar power spectrum
tensor power spectrum
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probing the tensor power spectrum
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Tensor power spectrum
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Figure 5: Power spectrum of scalar perturbations for all the models with the same parameters and color code of

Fig. 4. The upper horizontal line estimates the PBH bound, the lower one indicates the COBE normalization.
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Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.
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Figure 4: Evolution of the parameter ⇠ governing the strength of the gauge interactions for models with

di↵erent values of p as defined in Eq. (20). The parameters for the Starobinsky model are as in Fig. 3, the

parameters for the other models are listed in App. A.

are in tension with the estimated PBH bound of [11] when we restrict to the case N = 1. As

this discrepancy is however only by a O(1) factor, it can both be addressed by taking into

account the theoretical uncertainties in the PBH bound (see also Sec. 5) or by considering

models with N > 1. As evident from the figure, the scalar spectrum for the Hilltop models

i.e. p = 3, 4 presents a much steeper decrease in the first part of the evolution with respect

the other models, as predicted by Eq. (25), ✏V ' N
�p.

name full name number of arms armlength [Gm] lifetime [yr]

C1 L6A5M5N2 3 5 5

C2 L6A1M5N2 3 1 5

C3 L4A2M5N2 2 2 5

C4 L4A1M2N1 2 1 2

Table 1: Configurations of the planned space-based GW mission eLISA considered in this paper.

The GW spectrum for all the models considered in this paper is shown in Fig. 6. In agreement

with the discussion of Sec. 3.2, all of these models are reproducing the schematic behavior

shown in Fig. 2. In particular we can always appreciate two abrupt changes in the slope of

the curves for two di↵erent values of the frequency. Further we depict in Fig. 6 the sensitivity

curves of a selection of current (solid lines) and upcoming (dashed lines) direct GW detectors.

Representing the millisecond pulsar timing arrays covering frequencies around 10�10 Hz, we

16
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CMB
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Tensor power spectrum
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this discrepancy is however only by a O(1) factor, it can both be addressed by taking into

account the theoretical uncertainties in the PBH bound (see also Sec. 5) or by considering

models with N > 1. As evident from the figure, the scalar spectrum for the Hilltop models

i.e. p = 3, 4 presents a much steeper decrease in the first part of the evolution with respect

the other models, as predicted by Eq. (25), ✏V ' N
�p.

name full name number of arms armlength [Gm] lifetime [yr]

C1 L6A5M5N2 3 5 5

C2 L6A1M5N2 3 1 5

C3 L4A2M5N2 2 2 5
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Table 1: Configurations of the planned space-based GW mission eLISA considered in this paper.

The GW spectrum for all the models considered in this paper is shown in Fig. 6. In agreement

with the discussion of Sec. 3.2, all of these models are reproducing the schematic behavior

shown in Fig. 2. In particular we can always appreciate two abrupt changes in the slope of

the curves for two di↵erent values of the frequency. Further we depict in Fig. 6 the sensitivity

curves of a selection of current (solid lines) and upcoming (dashed lines) direct GW detectors.
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Scalar power spectrum
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W.l.o.g., let us assume that � > 0, V 0(�) > 0, �̇ < 0. The strong gauge field production

modifies the slow-roll equation of motion and the Friedmann equation through4
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Typically the e↵ect in the Friedmann equation is small. However, in the slow-roll equation

for the inflaton, this introduces an additional friction term which can slow down inflation

significantly as ⇠ ⇠ |�̇|/H increases towards the end of inflation. Inflation then extends for
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Figure 5: Power spectrum of scalar perturbations for all the models with the same parameters and color code of

Fig. 4. The upper horizontal line estimates the PBH bound, the lower one indicates the COBE normalization.

Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.
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this discrepancy is however only by a O(1) factor, it can both be addressed by taking into

account the theoretical uncertainties in the PBH bound (see also Sec. 5) or by considering
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i.e. p = 3, 4 presents a much steeper decrease in the first part of the evolution with respect

the other models, as predicted by Eq. (25), ✏V ' N
�p.

name full name number of arms armlength [Gm] lifetime [yr]

C1 L6A5M5N2 3 5 5

C2 L6A1M5N2 3 1 5

C3 L4A2M5N2 2 2 5
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Table 1: Configurations of the planned space-based GW mission eLISA considered in this paper.

The GW spectrum for all the models considered in this paper is shown in Fig. 6. In agreement

with the discussion of Sec. 3.2, all of these models are reproducing the schematic behavior

shown in Fig. 2. In particular we can always appreciate two abrupt changes in the slope of

the curves for two di↵erent values of the frequency. Further we depict in Fig. 6 the sensitivity

curves of a selection of current (solid lines) and upcoming (dashed lines) direct GW detectors.

Representing the millisecond pulsar timing arrays covering frequencies around 10�10 Hz, we
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N = N⇤. As in our numerical simulations we have used the complete evolution, we provide

these constraints in the most general form. However, for the estimates of Sec. 4.2, we use

their approximated expression in terms of N⇤.

• COBE Normalization: It sets the value of the scalar power spectrum at the CMB

scales. This condition can be used to fix a constraint on the inflationary potential. In

particular we have [15]:

�2

s

��
N=NCMB

= (2.21± 0.07) · 10�9
. (48)

• Planck measurements: These further constrain the spectral index ns, the running of

the spectral index ↵s and the tensor-to-scalar ratio r, defined as

ns � 1 =
d ln�2
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d ln k
, ↵s =
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d ln k
, r =

�2
t

�2
s

. (49)

The constraints on these parameters from the Planck mission [15] read (at 68% CL for

ns and ↵s, 95% CL for r):

ns = 0.9645± 0.0049 , ↵s = �0.0057± 0.0071 , r < 0.10 . (50)

In slow-roll approximation and for a negligible gauge field contribution at the CMB

scales, the quantities above are given by:
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, ns ' 1 + 2⌘V � 6✏V , r ' 16✏V , (51)

where ✏V is defined in Eq. (21) and ⌘V is defined as ⌘V = V,��/V . It is useful to express

⌘V as:
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+ 2✏V , (52)

yielding [12]:

ns = 1�
p

N
� 6✏ . (53)

For p > 1, the term proportional to ✏ is negligible, indicating that ns ⇠ 0.96 suggests

p < 2.4 for N* < 60.

• Small non gaussianities: As discussed in [7–11], to respect the constraints on small

primordial non gaussianities we need ⇠CMB ⌘ ⇠|
N=NCMB

. 2.5. This implies:

⇠CMB =
↵
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�����
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�����
N=NCMB

. 2.5. (54)

More details on the derivation of this constraint are given in Sec. 5.
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decoherence is reached at x ≥ ›. As a further check, in order to establish the transition to the classical
behaviour, we computed the number of particles nk in each mode (see [41]) and we checked at which
point the regime nk ∫ 1 is reached. The results agree with those shown in Fig. 2.2 : decoherence is
reached at x ≥ ›.
In summary, we find that in the abelian limit, any Hubble patch develops a classical, approximately
homogeneous gauge field background, whose average magnitude grows exponentially with › as in-
dicated in Eq. (2.11). In the next section, we will highlight the key changes to this picture in the
non-abelian regime.

