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To couple the spins to elastic modes we consider the Hamiltonian with a distance-

dependent interaction

H =
1

2

X

~r,~r 0

J(~r 0 � ~r)S↵

~r
S
↵

~r 0 (1)

with the constraint that the spins are unit vectors. The position of a spin can be written

~r = ~R + ~u~R
where ~R is its equilibrium position and ~u~R

its displacement. Expanding about

the equilibrium position, we find to first order in the displacements:

J(~r 0 � ~r) ⇡ J(~c ) +
�
~u~R+~c

� ~u~R

�
·rJ(~c ) (2)

where we have defined the vector between interacting spins in the undistorted lattice ~c ⌘
~R
0� ~R. In order to make reasonable assumptions for the gradient we assume that J is only a

function of the absolute value of the distance |~r 0 � ~r|. Then rJ(~c) = g~c ~c/|~c| where g~c = @J

@r

evaluated at r = |~c|. It has units energy divided by length. The magnitude of the magnetic

interaction weakens with distance. This means that g should be negative for AF interactions

and positive for FM interactions.

The displacement vector can be written in terms of the elastic deformation tensor ✏ij and

phonon normal modes X as

u
i

~R
= e

ij
R

j +
0X

~k,n

1p
M

W
i

~k,n
e
i~k·~R

X~k,n
(3)

X~k,n
is the normal mode amplitude for mode n at momentum ~k. The displacement of atoms

is related to these by the the normal mode eigenvector W i

~k,n
which gives the displacement

in direction i. M is the atom mass. The prime on the sum indicates that ~k = 0 acoustic

modes should be excluded. They are accounted for by the elastic deformations.

The elastic deformations of the lattice are governed by the Hamiltonian

Hph =
1

2
V cij,kle

ij
e
kl +

0X

~k,n

1

2
!
2
~k,n

⇣
|X~k,n

|2 + |P~k,n
|2
⌘

(4)

where cij,kl is the elastic moduli tensor per unit volume (energy per unit volume). The

phonon mode frequencies are given by !~k,n
.

The phonon frequencies end eigenmodes are found from diagonalizing the dynamical

matrix which is defined as

D
ij

~k
=

1

M

X

m

@
2
Vpot

@ri
m
@r

j

n

|eqe�i~k·(~Rm�~Rn) (5)
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S2 =
1

2
Y†D�1Y (50)

K
�1 � K̃

�1
D̃ (51)

J(~r 0 � ~r) ⇡ J~R0�~R
+ (u~R0 � u~R

) ·rJ~R0�~R
(52)

rJ~R0�~R
= g~R0�~R

~R
0 � ~R

|~R0 � ~R |
(53)

Generalizing the number of spin components from 3 to Ns and integrating over the spins

and the phonon momenta P we arrive at the following expression for the partition function

Z = C

Z
DYD�D✏̃ e

�S (54)

where we have factored out the field-independent constants from the measures and put them

into C, so that

C =

✓r
⇡

�

◆NNs
 
�
p
N

⇡

!N

(�i)

0

@
Y

n,~q 6=0

1

!n,~q

1

A
2 ⇣p

2⇡
⌘2(N�1)

(55)

The first factor comes from the integral over the spins, and the last factor comes from the

integration over phonon momenta. The measures are

DY =
Y

~q 6=0,m

dY
m

~q
, D� = d�, D✏̃ =

3Y

k=1

d✏̃k, (56)

and the e↵ective action S reads

S = S0 + S2 + Sr, (57)

where

S0 = ��V�+
�V

2
µk ✏̃

2
k
+

Ns

2
Tr lnK (58)

and

S2 = � Ns

2 · 2Tr
�
K�1⇤K�1⇤

�
+

�

2

2X

~q,m=1

Y
m⇤
~q

Y
m

~q
⌘ 1

2
Y†D�1Y (59)

Sr = �
1X

n=3

Ns

2 · nTr
�
K�1⇤

�n
(60)
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To couple the spins to elastic modes we consider the Hamiltonian with a distance-

