Lattice deformations and
 the order-by-disorder phase transition

The frustrated J1-J2 classical Heisenberg model

A collaboration with Jens Paaske, Niels Bohr Inst.

$$
H=\frac{1}{2} \sum_{\vec{r}, \vec{r}^{\prime}} J\left(\vec{r}^{\prime}-\vec{r}\right) S_{\vec{r}}^{\alpha} S_{\vec{r}^{\prime}}^{\alpha}
$$

$$
J\left(\vec{r}^{\prime}-\vec{r}\right) \approx J_{\vec{R}^{\prime}-\vec{R}}+\left(\vec{u}_{\vec{R}^{\prime}}-\vec{u}_{\vec{R}}\right) \cdot \nabla J_{\vec{R}^{\prime}-\vec{R}}
$$

$$
\vec{r}=\vec{R}+\vec{u}_{\vec{R}}
$$

$$
\nabla J_{\vec{R}^{\prime}-\vec{R}}=g_{\vec{R}^{\prime}-\vec{R}} \frac{\overrightarrow{R^{\prime}}-\vec{R}}{\left|\overrightarrow{R^{\prime}}-\vec{R}\right|}
$$

$$
g_{\vec{R}^{\prime}-\vec{R}}=\left.\frac{\partial J}{\partial r}\right|_{r=\left|\overrightarrow{R^{\prime}}-\vec{R}\right|}
$$

elastic deformation tensor

$$
H_{l a t t}=\frac{1}{2} V c_{i j, k l} e^{i j} e^{k l}+\sum_{\vec{k} \neq 0, n} \frac{1}{2} M \omega_{\vec{k}, n}^{2}\left(\left|X_{\vec{k}, n}\right|^{2}+\left|P_{\vec{k}, n}\right|^{2}\right)
$$

$c_{i j, k l}$ is the elastic moduli tensor per unit volume
phonon mode frequencies are given by $\omega_{\vec{k}, n}$.
M is the atom mass.

$$
D_{\vec{k}}^{i j}=\left.\frac{1}{M} \sum_{m} \frac{\partial^{2} V_{p o t}}{\partial r_{m}^{i} \partial r_{n}^{j}}\right|_{e q} e^{-i \vec{k} \cdot\left(\vec{R}_{m}-\vec{R}_{n}\right)}
$$

$$
\begin{aligned}
D_{\vec{k}}^{x x} & =2 \frac{\alpha_{1}}{M}\left(1-\cos k_{x} a\right)+2 \frac{\alpha_{2}}{M}\left[1-\cos \left(k_{x} a\right) \cos \left(k_{y} a\right)\right] \\
D_{\vec{k}}^{y y} & =2 \frac{\alpha_{1}}{M}\left(1-\cos k_{y} a\right)+2 \frac{\alpha_{2}}{M}\left[1-\cos \left(k_{x} a\right) \cos \left(k_{y} a\right)\right] \\
D_{\vec{k}}^{x y} & =2 \frac{\alpha_{2}}{M} \sin \left(k_{x} a\right) \sin \left(k_{y} a\right)=D_{\vec{k}}^{y x}
\end{aligned}
$$

$$
\begin{gathered}
\left.\frac{M N}{V} D_{\vec{k}}^{i j}\right|_{\vec{k} \rightarrow 0}=\sum_{k l} c_{i k, j l} k^{k} k^{l} \\
E_{e l}=V \frac{1}{2} c_{i j, k l} e^{i j} e^{k l}=V \frac{1}{2} c_{\rho, s} \epsilon^{\rho} \epsilon^{s} \quad C=\left(\begin{array}{ccc}
\alpha_{1}+\alpha_{2} & \alpha_{2} & 0 \\
\alpha_{2} & \alpha_{1}+\alpha_{2} & 0 \\
0 & 0 & \alpha_{2}
\end{array}\right) \\
=\frac{V}{2}\left[\alpha_{1}\left(\frac{-\epsilon^{x x}+\epsilon^{y y}}{\sqrt{2}}\right)^{2}+\alpha_{2}\left(\epsilon^{x y}\right)^{2}+\left(\alpha_{1}+2 \alpha_{2}\right)\left(\frac{\epsilon^{x x}+\epsilon^{y y}}{\sqrt{2}}\right)^{2}\right]=\frac{V}{2} \mu_{k} \tilde{\epsilon}_{k}^{2}
\end{gathered}
$$