2.2 Non-abelian regime

Let us now consider the same action as in Eq. (2.1), but now in the case of an SU(2) gauge group,

S =
⁄

d4x
Ò

|g|
5
m2

p

R

2 ≠ 1
2 ˆµ„ ˆµ„ ≠ V („) ≠ 1

4F a

µ‹F µ‹

a ≠ –

4�„F a

µ‹F̃ µ‹

a

6

©
⁄

d4x
Ô

≠g [LEH + L„ + LYM + LCS] . (2.14)

The resulting equations of motion for the homogeneous inflaton field „(·) and the gauge fields Aa
µ(·, x̨)

read:
„̈ + 3H„̇ + V,„ + –

4�
Áµ‹fl‡

a3(t) F a

µ‹F a

fl‡ = 0 , (2.15)

and
÷‹‡

Ó
2Aa

‡ ≠ ˆ‡

1
ˆµ÷µflAa

fl

2
+ eÁabc÷µfl

Ë
2Ab

flˆµAc

‡ +
1
ˆµAb

fl

2
Ac

‡ ≠ Ab

µˆ‡Ac

fl

È
+

+ e2÷µfl
Ë
Aa

fl

1
Ab

µAb

‡

2
≠ Aa

‡

1
Ab

µAb

fl

2ÈÔ
+ –

2�„ÕÁ0‹jk
Ë
2ˆjAa

k + eÁabcAb

jAc

k

È
= 0 ,

(2.16)

where we have introduced the 2-operator defined as usual as 2 © gµ‹ˆµˆ‹ which here is expressed in
co-moving coordinates.

The non-linear equation (2.16) is highly sensitive to the presence of a gauge field background as
described in Sec. 2.1. An exact treatment of the system requires solving the non-linear coupled system
of equations of motions in an exponentially expanding background, a very challenging task. Instead,
we will work in a linear approximation (as in Refs. [4, 5, 22]), expanding the gauge fields around a
homogeneous background, denoted by A(0)(·), so that

A(·, x̨) = A(0)(·) + ”A(·, x̨). (2.17)

We will discuss the (classical) evolution of the background in Sec. 3 and the (quantum) evolution of
the fluctuations in Sec. 4. This treatment is valid as long as the evolution of the background is indeed
governed by the classical equation of motion, i.e. as long as the growth of the fluctuations does not
overcome the classical motion. To make the overall picture clear from the start, we highlight in the
following some of the key results, the derivation of these will follow in Secs 3 and 4, correspondingly.
We find that the background field dynamically evolves towards an isotropic configuration with two
distinct asymptotic behaviours. On the one hand, for small initial conditions, the co-moving back-
ground evolves towards a constant value, and thus remains small compared to tachyonically enhanced

12
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Figure 2.3: Sketch of the evolution of the average magnitude of the gauge fields from the abelian to the non-abelian
regime. The vertical line marks the transition from the abelian limit to the full non-abelian theory, the gray circle
indicates the requirement of matching the initial conditions accordingly. In the non-abelian regime, the fluctuations
grow slower, but may nevertheless at some point overcome the classically evolving background. This region of parameter
space is beyond the scope of the present paper, as indicated by gray shaded region.

fluctuations, see Eq. (2.11). In this regime, we are essentially back in the abelian limit, i.e. the fluctu-
ations are well described by Eq. (2.8) with 3 enhanced and 3 oscillating modes.6 On the other hand,
for su�ciently large initial conditions (and only if › Ø 2), there is an asymptotic solution for the
background which, in terms of the comoving gauge field A(0), grows as 1/|· |. In this regime, the back-
ground significantly modifies the equation of motion for the fluctuations. Consequently, we find that
only a single gauge field mode is enhanced, and the enhancement is moreover significantly suppressed
compared to the abelian case. Given the strong gauge field production in the abelian regime and the
increasing value of › over the course of inflation, eventually the growing background solution will be
triggered. The point at which this happens depends on the gauge coupling e and the CP-violating
coupling –/�. A sketch of this overall picture is given in Fig. 2.3.

6 One may worry about the justification of the linearization (2.17) in this regime. From Eq. (2.16), we note that
in the limit A

(0)(·) æ 0, a necessary condition for the linearization to be valid is e (”A)2 π ˆµ”A, or in other words
e ”A π k = x/(≠·), indicating the regime where the non-abelian terms become irrelevant. For modes crossing the
horizon (x = 1), this condition holds if

0.008 ◊ exp(2.8 ›) π 1/e , (2.18)

where we have inserted Eq. (2.11). For far super-horizon modes, the non-abelian terms become more important. However,
at this point due to a red-shift in momentum and a decay in the amplitude, the contribution of these modes to e.g. the
variance of the energy density is negligible. Note that the condition (2.18) is not su�cient to justify the linearization
of the equation of motion for the inflaton (2.15). In the abelian regime, the last term contains at least two powers of
”A

a
µ, and its relative importance will depend on the coupling strength –/�. We will return to the importance of these

non-linear e�ects in detail in Sec. 5.
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Figure 3.4: Evolution of the background gauge field in phase space, depicted by trajectories of the vector field Eq. (3.26)
for › = 3. The dots are zeroes of the vector field, corresponding to the ci solutions of Sec. 3.1.1. The left column shows
the non-oscillatory regime around the zeroes, whereas the right column is a zoomed-out view showing the oscillatory
regime. The second row shows some special trajectories, the third row depicts contours of constant ≠Ê· . See the text
for further details.
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Figure 3.3: Parameter space leading to di�erent types of solutions for the classical background gauge field. The coloured
curves indicate the phase (normalized mod 1) of the two c1-type solutions as a function of ›. Note that the y-axis has
period 1. The grey and white regions respectively indicate c0- and c2-type solutions. This figure illustrates that c0-type
solutions are rare when › is large.

enables us to re-phrase the results obtained in Sec. 3.1.1 in a more intuitive way.
Rather than choose (g(N), gÕ(N)) as phase space coordinates, we find the following choice more con-
venient:

q(·) © ≠· ef(·) , p(·) © (≠·)2ef Õ(·) . (3.22)

The equations of motion under these new coordinates then become

dq

d·
= p(·) ≠ q(·)

≠·
,

dp

d·
= ≠2

!
q(·)3 ≠ › q(·)2 + p(·)

"

≠·
. (3.23)

The denominator of ≠· can be eliminated via the substitution d· = · dN , rendering the system
autonomous:

dq

dN
= q ≠ p ,

dp

dN
= 2(q3 ≠ › q2 + p) . (3.24)

Just as for the physical quantity g(N) defined in Eq. (3.6), the transformation (3.5) also acts on q(N)
and p(N) as N -translation

N ‘æ N + ln ⁄ . (3.25)

This di�erential equation is solved by the flow lines of the vector field
1
q ≠ p, 2

1
q3 ≠ › q2 + p

22
, (3.26)

in the q-p plane.
We now begin a complete classification of solutions to Eq. (3.2) based on an analysis of this vector
field (3.26). For simplicity we exclude the degenerate case when › = 2 exactly.
The zeroes of this vector field are readily verified to be

ci © (q, p) = (ci›, ci›) , (3.27)
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Figure 3.6: A c2-type solution with random anisotropic initial conditions evolving towards isotropy for › = 3. Left
panel: the positively orientated isotropic configuration corresponds to the top-right corner. Right panel: For the same
parameter point, time evolution (relative to an arbitrary time ·ú) of the quantities D, E and F as defined in the text.
The horizontal lines denote the asymptotic values 1 and c2 ¥ 0.87 characterizing an isotropic c2 solution.

