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A Review

Quantum Fields In Flat Spacetime

• Minkowski spacetime, 

• Scalar field Lagrangian,  

• Field equation, 

• Solutions,

�
⇤+m2

�
� = 0

• Fields are operators 

• Equal time commutation relations, 

• Expansion of field, 

Classical Field Quantisation 
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Part 1

What is a Particle?
• Eigenvectors of timelike Killing vector,  

• Annihilation and creation operators,  

• Vacuum state, 

• One-particle state, 

• Invariant under Poincaré group 

ak, a
†
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Minimal Coupling

Scalar Field

Flat spacetime Curved spacetime

Line element

Lagrangian 
density

Equation of 
motion

Scalar product
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Solutions to Wave Equation

Scalar Field Quantisation

Can always find set of solutions to field equation satisfying  

so that  

with vacuum state 

and commutation relations 

(fi, fj) = �ij ,
�
f⇤
i , f

⇤
j

�
= ��ij ,
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Scalar Field Quantisation

Exists another basis of solutions   

 
with field expansion  

 
and vacuum state defined by  

gi(x
µ)

� =
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Solutions to Wave Equation
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Bogolubov Transformations

Scalar Field Quantisation

• Both sets of modes form complete basis for field 

• Bogolubov transformations  

• Relating operators  
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X
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Particles in Vacuum

Scalar Field Quantisation

Expected number of particles in vacuum state         … |0f i
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Particles in Vacuum

Scalar Field Quantisation

Expected number of particles in vacuum state         …  

• … described by modes     , 

• … described by modes     , 

• Disagreeing on vacuum!

|0f i
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h0f |nfi |0f i = h0f |a†iai|0f i = 0
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What is going on?
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Flat spacetime:  

• Timelike Killing vector 

• Positive frequency modes,   

• Inertial observers agree on vacuum 
and number operator, so  
 
 
 
and 

Curved spacetime:  

• Poincaré group not a symmetry 

• Generally no Killing vector to define 
positive frequency modes

@tfi = �i!fi, ! > 0
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Concept of particles 
is not universal
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Particle Creation from 
Collapsing Stars
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Penrose diagram 
of collapsing star
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Creation of 
Particles

Solving 
 
 
in Schwarzschild spacetime 

• On past null infinity,   

• Field expansion  

⇤� = 0

� =

Z
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a!f! + a†!f

⇤
!

�
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Creation of 
Particles

• On future null infinity, 
 
 

• Field expansion 
 
 
 
with incoming modes  on event 
horizon  

• Bogolubov transformation yields 

q!
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Z
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�
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⇤
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Black Holes

Hawking Radiation

• Particle creation,  

• Using  

• Number of created particles, 
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Uniformly Accelerating 
Observers in Flat Spacetime
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Rindler Space (2D)
• Hyperboloids describe uniform 

acceleration  

• Choose coordinates          such that 
 
 
 
 

• Then 

(⌘, ⇠)

t =
1

a
ea⇠ sinh(a⌘)

x =
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a
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Unruh Effect
• Solve 
 
 
in regions I an IV 

• Plane wave solutions,   

• Two equivalent field expansions 

• Trick by Unruh:  

⇤� = 0

g(1,2)k =
1p
4⇡!

e⌥i!⌘+ik⇠, ! = |k| > 0
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Result:  
Thermal spectrum 

h0M |nR|0M i = 1

e2⇡!/a � 1
�(0)
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«puh»
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Current Research

38



Fate of Collapsing 
Stars

• Black hole to white hole 

• Temporarily trapped surface 

• Baby universes 

• Bounce
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Backreaction of Hawking Radiation  

Calculated by Mersini-Houghton for different vacuum states, 

Hartle-Hawking vacuum — Thermal bath of radiation 

Unruh vacuum — Flux of radiation  

Result:  

Bounce instead of collapse
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Setup
• Assume star is a perfect fluid of dust 

(p=0),  

• Spherical symmetry, homogeneity and 
isotropy  

• Exterior metric — Schwarzschild: 

• Interior metric — closed FRW universe:

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫

ds2ext = �
✓
1� 2M
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◆
dt2 +

✓
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◆�1

dr2 + r2d⌦2

ds2int = �dt2 + a(t)2
�
(1� r2)�1dr2 + r2d⌦2
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Include Backreaction in Collapse
• Use Hartle-Hawking vacuum 

• Assume energy of Hawking radiation in interior is negative and equal in magnitude to 
exterior («mirror») 

• Replace energy density by   
 
 
        

• Then        -component of Einsteins equations in interior is given by 
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Star collapses to finite radius

• From Friedmann equation one obtains  

• Solving  
 
 
 
 
yields minimal radius in finite time, 
 
 
 
 
before horizon forms

a(⌘) =
⇢0
2
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Rbounce
S = amin(⌘) sin(�0) '
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Summary
• In curved spacetime concept of particles becomes ill-defined 

• Particles are created by changing gravitational fields (inflation, Hawking radiation) 

• Particles are created by uniformly accelerated observers (Unruh effect) 

• Collapsing stars may not form black holes due to backreaction of Hawking radiation
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Thank you!
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