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Energy budget of the Universe
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Kepler's Laws for Planets

Earth

Third law

"l first believed | was dreaming... But it is absolutely certain and exact that the
ratio which exists between the period times of any two planets is precisely the
ratio of the 3/2th power of the mean distance."

Planet  r (AU)

T (days) r3/T? (1076AU?/day” )

Kepler (1619)

Mercury  0.3871
Venus 0.72333
Earth 1

Mars 1.52366
Jupiter  5.20336
Saturn 9.53707
Uranus  19.1913
Neptune  30.069

87.9693
224.701
365.256
686.98
4332.82
10775.6
30687.2
60190.

7.496
7.496
7.496
7.495
7.504
7.498
7.506
7.504

Carnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, DESY)



Kepler's Laws for Planets

Third law

"l first believed | was dreaming... But it is absolutely certain and exact that the
ratio which exists between the period times of any two planets is precisely the

Earth ratio of the 3/2th power of the mean distance." Kepler (1619)
Planet r (AU) T (days) r3/T? (10"6AU?/day? )
Mercury  0.3871  87.9693 7.496
Venus 0.72333 224.701 7.496
Earth 1 365.256 7.496
Mars 1.52366  686.98 7.495
Jupiter  5.20336 4332.82 7.504
Saturn 9.53707 10775.6 7.498
Uranus 19.1913 30687.2 7.506
Neptune  30.069 60190. 7.504
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For circular orbits this can be recast as
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Kepler's Laws for Galaxies?

There must be some matter that we don’t see
or Kepler's Laws don’t work in galaxies

Triangulum Galaxy (M33)
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Dark Matter

The dark matter hypothesis is remarkably simple and explain observations at many other

Scal es 140‘ Measured velocity {
I S R
. 100 I
Velocity measurements e
o Kpc
« Flat rotation curves of spiral galaxies P e o o P
« Velocity dispersion of stars in giant elliptical and o T
dwarf spheroidal galaxies .
« Velocity dispersion of galaxies in clusters N s TR
Lensing

« Weak lensing by large-scale structure and cluster
mergers

« Strong lensing by individual galaxies and clusters

Universe at large scales

« Abundance of clusters
« Large-scale distribution of galaxies
« Power spectrum of CMB anisotropies
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ABSTRACT

We present new weak-lensing observations of 1E 0657—558 (z = 0.296), a unique cluster merger, that enable a
direct detection of dark matter, independent of assumptions regarding the nature of the gravitational force law. Due to
the collision of two clusters, the dissipationless stellar component and the fluid-like X-ray—emitting plasma are spatially
segregated. By using both wide-field ground-based images and HST/ACS images of the cluster cores, we create
gravitational lensing maps showing that the gravitational potential does not trace the plasma distribution, the dominant
baryonic mass component, but rather approximately traces the distribution of galaxies. An 8 ¢ significance spatial
offset of the center of the total mass from the center of the baryonic mass peaks cannot be explained with an alteration
of the gravitational force law and thus proves that the majority of the matter in the system is unseen.

Subject headings: dark matter — galaxies: clusters: individual (1E 0657—558) — gravitational lensing
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FiG. 1.—Left panel: Color image from the Magellan images of the merging cluster 1E 0657—558, with the white bar indicating 200 kpc at the distance of the
cluster. Right panel: 500 ks Chandra image of the cluster. Shown in green contours in both panels are the weak-lensing « reconstructions, with the outer contour
levels at k = 0.16 and increasing in steps of 0.07. The white contours show the errors on the positions of the kx peaks and correspond to 68.3%, 95.5%, and
99.7% confidence levels. The blue plus signs show the locations of the centers used to measure the masses of the plasma clouds in Table 2.

Carmnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, D

oy
o

Y)



THE ASTROPHYSICAL JOURNAL, 648:L109-L113, 2006 September 10
© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A DIRECT EMPIRICAL PROOF OF THE EXISTENCE OF DARK MATTER'

DouGLAas CLOWE,> MARUSA BRADAC,> ANTHONY H. GONZALEZ,* MAXIM MARKEVITCH,”®

ScotT W. RANDALL,” CHRISTINE JONES,” AND DENNIS ZARITSKY>
Received 2006 June 6; accepted 2006 August 3; published 2006 August 30