dependent interaction
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with the constraint that the spins are unit vectors. The position of a spin can be written
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where ~R is its equilibrium position and ~u~R

its displacement. Expanding about

the equilibrium position, we find to first order in the displacements:
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where we have defined the vector between interacting spins in the undistorted lattice ~c ⌘
~R
0� ~R. In order to make reasonable assumptions for the gradient we assume that J is only a

function of the absolute value of the distance |~r 0 � ~r|. Then rJ(~c) = g~c ~c/|~c| where g~c = @J

@r

evaluated at r = |~c|. It has units energy divided by length. The magnitude of the magnetic

interaction weakens with distance. This means that g should be negative for AF interactions

and positive for FM interactions.

The displacement vector can be written in terms of the elastic deformation tensor ✏ij and

phonon normal modes X as
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X~k,n
is the normal mode amplitude for mode n at momentum ~k. The displacement of atoms

is related to these by the the normal mode eigenvector W i

~k,n
which gives the displacement

in direction i. M is the atom mass. The prime on the sum indicates that ~k = 0 acoustic

modes should be excluded. They are accounted for by the elastic deformations.
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where cij,kl is the elastic moduli tensor per unit volume (energy per unit volume). The

phonon mode frequencies are given by !~k,n
.

The phonon frequencies end eigenmodes are found from diagonalizing the dynamical
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where we have defined the vector between interacting spins in the undistorted lattice ~c ⌘
~R
0� ~R. In order to make reasonable assumptions for the gradient we assume that J is only a

function of the absolute value of the distance |~r 0 � ~r|. Then rJ(~c) = g~c ~c/|~c| where g~c = @J

@r

evaluated at r = |~c|. It has units energy divided by length. The magnitude of the magnetic

interaction weakens with distance. This means that g should be negative for AF interactions

and positive for FM interactions.

The displacement vector can be written in terms of the elastic deformation tensor ✏ij and
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X~k,n
is the normal mode amplitude for mode n at momentum ~k. The displacement of atoms

is related to these by the the normal mode eigenvector W i

~k,n
which gives the displacement

in direction i. M is the atom mass. The prime on the sum indicates that ~k = 0 acoustic

modes should be excluded. They are accounted for by the elastic deformations.
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where cij,kl is the elastic moduli tensor per unit volume (energy per unit volume). The

phonon mode frequencies are given by !~k,n
.

The phonon frequencies end eigenmodes are found from diagonalizing the dynamical

matrix which is defined as
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Assuming that the potential energy is the lattice is composed out of pair potentials that are

just a function of the relative position of the pairs
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and so it only depends on the relative position ~Rm � ~Rn. This means that we can translate

the sum in the dynamical matrix by ~Rn and get

D
ij

~k
=

1

M

X

~R

↵~R

R
i
R

j

|~R|2
⇣
1� e

�i~k·~R
⌘

(11)

where the sum goes over all the points on the undisturbed lattice. To model the elastic

deformations of the square lattice we attach springs with spring constant ↵1(↵2) between

(next) nearest neighbor spins and restrict the displacement to lie in the plane, so that
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Then the non-zero elements of the dynamical matrix become
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Diagonalizing this dynamical matrix for each value of ~k gives two eigenvalues which each

correspond to the square frequency of respective modes !2
~k,n

. Their eigenvectors with com-

ponents i are denoted W
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.

The elastic tensor (per ”volume” V = Na
2) is related to the long-wavelength limit of the
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Expanding the dynamical matrix in the long-wavelength limit, and using V = Na
2, we find
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which gives the same values as the above when assuming springs between nearest and next

nearest neighbor sites.
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Thus the volume compression mode proportional to ✏
xx + ✏

yy is sti↵er than the other two

modes. The mode �✏
xx + ✏

yy describes elongation in one direction and compression in the

other, while the ✏xy mode describes a shear mode where two opposite corners comes closer to

each other and the two other corners becomes more distant, see Figure. Note that if second

FIG. 1. The three elastic modes of the square lattice with springs between nearest and next nearest

neighbor points

neighbor springs were omitted the energy cost towards the shear mode would be 0.