Numerical solutions of full nonlinear anisotropic background

We showed above that any homogeneous background solution which has anisotropies at sub-leading
order must evolve towards isotropy. While this supports the hypothesis that any homogeneous back-
ground tends toward isotropy, it does not prove anything about highly anisotropic backgrounds. For
this we resort to numerical simulation. Specifically, we numerically solve the fully anisotropic9 system
Eq. (2.16) for the twelve functions10 (A(0))a

µ which determine the background field A(0).
In order to understand the resulting numerical solutions, we need a way to visualize their properties.
As a generalization of ef(·) to the non-isotropic case, we define for any nonzero 3 ◊ 3 matrix A:

F (A) © ≠· |A|Ô
3›

where |A| ©
Ò

Aa

i
Aa

i
. (3.37)

Then in the special case that A(0) is isotropic, F (A(0)(·)) = ≠· |ef(·)| /›. Thus if A(0) corresponds to
an isotropic ci-type solution, then lim·æ0≠ F (A(0)(·)) = ci in accordance with Theorem 3. Next we
must quantify the degree to which A(0) is anisotropic. We define in App. E.4 two further parameters
D(A) and E(A) for this purpose, which are invariant under rotation, gauge symmetry, and multi-
plication by a positive scalar. Up to a normalization factor, D(A) œ [≠1, 1] is (det A)/ |A|3, while
the definition of E(A) is more involved. The pair of values (D(A), E(A)) determines a point in the
triangular-shaped region in the left panel of Fig. 3.6 (see also Fig. E.1). The matrix A is isotropic
when D(A) = ±1, or equivalently when E(A) = 1. When D(A) = +1 (resp. ≠1) the gauge field is
positively (resp. negatively) oriented.11

9For the fully anisotropic case, while one may diagonalize the spatial components of A(·ini) at the initial time ·ini,
the spatial components of A(·ini) and A

Õ(·ini) are not simultaneously diagonalizable.
10We have twelve functions (A(0))a

µ subject to three constraint equations and six independent dynamical equations.
To get a well-formed system, one must add three gauge-fixing constraints. We found it convenient to impose temporal
gauge

!
A

(0)"
0 = 0.

11We say that an isotropic gauge field A
a
i = f(·)”a

i is positive when f(·) is positive. This has the following physical
significance. An isotropic gauge field identifies an orthonormal basis of the Lie algebra with |f(·)| times an orthonormal
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auxiliary eom:

assume constant E,B in z-direction:

separable differential equation with discrete energy levels (Landau levels):
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that

the higher ones are symmetric but the lowest one is asymmetric with respect to the interchange of left- and right-handed

fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes

0=
✓
@ 2

@ t 2
+p 2

z +2ng |Q |B

◆
gR/L . (3.28)

Let us focus on the right-handed fermion. Its dispersion relation is obtained from Eq. (3.28):

!R =

8
<
:
±
∆

p 2
z +2ng |Q |B for n = 1, 2, . . . ,

s pz for n = 0 ,
(3.29)

where s = ± for Q� ø 0. One can see that the energy spectrum is discretized, which is known as Lan-

dau levels. Intuitively, this is because the uniform magnetic field restricts the transverse motion of

a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-

iliary field, Eq. (3.21). Evidently, Eq. (3.28) allows two independent solutions gR = N e ⌥i pz t for n = 0

with N being a normalization factor. However, one of them yields R = 0 if we insert the solution into

Eq. (3.21):

 R =
Å
±pz � i

@

@ x
�x +py�y +pz�z � s g |Q�|B x�y

ã
N h0(x�s )e ⌥i pz t�s

=
�
±pz + s pz
�

N h0(x�s )e ⌥i pz t�s , (3.30)

where s = ± for Q� ø 0. Now it is clear that we need !R = ±pz for s = ± to have non-vanishing  R.

More intuitively, since the LLL can be regarded as a fermion moving along with the magnetic field

(z -direction), the right-handed fermion must have a spin, �s , parallel to its motion.
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that
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fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes
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a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-
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where s = ± for Q� ø 0. Now it is clear that we need !R = ±pz for s = ± to have non-vanishing  R.

More intuitively, since the LLL can be regarded as a fermion moving along with the magnetic field

(z -direction), the right-handed fermion must have a spin, �s , parallel to its motion.
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that
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fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes
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Let us focus on the right-handed fermion. Its dispersion relation is obtained from Eq. (3.28):
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where s = ± for Q� ø 0. One can see that the energy spectrum is discretized, which is known as Lan-

dau levels. Intuitively, this is because the uniform magnetic field restricts the transverse motion of

a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-

iliary field, Eq. (3.21). Evidently, Eq. (3.28) allows two independent solutions gR = N e ⌥i pz t for n = 0

with N being a normalization factor. However, one of them yields R = 0 if we insert the solution into
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where s = ± for Q� ø 0. Now it is clear that we need !R = ±pz for s = ± to have non-vanishing  R.

More intuitively, since the LLL can be regarded as a fermion moving along with the magnetic field

(z -direction), the right-handed fermion must have a spin, �s , parallel to its motion.
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where : O : represents the normal ordering of O . It is straightforward to show that the result with�=�
has the opposite sign.

One can perform a similar computation for the left-handed fermions. Recall that qH (H = R, L)

counts the number of particles minus that of anti-particles: B †B�D †D . For the left-handed fermions,

a non-vanishing contribution comes from the anti-particles, i.e.,
⌦
D †D
↵
. As a result, we get the oppo-

site sign for the left-handed fermions:

qL

��
n=0 = ⌧⇥
✓
�
↵Q 2

⇡
E B

◆
. (3.36)

for �=+. Again, the overall sign is flipped for �=�.