ABSTRACT

We present new weak-lensing observations of 1E 0657—558 (z = 0.296), a unique cluster merger, that enable a
direct detection of dark matter, independent of assumptions regarding the nature of the gravitational force law. Due to
the collision of two clusters, the dissipationless stellar component and the fluid-like X-ray—emitting plasma are spatially
segregated. By using both wide-field ground-based images and HST/ACS images of the cluster cores, we create
gravitational lensing maps showing that the gravitational potential does not trace the plasma distribution, the dominant
baryonic mass component, but rather approximately traces the distribution of galaxies. An 8 ¢ significance spatial
offset of the center of the total mass from the center of the baryonic mass peaks cannot be explained with an alteration
of the gravitational force law and thus proves that the majority of the matter in the system is unseen.

Subject headings: dark matter — galaxies: clusters: individual (1E 0657—558) — gravitational lensing

57 56

°

—5558

6 58'"42s 36° 30° 24° 18° 12° 6"58M42° 36° 30° 24° 18°% 12°

FiG. 1.—Left panel: Color image from the Magellan images of the merging cluster 1E 0657—558, with the white bar indicating 200 kpc at the distance of the
cluster. Right panel: 500 ks Chandra image of the cluster. Shown in green contours in both panels are the weak-lensing « reconstructions, with the outer contour
levels at k = 0.16 and increasing in steps of 0.07. The white contours show the errors on the positions of the kx peaks and correspond to 68.3%, 95.5%, and
99.7% confidence levels. The blue plus signs show the locations of the centers used to measure the masses of the plasma clouds in Table 2.

2
Uscattering/mDI\/I 5 1 cm /g

Carmnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, D

oy
o

Y)



What does this tell us about the nature of the dark matter particle?

Tulin, Yu (2017)
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Lambda Cold Dark Matter model

Energy budget of the Universe

Collisionless Cold Dark Matter

—

IENAYE Il 26.8% Standard Model stable particles:

e Mostly protons, electrons,
neutrinos and photons

Dark Energy 68.3%

\ 1 87TG
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Lambda Cold Dark Matter model

Remarkably successful
at large scales

At low scales
N-body simulations
are needed
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SDSS DR7 (Reid et al. 2010)

LyA (McDonald et al. 2006)

ACT CMB Lensing (Das et al. 2011)
ACT Clusters (Sehgal et al. 2011)
CCCP II (Vikhlinin et al. 2009)

BCG Weak lensing (Tinker et al. 2011)
ACT+WMAP spectrum (this work)
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|. Dark matter as a bound state
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|. Dark matter as a bound state

Based on

PHYSICAL REVIEW LETTERS 124, 041101 (2020)

Finite-Size Dark Matter and its Effect on Small-Scale Structure

Xiaoyong Chu® " Camilo Garcia-Cely >" and Hitoshi Murayama™*>**
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How do we know something has a finite size?
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How do we know something has a finite size?
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Realistic example
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Dark Matter with a finite size
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Suppose that dark matter has a finite
size that is larger than its Compton
wavelength: Puffy DM
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Dark Matter with a finite size

1.5 S

1.0

Suppose that dark matter has a finite
size that is larger than its Compton
wavelength: Puffy DM
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Chu, CGC, Murayama (2019)
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Is this useful?

Remarkably successful
at large scales

At low scales

N-body simulations
are needed

Mass deficits at galactic scales
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SDSS DR7 (Reid et al. 2010)

LyA (McDonald et al. 2006)

ACT CMB Lensing (Das et al. 2011)
ACT Clusters (Sehgal et al. 2011)
CCCP II (Vikhlinin et al. 2009)

BCG Weak lensing (Tinker et al. 2011)
ACT+WMAP spectrum (this work)
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Core vs. cusp problem

Diversity problem Heated debates!!!

Too-big-to-fail problem

Missing satellites
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Core vs. cusp problem

rotation curves again!