Classical spins are unit vectors

$$
\begin{gathered}
\left|\vec{S}_{\vec{r}}\right|=1 \\
\delta\left(\left|\vec{S}_{\vec{r}}\right|-1\right)=\int_{-\infty}^{\infty} \frac{\beta d \lambda_{\vec{r}}}{\pi} e^{-i \beta \lambda_{\vec{r}}\left(\vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}}-1\right)} \\
\lambda_{\vec{q}}=(-i) \Delta \delta_{\vec{q}, 0}+\lambda_{\vec{q}}\left(1-\delta_{\vec{q}, 0}\right)
\end{gathered}
$$

Partition function

$$
\begin{aligned}
& Z=\int D \Delta D \tilde{\epsilon} D \lambda D X D S e^{-S} \\
& S=\sum_{\vec{q}, \vec{q}^{\prime}} S_{\vec{q}}^{\alpha *}(\overbrace{\left(J_{\vec{q}}+\Delta+g_{\vec{q}, k} \tilde{\epsilon}_{k}\right) \delta_{\vec{q}, \vec{q}^{\prime}}}^{\mathrm{K}}-(-i)\left[\Gamma_{\vec{q}, \overrightarrow{q^{\prime}}}^{n \vec{q}-\vec{q}^{\prime}} X_{\vec{q}-\vec{q}^{\prime}, n}+\lambda_{\vec{q}-\vec{q}^{\prime}}\right]) S_{\vec{q}^{\prime}}^{\alpha} \\
& -\beta V \Delta+\frac{\beta V}{2} \mu_{k} \tilde{\epsilon}_{k}^{2}+\frac{\beta}{2} \sum_{\vec{k}, n}\left(\left|X_{\vec{k}, n}\right|^{2}+\left|P_{\vec{k}, n}\right|^{2}\right) \\
& \Gamma_{\vec{q}, \overrightarrow{q^{\prime}}}^{n \overrightarrow{q^{\prime}} \vec{q}^{\prime}}=\frac{2 i}{\sqrt{N M}} \sum_{\vec{R}} g_{\vec{R}} \frac{R^{i}}{|\vec{R}|} \frac{W_{\vec{q}-\vec{q}^{\prime}, n}^{i}}{\omega_{\vec{q}-\vec{q}^{\prime}, n}}\left(e^{i \vec{q} \cdot \vec{R}}-e^{i \vec{q}^{\prime} \cdot \vec{R}}\right)
\end{aligned}
$$

Self-consistent equations:

$$
\tilde{K}_{\vec{q}}=J_{\vec{q}}+\Delta+\tilde{\epsilon}_{k} g_{\vec{q}, k}-\Sigma_{\vec{q}}
$$

$$
\begin{aligned}
\tilde{D}_{\vec{q}}^{-1 m m^{\prime}} & =\frac{N_{s}}{2} \sum_{\vec{k}} \tilde{K}_{\vec{k}}^{-1} \Gamma_{\vec{k}, \vec{k}+\vec{q}}^{m-\vec{q}} \tilde{K}_{\vec{k}+\vec{q}}^{-1} \Gamma_{\vec{k}+\vec{q}, \vec{k}}^{m^{\prime} \vec{q}}+\beta \delta_{m^{\prime} m}\left(1-\delta_{m, 0}\right) \\
\Sigma_{\vec{k}} & =(-i)^{2} \sum_{\vec{q}} \Gamma_{\vec{k}, \vec{k}+\vec{q}}^{m-\vec{q}} \tilde{K}_{\vec{k}+\vec{q}}^{-1} \Gamma_{\vec{k}+\vec{q}, \vec{k}}^{m^{\prime}} \tilde{D}_{\vec{q}}^{m^{\prime} m}
\end{aligned}
$$

Saddle-point equations:

$$
\beta=\frac{N_{s}}{V} \sum_{\vec{q}} \tilde{K}_{\vec{q}}^{-1} \quad \beta \tilde{\epsilon}_{k}=-\frac{N_{s}}{2 V \mu_{k}} \sum_{\vec{q}} \tilde{K}_{\vec{q}}^{-1} g_{\vec{q}, k}
$$

Gibbs free energy density

$$
\frac{G}{V}=-\Delta+\frac{1}{2} \mu_{k} \tilde{\epsilon}_{k}^{2}+\frac{N_{s}}{2 \beta V} \sum_{\vec{q}} \ln \tilde{K}_{\vec{q}}+\frac{1}{2 \beta V} \sum_{\vec{q}} \operatorname{tr} \ln \left(\tilde{D}_{\vec{q}}^{-1}\right)+\frac{N_{s}}{2 \beta V} \sum_{\vec{q}}\left(\tilde{K}_{\vec{q}}^{-1} \Sigma_{\vec{q}}\right)+\cdots
$$

Phonons alpha=1e6, J1=-1, J2=1, size dependence of Entropy dis