Inserting the expression for the displacements in terms of elastic and normal modes,

we find the following Hamiltonian expressed in terms of Fourier-transforms Rewriting the
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Now since both K�1 and Gk are diagonal in ~q we can also write these equations
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where the tr is the trace over the discrete indices. Using these saddle-equations to determine

the temperature T and the elastic deformations ✏i we arrive at the free energy density
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where the next to last term is the Gaussian corrections to the saddle-point determined by

the fluctuations of �ls. The last term is JUST GUESSED. IT SHOULD COME FROM

THE GAUSSIAN CORRECTION IN FLUCTUATIONS OF ✏k AROUND THE SADDLE-

POINT. IS THE COEFFICIENT REALLY 2Nph? Also the corrections should justify the
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A. Constraint/Phonon propagator

To find the constraint/phonon-propagator we integrate over the spins and expand the

resulting e↵ective action to quadratic order in the field Y . This gives the bubble diagram

in Fig. ,and the bare phonon part written as the last term in the following
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II. METHOD

The NBT is conveniently formulated in momentum
space:

H =
X

~q

J~q
~S�~q ·

~S~q, (2)

where the sum goes over the first Brillouin zone.
The classical spins on all sites are unit length vec-

tors: |~S~r| = 1. These length constraints are enforced
in the partition function as integral representations of
�-functions
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where we have scaled the integration variable �~r by the
inverse temperature, � = 1/T . This gives the partition
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where we have introduced a momentum space matrix
⇤~q,~q 0 ⌘ �i�~q�~q 0(1 � �~q,~q 0), and �~q is the Fourier-
transformed constraint integration variable. We have
separated out its ~q = 0 component and written it as
� ⌘ i�~q=0 and put it into another momentum space ma-
trix K~q,~q 0 ⌘ K~q �~q,~q 0 , where K~q ⌘ J~q +�. The integra-
tion measures are always redefined to include factors of
volume V , �, ⇡ and �i. The inverse of K~q is essentially
the spin-spin correlation function in momentum space,
and � can be interpreted as the average constraint, simi-
lar to the self-consistent field in the self-consistent Gaus-
sian approximation. The NBT goes beyond this as it also
accounts for the fluctuations ⇤~q,~q 0 around the average
constraint. This is essential in order to capture lattice
point group symmetry breaking phase transitions.

The integrals over the spin components can now be
taken as independent Gaussian integrals. We generalize
the spins to have Ns vector components, but will set
Ns = 3 at the end of the calculation. We scale the spin
components by a factor 1/

p
� and perform the Gaussian

integrals to get

Z =

Z
d�D� e

�S[�,�]
, (5)

where the e↵ective constraint action is
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Expanding this expression in powers of ⇤, we get
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FIG. 2. A ring with 3 wavy hooks; the n = 3 term in Sr.

(a) = + ⌃

(b) = + ⇧

FIG. 3. Dyson equations for (a) the renormalized spin prop-
agator K�1

e↵ (bold solid line), and (b) the renormalized con-
straint propagator D (bold wavy line).

where we have used the quadratic term in ⇤ to give the
inverse constraint propagator D�1
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There is no linear term in ⇤ because ⇤ has no diagonal
components, which follows from separating out �~q=0.
We then treat Sr as a perturbation about the Gaussian

action defined by the quadratic terms in � and integrate
over � so that
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The brackets hi indicate an average with respect to the
Gaussian action.
The perturbation theory can be formulated diagram-

matically with solid and wavy lines indicating K
�1 and

D0 respectively. Interactions in Sr are ring diagrams hav-
ing hooks where wavy lines can attach, see Fig. 2. We
then use a self-consistent procedure where a self-energy
⌃~q,~q 0 ⌘ ⌃~q �~q,~q 0 and a polarization ⇧~q,~q 0 ⌘ ⇧~q �~q,~q 0 are
defined to renormalize K�1 and D0 respectively accord-
ing to the Dyson equations shown in Fig. 3.
The Dyson equations yield Ke↵ = K�⌃ and D�1 =