60} ]
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Dark Matter Density (Mg/kpc®)

Core vs. cusp problem
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This is the seemingly

mass deficit observed in objects
such as dwarf galaxies

when  compared to the
predictions of collisionless dark
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Moore (1994)
Flores et al. (1994)
Naray et al. (2011)

rotation curves again!
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Diversity Problem

diversity of rotation curves

Cosmological structure formation is predicted to be a self-similar process with a remarkably little scatter
in density profiles for halos of a given mass. However, disk galaxies with the same maximal circular
velocity exhibit a much larger scatter in their interiors and inferred core densities vary by a factor of
order ten. 100

80
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The unexpected diversity of dwarf galaxy rotation curves 2015

Kyle A. Oman, Julio F. Navamo, Azadeh Fattahi (victora v.), Carlos 5. Frenk, Till Sawala (purham u., 1cc), Simon D. M. White (Garching, Max Planck Inst.), Richard Bower (Durham u.,
icc), Robert A. Crain (Liverpool John Mocres U., AR1), Michelle Furlong, Matthieu Schaller (purmam u., 1cc), Joop Schaye (Leiden Observ.), Tom Theuns (Duham U., ICC) Hige
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Plausible explanations

@ Baryonic effects (supernovae, star formation,...)

@ Non-circular motions

@ Systematic errors in the modelling of the
internal dynamics of galaxies
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Plausible explanations Dark matter solution?

@ Baryonic effects (supernovae, star formation,...)

@ postulate dark matter interactions that

@ Non-circular motions :
_ _ _ become relevant at small scales, without
@ Systematic errors in the modelling of the modifying the physics at large scales.

internal dynamics of galaxies

“..To be more specific, we suggest that the dark matter particles should have a mean free path

between 1 kpc to 1 Mpc at the solar radius in a typical galaxy.” Spergel, Steinhardt (1999)

-1
Mean Free Path ~ (—O' i )
mp © Scattering

T scattering

o~ lcm?/g  at the scale of galaxies (v ~ 10 - 100 km/s)
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Plausible explanations Dark matter solution?

@ Baryonic effects (supernovae, star formation,...)

@ Non-circular motions @ postulate dark matter interactions that
become relevant at small scales, without

@ Systematic errors in the modelling of the modifying the physics at large scales.

internal dynamics of galaxies

“..To be more specific, we suggest that the dark matter particles should have a mean free path

between 1 kpc to 1 Mpc at the solar radius in a typical galaxy.” Spergel, Steinhardt (1999)

-1
Mean Free Path ~ (—O' i )
mp © Scattering

o i .

W ~ lcm?/g  at the scale of galaxies (v ~ 10 - 100 km/s)

Wandelt, et.al (2000), Vogelsberger et.al (2012)

Peter et.al (2012), Rocha et.al (2013),Zavala et.al (2012)

Elbert et.al (2014), Kaplinghat (2015), Vogelsberger et.al (2015)
Francis-Yan Cyr-Racine (2015)

Creasey et al (2017)

Simulations show that this is indeed a solution

Carnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, DESY)
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Plausible explanations Dark matter solution?
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@ postulate dark matter interactions that

@ Non-circular motions :
_ _ _ become relevant at small scales, without
@ Systematic errors in the modelling of the modifying the physics at large scales.

internal dynamics of galaxies

Carnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, DESY)



The future is data rich. For example...

The SKA will combine the signals received from thousands of small antennas spread over a
distance of several thousand kilometres to simulate a single giant radio telescope

— extremely high sensitivity and angular resolution

It has the potential to observe
hundreds of nearby spiral
galaxies at resolutions below
100 pc, providing a large and
detailed sample of rotation
curves.

By SKA Project Development Office and Swinburne Astronomy Productions - Swinburne Astronomy Productions for SKA Project Development Office, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=11314493

Carnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, DESY)


https://en.wikipedia.org/wiki/Antenna_(radio)

What does this tell us about the nature of the dark matter particle?

Dark matter halos as particle colliders

Kaplinghat ,Tulin, Yu (2017)
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Maybe dark matter is a bound state
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Maybe dark matter is a bound state

1.0

Suppose that dark matter has a finite
size that is larger than its Compton
wavelength: Puffy DM

Chu, CGC, Murayama (2019)

0.0
Shape p(r) DM _ F(q)
tophat  xb(ry — 1) 2v/ar, Tl rgenlal]
o To
; AL 1
dipole ?'32 2 \/3/57 W
Gaussian 8T3i3/2 e/ e, e o4

Table I: Form factors for different density distributions.

The way the non-relativistic cross
section varies with the velocity is largely
independent of the dark matter internal
structure when the range of the
mediating force is short.
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Why Is that?