Collecting the obtained results so far, we finally arrive at

q̇5 = q̇R
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n=0� q̇L

��
n=0 =

2↵Q 2

⇡
E (�B ) (3.37)

=�
↵Q 2

2⇡
Fµ⌫F̃ µ⌫ , (3.38)

where � = ± for �̇ ø 0. Following the procedure of Ref. [32], we have here reproduced the anomaly

equation (2.15). Also, we directly obtain q̇5 ø 0 for �̇ ø 0 which is indicated from the current equations:

Eqs. (2.11), (2.15), and (2.21). As we will see in the section, the particle production from the HLLs

does not contribute to the chiral charge q5 because the right- and left- handed fermions have the

same spectrum. This is expected because the anomalous current equation does not receive radiative

corrections [46].

Higher Landau levels and Schwinger effect. Here we discuss the fermion production in the HLLs.

Contrary to the LLL, HLLs are gapped and hence we cannot create particles in a smooth way. Never-

theless, the quantum tunneling allows a pair creation of particle and anti-particle, as in the Schwinger

effect. Before discussing the particle production in the HLLs, we briefly summarize the basics of the

Schwinger effect by turning off the magnetic field. Equipped with some intuition, we move on to the

particle production in the HLLs. In the following, we for simplicity take Q > 0, �=+ unless otherwise

stated.

Suppose that we turn on a uniform electric field during 0 < t < ⌧ pointing along the z -axis as in

Eq. (3.33). For a fixed transverse momentum p?, with p 2
?
= p 2

x+p 2
y , the dispersion relation as a function

of pz is given by!=±
q

p 2
?
+p 2

z , i.e. it is gapped by the effective transverse mass given by
��p?
��. In the

presence of the electric field, the quantum mechanical pair production of particles and anti-particles

is favored while there is no classical path for this process due to this transverse mass. As a result, the

pair-production rate is exponentially suppressed by e �⇡p 2
?
/g Q E . By taking this tunneling suppression

into account, one gets the well-known result [33, 34, 47]:

ṅR '
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⌧
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✓ (�pz )✓ (pz + g Q E⌧)e �
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= ˙̄nR = ṅL = ˙̄nL , (3.40)
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effect. Before discussing the particle production in the HLLs, we briefly summarize the basics of the

Schwinger effect by turning off the magnetic field. Equipped with some intuition, we move on to the

particle production in the HLLs. In the following, we for simplicity take Q > 0, �=+ unless otherwise
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z , i.e. it is gapped by the effective transverse mass given by
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is favored while there is no classical path for this process due to this transverse mass. As a result, the
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/g Q E . By taking this tunneling suppression
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= ˙̄n (n )R = ṅ (n )L = ˙̄n (n )L . (3.53)

In the second equality, we have used Eq. (3.51). Since hB †B i and hD †D i are determined by the same

coefficient |� |2, the production rates for particles and anti-particles are exactly the same. This is ex-

pected because the process is a pair-production. One can explicitly check that the result does not

depend on the sign of Q , �, or the chirality. This is because the dispersion relation of HLLs is insensi-

tive to these. Summing over the Landau levels n � 1, we eventually get

ṅH =
1X

n=1

ṅ (n )H =
g 2Q 2

4⇡2
E B

1
e 2⇡B/E �1

= ˙̄nH , (3.54)

for H = R, L. It is obvious that one may recover the result of the Schwinger effect given in Eq. (3.40) in

the limit of 2⇡B ⌧ E :

ṅH = ˙̄nH !
g 2Q 2

8⇡3
E 2 . (3.55)

Throughout this section we have assumed that the fermion production is fast compared to the

expansion of the Universe. We now have all the ingredients to confirm this a posteriori. Let us focus in

the following on the regime⇠¶ 3, in which the simple analytical formulas for the electric and magnetic

field, Eqs. (3.17) and (3.18) apply. In this case the fermion production rates (see Eq. (3.37) and (3.55))

read

ṅ LLL
 = 2⇥

g 2Q 2

4⇡2
E B , (3.56)

ṅ HLL
 = 4⇥

g 2Q 2

8⇡3

✓
E 2
�⇡E B +

⇡2

3
B 2+ · · ·
◆

. (3.57)

Choosing as reference values Q = 1 and the SM GUT-scale gauge coupling g = 1/
p

2, we find both rates

to be much larger than H 4, justifying the flat spacetime approximation of this section.

Moreover, throughout this section we have neglected the possibility of Pauli blocking in the final

HLL fermion states. To estimate the importance of this effect, consider the characteristic time scale

for the production of one fermion within a volume �3
c , where �c denotes the Compton wavelength of

the fermion:

tprod = ṅ�1
 �
�3
c . (3.58)
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that

the higher ones are symmetric but the lowest one is asymmetric with respect to the interchange of left- and right-handed

fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes

0=
✓
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@ t 2
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z +2ng |Q |B

◆
gR/L . (3.28)

Let us focus on the right-handed fermion. Its dispersion relation is obtained from Eq. (3.28):

!R =

8
<
:
±
∆

p 2
z +2ng |Q |B for n = 1, 2, . . . ,

s pz for n = 0 ,
(3.29)

where s = ± for Q� ø 0. One can see that the energy spectrum is discretized, which is known as Lan-

dau levels. Intuitively, this is because the uniform magnetic field restricts the transverse motion of

a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-

iliary field, Eq. (3.21). Evidently, Eq. (3.28) allows two independent solutions gR = N e ⌥i pz t for n = 0

with N being a normalization factor. However, one of them yields R = 0 if we insert the solution into

Eq. (3.21):

 R =
Å
±pz � i

@

@ x
�x +py�y +pz�z � s g |Q�|B x�y

ã
N h0(x�s )e ⌥i pz t�s

=
�
±pz + s pz
�

N h0(x�s )e ⌥i pz t�s , (3.30)

where s = ± for Q� ø 0. Now it is clear that we need !R = ±pz for s = ± to have non-vanishing  R.

More intuitively, since the LLL can be regarded as a fermion moving along with the magnetic field

(z -direction), the right-handed fermion must have a spin, �s , parallel to its motion.
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that

the higher ones are symmetric but the lowest one is asymmetric with respect to the interchange of left- and right-handed

fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes
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where s = ± for Q� ø 0. One can see that the energy spectrum is discretized, which is known as Lan-

dau levels. Intuitively, this is because the uniform magnetic field restricts the transverse motion of

a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that

the higher ones are symmetric but the lowest one is asymmetric with respect to the interchange of left- and right-handed

fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes
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Let us focus on the right-handed fermion. Its dispersion relation is obtained from Eq. (3.28):
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where s = ± for Q� ø 0. One can see that the energy spectrum is discretized, which is known as Lan-

dau levels. Intuitively, this is because the uniform magnetic field restricts the transverse motion of

a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-

iliary field, Eq. (3.21). Evidently, Eq. (3.28) allows two independent solutions gR = N e ⌥i pz t for n = 0

with N being a normalization factor. However, one of them yields R = 0 if we insert the solution into
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where s = ± for Q� ø 0. Now it is clear that we need !R = ±pz for s = ± to have non-vanishing  R.

More intuitively, since the LLL can be regarded as a fermion moving along with the magnetic field

(z -direction), the right-handed fermion must have a spin, �s , parallel to its motion.
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In the second equality, we have used Eq. (3.51). Since hB †B i and hD †D i are determined by the same

coefficient |� |2, the production rates for particles and anti-particles are exactly the same. This is ex-

pected because the process is a pair-production. One can explicitly check that the result does not

depend on the sign of Q , �, or the chirality. This is because the dispersion relation of HLLs is insensi-

tive to these. Summing over the Landau levels n � 1, we eventually get

ṅH =
1X

n=1

ṅ (n )H =
g 2Q 2

4⇡2
E B

1
e 2⇡B/E �1

= ˙̄nH , (3.54)

for H = R, L. It is obvious that one may recover the result of the Schwinger effect given in Eq. (3.40) in

the limit of 2⇡B ⌧ E :

ṅH = ˙̄nH !
g 2Q 2

8⇡3
E 2 . (3.55)

Throughout this section we have assumed that the fermion production is fast compared to the

expansion of the Universe. We now have all the ingredients to confirm this a posteriori. Let us focus in

the following on the regime⇠¶ 3, in which the simple analytical formulas for the electric and magnetic

field, Eqs. (3.17) and (3.18) apply. In this case the fermion production rates (see Eq. (3.37) and (3.55))

read

ṅ LLL
 = 2⇥

g 2Q 2

4⇡2
E B , (3.56)

ṅ HLL
 = 4⇥

g 2Q 2

8⇡3

✓
E 2
�⇡E B +

⇡2

3
B 2+ · · ·
◆

. (3.57)

Choosing as reference values Q = 1 and the SM GUT-scale gauge coupling g = 1/
p

2, we find both rates

to be much larger than H 4, justifying the flat spacetime approximation of this section.

Moreover, throughout this section we have neglected the possibility of Pauli blocking in the final

HLL fermion states. To estimate the importance of this effect, consider the characteristic time scale

for the production of one fermion within a volume �3
c , where �c denotes the Compton wavelength of

the fermion:

tprod = ṅ�1
 �
�3
c . (3.58)
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Figure 3: The Landau levels for left-/right-handed fermions for s = +, i.e., �̇Q > 0, are shown in the left/right figure. The

lowest Landau level is depicted by the blue line while the higher ones are drawn as black lines. One can readily see that

the higher ones are symmetric but the lowest one is asymmetric with respect to the interchange of left- and right-handed

fermions.

Landau levels. First, we study the spectrum of Eq. (3.26) when we turn off the electric field. This

consideration is useful for understanding the relation of two fermion production channels via the

anomalous equation and via the Schwinger-like effect. Eq. (3.26) then becomes

0=
✓
@ 2

@ t 2
+p 2

z +2ng |Q |B

◆
gR/L . (3.28)

Let us focus on the right-handed fermion. Its dispersion relation is obtained from Eq. (3.28):

!R =

8
<
:
±
∆

p 2
z +2ng |Q |B for n = 1, 2, . . . ,

s pz for n = 0 ,
(3.29)

where s = ± for Q� ø 0. One can see that the energy spectrum is discretized, which is known as Lan-

dau levels. Intuitively, this is because the uniform magnetic field restricts the transverse motion of

a charged particle by the Lorentz force. Note here that, for given Q and �, the lowest Landau level

(LLL) with n = 0 has only one frequency while the higher Landau levels (HLLs) with n � 1 have pos-

itive/negative frequencies. To understand the reason, let us move back to the definition of the aux-

iliary field, Eq. (3.21). Evidently, Eq. (3.28) allows two independent solutions gR = N e ⌥i pz t for n = 0

with N being a normalization factor. However, one of them yields R = 0 if we insert the solution into

Eq. (3.21):

 R =
Å
±pz � i

@

@ x
�x +py�y +pz�z � s g |Q�|B x�y

ã
N h0(x�s )e ⌥i pz t�s

=
�
±pz + s pz
�

N h0(x�s )e ⌥i pz t�s , (3.30)

where s = ± for Q� ø 0. Now it is clear that we need !R = ±pz for s = ± to have non-vanishing  R.

More intuitively, since the LLL can be regarded as a fermion moving along with the magnetic field

(z -direction), the right-handed fermion must have a spin, �s , parallel to its motion.
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level:
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Z
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¨
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⌧
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2⇡n B
E

=
g 2Q 2

4⇡2
E B e �

2⇡n B
E (3.52)

= ˙̄n (n )R = ṅ (n )L = ˙̄n (n )L . (3.53)

In the second equality, we have used Eq. (3.51). Since hB †B i and hD †D i are determined by the same

coefficient |� |2, the production rates for particles and anti-particles are exactly the same. This is ex-

pected because the process is a pair-production. One can explicitly check that the result does not

depend on the sign of Q , �, or the chirality. This is because the dispersion relation of HLLs is insensi-

tive to these. Summing over the Landau levels n � 1, we eventually get

ṅH =
1X

n=1

ṅ (n )H =
g 2Q 2

4⇡2
E B

1
e 2⇡B/E �1

= ˙̄nH , (3.54)

for H = R, L. It is obvious that one may recover the result of the Schwinger effect given in Eq. (3.40) in

the limit of 2⇡B ⌧ E :

ṅH = ˙̄nH !
g 2Q 2

8⇡3
E 2 . (3.55)

Throughout this section we have assumed that the fermion production is fast compared to the

expansion of the Universe. We now have all the ingredients to confirm this a posteriori. Let us focus in

the following on the regime⇠¶ 3, in which the simple analytical formulas for the electric and magnetic

field, Eqs. (3.17) and (3.18) apply. In this case the fermion production rates (see Eq. (3.37) and (3.55))

read

ṅ LLL
 = 2⇥

g 2Q 2

4⇡2
E B , (3.56)

ṅ HLL
 = 4⇥

g 2Q 2

8⇡3

✓
E 2
�⇡E B +

⇡2

3
B 2+ · · ·
◆

. (3.57)

Choosing as reference values Q = 1 and the SM GUT-scale gauge coupling g = 1/
p

2, we find both rates

to be much larger than H 4, justifying the flat spacetime approximation of this section.