For short-range interactions, regardless of the
potential, the non-relativistic s-wave scattering
cross section can be approximated by means of

o(v) = dma” ((1 - %%(mavf)z + %(maﬁ)

Carnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, DESY)



Effective Range Theory

For short-range interactions, regardless of the
potential, the non-relativistic s-wave scattering
cross section can be approximated by means of

o(v) = dma” ((1 - é%(mavff + i(maﬁ)

It was discovered by
studying the non-relativistic
scattering of nucleons

Tulin, Yu (2017)
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Effective Range Theory

For short-range interactions, regardless of the
potential, the non-relativistic s-wave scattering
cross section can be approximated by means of

o(v) = dma” ((1 - é%(mavff + i(mavf)

“practically no information could be
obtained, @ from  classical  scattering
experiments, on the shape of the potential.”

Hans Bethe (1949)

It was discovered by
studying the non-relativistic
scattering of nucleons

https://www.youtube.com/watch?v=hbcQMG2XpT]

Tulin, Yu (2017)
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Effective Range Theory

For short-range interactions, regardless of the
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Resonant SIDM

“Resonance is a phenomenon that appears every day. To swirl wine in a glass to get it more
oxygen so that it lets out more aroma and softens its taste, you need to find the right speed to
circle the wine glass. Or you dial old analog radios to the right frequency to tune into your favorite

station”

Murayama https://www.ipmu.jp/en/20190227-DM _hittingNote
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Velocity Dependence from Resonant Self-Interacting Dark Matter
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Effective Range Theory

30
For short-range interactions, regardless of the o0l
potential, the non-relativistic s-wave scattering ]
. . Bound:States
cross section can be approximated by means of 100
n—;iﬁ collision S=1 (via deuteron)
1 2 B s 9
T
o) =4na® | (1= ==~(mav)® ) + =(mav)?
8 a 4 _10! £
Narrow EVirtuaI Levels
Resonances n-néco.llision (via dineutron)
-20; Broai‘ n_pi cgllision $=0
“practically no information could be |
obtained, @ from  classical  scattering %3 20 10 0 10 20 30
experiments, on the shape of the potential.” Fe

Chu, CGC, Murayama (2019)
Hans Bethe (1949)

This allows for a model-independent approach
to SIDM!!
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A model of puffy dark matter

Particle SU(3)p U(1)p Description

2/3  Dark charm quark
-1/3  Dark down quark

0 Dark photon
Pseudoscalar meson dd

C

d

a QCD-like theory of dark matter

Pseudoscalar meson cd
Vector meson dd

Dark baryon cdd

-1  Dark baryon ddd

0 Bound state of A ¥, baryons

S O = O
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+
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low-threshold direct detection _ \‘.\M
experiments have the potential to 4 qo-8h
probe Puffy Dark Matter. >
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Direct detection bounds on our QCD-like theory of m (GeV)

Puffy DM from nucleon recoil events assuming m., = 20 MeV.
For a heavier dark photon, this bound scales with miD.
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Il. Dark matter forming bound states
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Light mediator
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Light mediator
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Bound states via a light mediator
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Scalar mediator

Wise and Zhang (2016)
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The Sun can capture dark matter and
the bound state formation can happen
in the Sun. Search for mediator
decays.

Neutron stars?

Preliminary work

Chu, CGC and Garani
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Conclusions

» Self-interacting dark matter (SIDM) is a well-motivated solution to the problems
encountered at small scales.

* Resonant SIDM is a viable model giving velocity-dependent scattering cross sections.
» Scenarios in which DM has a finite size are another alternative.

* The velocity dependence of the scattering cross section is largely model independent
and given by the effective range theory.

* This theory is able to simultaneously describe resonances, light mediators and DM
bound states. As a result, we advocate its use in future SIDM studies.

Carnilo A. Garcia Cely (Alexander von Humnboldt Fellow, DESY
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How does self-interacting dark matter solve the problem?

13F Myir=10"?Mp, rs=20 kpc, V=159 kmy/s

0ol — CDM ]

— SIDM, g/m=1cm?/g Tulin, Yu (2017)
0.sLs , , , . Rocha et al (2013)
04 0.2 05 1 2 5

r/rs

Carnilo A. Garcia Cely (Alexander von Hurnboldt Fellow, DESY)



How does self-interacting dark matter solve the problem?
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Effective Range Theory

(©.@)

f(k,0) = (214 1) fo(k) Py (cos ) ,
£=0
c2i0e(k) _ ¢ 1

with fo(k) = T = Flcoto,h) =)

for finite-range interactions, the function &% cot dp(k)
must be analytic at £ = 0
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