Moreover, throughout this section we have neglected the possibility of Pauli blocking in the final

HLL fermion states. To estimate the importance of this effect, consider the characteristic time scale

for the production of one fermion within a volume �3
c , where �c denotes the Compton wavelength of

the fermion:

tprod = ṅ�1
 �
�3
c . (3.58)
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Now, we turn on the coupling with  . We have an energy transfer from the gauge field to the

fermion:

⇢̇A =�4H⇢A +2⇠H Ê · B̂� Ê · g Q
⌦
J 
↵

. (4.6)

The last term represents the energy reduction by the fermion production. At the same time, the gauge

field is reproduced immediately from the scalar field. If the fermion production significantly drains the

energy of the gauge field configuration, the background electric and magnetic fields decrease, which

then leads to the reduction of the fermion production. Owing to this negative feedback, we expect

that there exists a non-trivial attractor of constant gauge field even in the presence of , where these

processes have reached a dynamical equilibrium. The condition to have such a constant gauge field

is given by

0= ⇢̇A (4.7)

=�4H⇢A +2⇠H Ê · B̂� Ê · g Q
⌦
J 
↵

. (4.8)

To sum up, Eqs. (4.2) and (4.8) must be satisfied in order to have approximately constant helical

gauge fields over horizon-scales. The remaining question is how the induced current
⌦
J 
↵

behaves as

a function of Ê and B̂.

4.2 Induced current and backreaction

It is instructive to first consider the induced current in general before discussing our particular setup.

Suppose that we have charged particles whose phase-space distribution is f (p ) and impose an elec-

tric field Ê. The induced current in such a system is estimated by

g Q
⌦
J 
↵
'Ndof g Q

Z
d3p
(2⇡)3

⇧

!
f (p ),

=Ndof
�
g Q
�2
Ê⌧

Z
d3p
(2⇡)3

f (p )
!

, (4.9)

where ⇧=p+g QÊ⌧,!=
∆
p2+ g 2Q 2Ê2⌧2, and Ndof counts the degrees of freedom for . Note that

⌧ represents a typical time scale of acceleration until it is disrupted by large angle scatterings. In the

second line, we have assumed that the phase-space distribution is isotropic: f (p ).
Let us estimate the behavior of the induced current. Suppose that the phase-space distribution is

dominated by a typical momentum of p̄ . If the typical momentum, p̄ , is larger than the one acquired

by the acceleration, g QÊ⌧, the induced current is proportional to the scattering time scale, ⌧. On the

other hand, if it is not, the induced current is independent of ⌧. Hence, one may estimate the induced

current as

g Q
⌦
J 
↵
⇠

8
><
>:

g 2Q 2Ê⌧

p̄
n for g |Q | Ê⌧⌧ p̄ ,

g |Q |n eÊ for g |Q | Ê⌧� p̄ ,

(4.10)
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Ê⌧

Z
d3p
(2⇡)3

f (p )
!

, (4.9)

where ⇧=p+g QÊ⌧,!=
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Figure 5: Consistency conditions on the magnitude of the Ê and B̂ fields for⇠= 3.5 (left panel) and⇠= 22 (right panel). The

solid blue line indicates the consistency condition to have the stationary solution (4.8). The red circle denotes the analytical

solution without backreaction, in the right panel this solution is far outside the plotted range. The blue circle indicates the

estimate obtained by taking ⇠eff to be constant. The dotted (dashed) red contour indicate the upper bound from energy

conservation in slow-roll inflation (Eq. (4.2)) for r = 0.1 (r = 0.05), relevant only for large ⇠. Here we have set Q = 1 and

g = 1/
p

2.

suming constant physical electric/magnetic fields, we can perform the time integral, which reads

1
a 3

g Q
¨

J z
 

∂
'

�
g |Q |
�3

6⇡2
coth

✓
⇡B̂

Ê

◆
Ê B̂

1
H

(4.14)

!

�
g |Q |
�3

6⇡3

Ê 2

H
for Ê � B̂ . (4.15)

In the second line, we check that the result is consistent with the one known in the literature [37, 38]
for B ! 0.

Upper bounds on gauge fields. Now we are in a position to discuss how the backreaction modifies

the helical gauge field production by using the explicit expression for the induced current [Eq. (4.14)].
The condition for the non-trivial attractor [Eq. (4.8)] defines a curve in the (Ê , B̂ ) plane,

0=�2H
�
Ê 2+ B̂ 2
�
+2⇠effH Ê B̂ , (4.16)

where

⇠eff = ⇠�

�
g |Q |
�3

12⇡2
coth

✓
⇡B̂

Ê

◆
Ê

H 2
. (4.17)

One may roughly estimate the maximum values of electric/magnetic fields on this curve:

B̂max ⇠
3⇡2

�
g |Q |
�3⇠

2H 2 , Êmax ⇠
12⇡2

�
g |Q |
�3⇠H 2 . (4.18)
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Figure 5: Consistency conditions on the magnitude of the Ê and B̂ fields for⇠= 3.5 (left panel) and⇠= 22 (right panel). The

solid blue line indicates the consistency condition to have the stationary solution (4.8). The red circle denotes the analytical

solution without backreaction, in the right panel this solution is far outside the plotted range. The blue circle indicates the

estimate obtained by taking ⇠eff to be constant. The dotted (dashed) red contour indicate the upper bound from energy

conservation in slow-roll inflation (Eq. (4.2)) for r = 0.1 (r = 0.05), relevant only for large ⇠. Here we have set Q = 1 and

g = 1/
p
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suming constant physical electric/magnetic fields, we can perform the time integral, which reads
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In the second line, we check that the result is consistent with the one known in the literature [37, 38]
for B ! 0.

Upper bounds on gauge fields. Now we are in a position to discuss how the backreaction modifies

the helical gauge field production by using the explicit expression for the induced current [Eq. (4.14)].
The condition for the non-trivial attractor [Eq. (4.8)] defines a curve in the (Ê , B̂ ) plane,

0=�2H
�
Ê 2+ B̂ 2
�
+2⇠effH Ê B̂ , (4.16)

where

⇠eff = ⇠�
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One may roughly estimate the maximum values of electric/magnetic fields on this curve:

B̂max ⇠
3⇡2

�
g |Q |
�3⇠

2H 2 , Êmax ⇠
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�
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�3⇠H 2 . (4.18)
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Figure 6: Magnitude of the gauge fields including backreaction. Left panel: Maximally allowed values for Ê , B̂ and Ê B̂

requiring the condition to have a stationary solution (Eq. (4.16) and energy conservation in slow-roll inflation (Eq. (4.2)) for

r = 0.1. In the following we will focus left branch in Fig. 5, indicated by the solid lines. Right panel: Estimate of Ê , B̂ and

Ê B̂ assuming an attractor solution with constant ⇠eff, see Eq. (4.17). Here we have set Q = 1 and g = 1/
p

2.

The curve is depicted as a blue solid line in Fig. 5. For comparison, we also show the analytic solution

without the backreaction as the red circle, and the condition for a non-trivial attractor without the

backreaction as the gray dashed line.

As suggested by the introduction of ⇠eff, the equation of motion for the gauge field is obtained by

simply replacing ⇠ with ⇠eff. In a crude estimation, we can estimate Ê and B̂ as follows. Taking ⇠eff

to be a time-independent constant [in line with the assumption of the existence of an attractor with

constant Ê and B̂ , see Eq. (4.8)], one may estimate the solution of Ê and B̂ by just replacing ⇠ 7! ⇠eff

in Eqs. (3.17) and (3.18). Then, using this Ê and B̂ , one may compute ⇠eff according to Eq. (4.17).

Finally, requiring this ⇠eff to be the same as the input ⇠eff (which in turn depends on Ê and B̂ ), we

can find a self-consistent solution. We indicate this estimation with a blue circle in Fig. 5. Finally, the

energy conservation condition (4.2) adds an upper bound on the electric/magnetic fields, shown as

red curves in Fig. 5.

In summary, we obtain upper limits on the electric/magnetic fields without solving the equation

of motion explicitly, cf. left panel of Fig. 6. Taking Q = 1 and g = 1/
p

2, we numerically determine the

maximal values of E and B (independently) allowed by Eq. (4.16). For ⇠Æ 4, we recover Eqs. (3.17) to

(3.19), implying an exponential growth of the gauge fields as a function of⇠. For⇠¶ 4, the backreaction

becomes important, limiting the growth of the gauge fields. For 4Æ ⇠Æ 20, we find that the maximally

allowed B -field is well described by Eq. (4.18), whereas the maximally allowed E -field is slightly over-

estimated by this expression. For⇠¶ 20, Eq. (4.2) becomes relevant, splitting the non-zero solutions of

Eq. (4.16) into two disconnected branches. Both the analytical solution in the absence of backreaction

as well as our estimate of Ê and B̂ for constant ⇠eff hint towards values of gauge fields on the leftmost

of these two branches, i.e., preferring larger values of Ê and smaller values of B̂ . In the following we

will thus for definiteness focus on this branch. We have however checked explicitly that the results of

this section, in particular the conclusions about thermalization below, do not depend on this choice.
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choice, we have
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eab,�0
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k̂
⌘
= ���0 . (2.3)

In particular, the second equality in the first expression states that eab,R $ eab,L under a
parity transformation.

The statistical properties of the GW background are controlled by its correlation func-
tions in Fourier space. In this work we consider the 2�point correlator

⌦
h2

↵
, and, more

in detail, the 3�point correlator
⌦
h3

↵
, which is non-vanishing for a non-Gaussian SGWB.

Assuming statistical isotropy, the equal-time momentum-space correlator is given by
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, (2.4)

where P� (k) is the power spectrum of the helicity �, and the numerical factor at the right-
hand side has been fixed imposing that the combination of eqs. (2.1) and (2.4) leads to the
real space correlator
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Z 1

0

dk

k

X
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2⇡kr
, r ⌘ |~x� ~y| . (2.5)

For studying the 3�point function, we use an ansatz analogous to the one used for
describing the statistics of primordial scalar perturbations [8–13], see for example [14–16].
Specifically, we assume a small departure from Gaussianity, so that a tensor mode is the sum
of a dominant Gaussian component, and its quadratic convolution
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This ansatz is characterized by a kernel K��0�00 , which depends on the GW momenta and
polarizations. We shall see that the kernel defines the properties of the non-Gaussian tensor
bispectrum. We assume that, in general, the two different polarizations can be coupled in
the convolution. The kernel is symmetric in the last two arguments (�0

$ �00 together with
~p $ ~q)
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The transformation of the kernel under a rotation is discussed in Appendix A. The dependence
of the kernel on the magnitude of the three momenta controls the so-called shape of the
non-Gaussianity [11], namely how the bispectrum changes according to different triangular
configurations in Fourier space. The simplest form of non-Gaussianity is the so called local
shape, enhanced in the squeezed limit of the bispectrum, for which (assuming also that the
different helicities are not mixed in the convolution) K��0�00

⇣
~k, ~p, ~q

⌘
/ ���0���00 . More in

general, we normalize K��0�00 (kpv̂1, kpv̂2, kpv̂3) = 1 for a reference unit triangle formed by
v̂1, v̂2 and v̂3 = �v̂1 � v̂2 (see Eq. (3.25)) and some given pivot scale kp. In this way, the size
of non-Gaussianity is controlled by the nonlinear parameter f�,�0,�00
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In particular, the second equality in the first expression states that eab,R $ eab,L under a
parity transformation.
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where P� (k) is the power spectrum of the helicity �, and the numerical factor at the right-
hand side has been fixed imposing that the combination of eqs. (2.1) and (2.4) leads to the
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For studying the 3�point function, we use an ansatz analogous to the one used for
describing the statistics of primordial scalar perturbations [8–13], see for example [14–16].
Specifically, we assume a small departure from Gaussianity, so that a tensor mode is the sum
of a dominant Gaussian component, and its quadratic convolution
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This ansatz is characterized by a kernel K��0�00 , which depends on the GW momenta and
polarizations. We shall see that the kernel defines the properties of the non-Gaussian tensor
bispectrum. We assume that, in general, the two different polarizations can be coupled in
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The transformation of the kernel under a rotation is discussed in Appendix A. The dependence
of the kernel on the magnitude of the three momenta controls the so-called shape of the
non-Gaussianity [11], namely how the bispectrum changes according to different triangular
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of non scale-invariant non-Gaussianity that we study in Section 4.3, the pivot scale is chosen
to be the scale at which the bispectrum is maximal, see eq. (4.22).

It is important to note that the mode functions appearing in the relation (2.6) are
evaluated today. If the GW has a cosmological origin, we need to account for its evolution.
It is conventional to encode this in a cosmological transfer function
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� (~k) , (2.8)

where t0 indicates the present time, and hpr is the primordial value of the GW mode. For
an adiabatic tensor mode produced during inflation, hpr� is constant (time independent) at
super-horizon scales. For GW produced inside the horizon after inflation, we take the value
of the mode at the end of GW production. Correspondingly, eq. (2.6) is changed into
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This leads to the relation
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between the parametrization of non-Gaussianity in terms of the primordial vs. the present
day GW mode functions. 2 While the product of the last two factors on the rhs is more
directly related to what we measure, the lhs is more immediately connected to the theory
that provides the origin of the non-Gaussianity.

From the ansatz (2.6) we obtain the equal-time three-point function, to linear order in
the nonlinear parameters, as
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This expression for the bispectrum can describe the different shapes of non-Gaussianity, and
the dependence on chirality. The expression for the tensor three-point function (2.11) evalu-
ated at non-equal times, which will be used in Section 4, is discussed in Appendix D.

2
To be precise, both sides in this relation are multiplied by �(3)(~k + ~p + ~q). Eq. (2.10) indicates in

an unambiguous way how the nonlinear parameter fNL and the kernel function K should be independently

rescaled, once we demand that both the present day and the primordial kernel function are normalized to

K��0�00 (kpv̂1, kpv̂2, kpv̂3) = K��0�00,pr (kpv̂1, kpv̂2, kpv̂3) = 1 (see text below eq. (2.7)).
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s12 (t, ~x1)�n1 (t, ~x1) = �T12 (t� 2L) +�T21 (t� L)

= L

Z
d3k e�2⇡i~k·~x1

X

�

I

⇣
~k, l̂12

⌘
h�

⇣
t� L, ~k

⌘
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of non scale-invariant non-Gaussianity that we study in Section 4.3, the pivot scale is chosen
to be the scale at which the bispectrum is maximal, see eq. (4.22).

It is important to note that the mode functions appearing in the relation (2.6) are
evaluated today. If the GW has a cosmological origin, we need to account for its evolution.
It is conventional to encode this in a cosmological transfer function

h�
⇣
t0, ~k

⌘
= T (t0, k) h

pr

� (~k) , (2.8)

where t0 indicates the present time, and hpr is the primordial value of the GW mode. For
an adiabatic tensor mode produced during inflation, hpr� is constant (time independent) at
super-horizon scales. For GW produced inside the horizon after inflation, we take the value
of the mode at the end of GW production. Correspondingly, eq. (2.6) is changed into

T (t0, k) h
pr

� (~k) =T (t0, k) h
pr

�,g(
~k)

+

X

�0,�00

f�,�0,�00

NL

Z
d3pd3qT (t0, p) h

pr

�0,g (~p) T (t0, q) h
pr

�00,g (~q)

⇥ �(3)
⇣
~k � ~p� ~q

⌘
K��0�00

⇣
~k, �~p, �~q

⌘
. (2.9)

This leads to the relation

f�,�0,�00,pr
NL

K��0�00,pr

⇣
~k, ~p, ~q

⌘
⌘

T (t0, p) T (t0, q)

T (t0, k)
f�,�0,�00

NL
K��0�00

⇣
~k, ~p, ~q

⌘
, (2.10)

between the parametrization of non-Gaussianity in terms of the primordial vs. the present
day GW mode functions. 2 While the product of the last two factors on the rhs is more
directly related to what we measure, the lhs is more immediately connected to the theory
that provides the origin of the non-Gaussianity.

From the ansatz (2.6) we obtain the equal-time three-point function, to linear order in
the nonlinear parameters, as
D
h�1

⇣
t, ~k1

⌘
h�2

⇣
t, ~k2

⌘
h�3

⇣
t, ~k3

⌘E
= �(3)

⇣
~k1 + ~k2 + ~k3

⌘
B�1,�2,�3

⇣
~k1,~k2,~k3

⌘
, (2.11)

with

B�1,�2,�3

⇣
~k1,~k2,~k3

⌘
=

f�1,�2,�3
NL

8⇡2
K�1�2�3

⇣
~k1, ~k2, ~k3

⌘ P�2 (k2)

k3
2

P�3 (k3)

k3
3

+
f�2,�1,�3
NL

8⇡2
K�1�2�3

⇣
~k1, ~k2, ~k3

⌘ P�1 (k1)

k3
1

P�3 (k3)

k3
3

+
f�3,�1,�2
NL

8⇡2
K�1�2�3

⇣
~k1, ~k2, ~k3

⌘ P�1 (k1)

k3
1

P�2 (k2)

k3
2

. (2.12)

This expression for the bispectrum can describe the different shapes of non-Gaussianity, and
the dependence on chirality. The expression for the tensor three-point function (2.11) evalu-
ated at non-equal times, which will be used in Section 4, is discussed in Appendix D.

2
To be precise, both sides in this relation are multiplied by �(3)(~k + ~p + ~q). Eq. (2.10) indicates in

an unambiguous way how the nonlinear parameter fNL and the kernel function K should be independently

rescaled, once we demand that both the present day and the primordial kernel function are normalized to

K��0�00 (kpv̂1, kpv̂2, kpv̂3) = K��0�00,pr (kpv̂1, kpv̂2, kpv̂3) = 1 (see text below eq. (2.7)).
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probing the tensor power spectrum
LIGO/LISA will soon detect a SGWB  (from unresolved BH - BH mergers). 
         We need to measure its properties (spectral shape, polarization, non-gaussianity)
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where the quantities � are defined in (A15). One can verify by direct inspection that all
terms in this integrand go to their complex conjugate under parity (namely, under ~ki ! �~ki,
corresponding to ✓1 ! ⇡ � ✓1, �1 ! ⇡ + �1, �2 ! ⇡ � �2). Therefore, the response function
is real.

As we will discuss in Section 3.2.3, measurements of correlation functions by LISA are
invariant under parity. This implies that RRRR = RLLL and RRRL = RLLR, for any choice
of channels and momenta. For this reason, we show the response function in the RRR and
RRL cases only. In the same Section, we will also demonstrate that the only nonvanishing
3-point response functions are the one among three E channels, and the one among two A
channels and one E channel. We will show that they are opposite to each other, namely
hEEEi = �hAAEi (and permutations).

We now use the expression (3.32) to evaluate the response function numerically. We do
so for two cases:

– An equilateral configuration. This is the case of equal wavenumbers, k1 = k2 = k3 ⌘ k.
In Figure 4 we show the nonvanishing response functions for the RRR (left panel) and RRL
(right panel) cases. The figure confirms that hEEEi = �hAAEi. We also see that the
response functions vanish both in the kL � 1 and kL ⌧ 1 limit. In the large k limit, the
same behavior is obtained for the two-point function, cf. Figure 3, and it is due to the inability
of the interferometer to resolve scales much smaller than its size. The small k limit is instead
studied in Appendix C.

– A squeezed isosceles configuration. For the isosceles squeezed case, k3 ⌧ k1 = k2,
eqs. (3.25), together with v̂3 = �

k1 v̂1+k1 v̂1
k3

, give

v̂1 = (1, 0, 0) , v̂2 = (�1, 0, 0) , v̂3 = (0, �1, 0) . (3.34)

Starting from eq. (3.28), we find that, in this limit, the combinations RaARbBeAB,�1 (v̂1)
and RcCRdDeCD,�2 (�v̂1) can be expressed as e

⌥2i�1�2 times a factor that is independent of
�2, respectively. We further note that in this limit, the quantities Q

i
ab

⇣
~xi; Ûp; k1Rv̂1

⌘
and
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so for two cases:
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In Figure 4 we show the nonvanishing response functions for the RRR (left panel) and RRL
(right panel) cases. The figure confirms that hEEEi = �hAAEi. We also see that the
response functions vanish both in the kL � 1 and kL ⌧ 1 limit. In the large k limit, the
same behavior is obtained for the two-point function, cf. Figure 3, and it is due to the inability
of the interferometer to resolve scales much smaller than its size. The small k limit is instead
studied in Appendix C.

– A squeezed isosceles configuration. For the isosceles squeezed case, k3 ⌧ k1 = k2,
eqs. (3.25), together with v̂3 = �
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3-pt instrument response to different GW helicities:

2-pt instrument response cannot measure polarization
Consider LISA:

non-gaussianity and helicity information (in principle) accessible
Figueroa, Ricciardone,

VD, et al ’18
[LISA Cosmo WG]
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