D�1
0 �⇧. The self-energy and the polarization are next

approximated self-consistently by the diagrams in Fig. 4,
which are equivalent to the equations
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(so ⌫ = 0), and pulled out the ~q = 0 component of � and named it �i�. i.e.
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The bare inverse spin propagator can be written as a matrix diagonal in ~q-space

K~q~q 0 = �~q,~q 0 (J~q +�+ g~q,k ✏̃k) . (39)

The form of the action makes it convenient to define a combined constraint and phonon field
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where the index m takes integer values starting from 0, so that the constraint field is the

zeroth component. With this combined field the coupling to the spins can be written as a

matrix ⇤ with matrix elements

⇤~q~q 0 = (�i)�m ~q�~q
0

~q, ~q 0 Y
m

~q�~q 0 (41)
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Using the Voigt notation we can use the fact that gij
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is symmetric in i $ j to write
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Now using the expressions for the strains in terms of the strain eigenmodes ✏xx = 1p
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For the phonons we scale the displacement field X and the momenta P by a factor 1/!~k,n
.

This modifies the bare part of the phonons and the spin-phonon vertex. We arrive at
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Now we take a step back to real-space fields before any rescalings and write down the

partition function with unit vector constraint using delta-functions
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where the fields are specified in real space and the measures are

DS =
Y

~R,↵

dS
↵

~R
, D� =

Y

~R,i

✓
�d�~R,i

⇡

◆
, DX =

Y

~R,n

dX~R,n
, DP =

Y

~R,n

dP~R,n
, D✏̃ =

N✏Y

k=1

d✏̃k.

(34)



11

So we get the following system of equations:
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The details on how to evaluate these sums are given in appendix.
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replacing bare with renormalized quantities in the partition function we get in the same

way as in the Glittum article the partition function
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2⇡
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�V

2

X
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µk✏
2
k
+

1

2
Tr lnK+

1

2
Tr lnD�1 +

1

2
Tr
�
K�1⌃

�

Note that ~q = 0 is not part of the Tr for the Tr lnD�1 term. Now we carry out the remaining

integrals using the saddle-point approximation. We thus seek the extrema of the action with

respect to ✏i and �i. This gives the equations, see appendix,

1 =
1

�V
Tr
�
K�1Pl

�
, l < M (70)

µk✏k = � 1

2�V
Tr
�
K�1Gk

�
, k 2 {1, . . . , N✏} (71)

where the trace is over both momenta and discrete indices. Pl is matrix diagonal in in q

and spin-space but only non-zero when the sublattice is l. That is P↵�

~q,~q 0,l = �~q,~q 0�
↵�
�
↵l,l

Self-consistent equations:

3

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃ =

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧ = -

FIG. 4. Self-consistent equations for the self-energy and the
polarization. The bold lines on the right hand sides also in-
clude the self-energy and the polarization.

FIG. 5. Diagrams included in the free energy.

Combining the Dyson equation for D�1 with Eqs. (8)
and (13), the renormalized constraint propagator be-
comes

D
�1
~q =

Ns

2

X

~p

K
�1
e↵ ~p+~qK

�1
e↵ ~p. (14)

The unrenormalized propagators can be expressed in
terms of their renormalized equivalents so that S[�] be-
comes

S[�] = ��V�+
Ns

2
Tr lnKe↵ +

1

2
Tr lnD�1

+
Ns

2
Tr

�
K�1

e↵ ⌃
�
+ SR, (15)

where the remainder SR is defined in appendix A. In
the following we will simply omit SR, which means that
after this omission S[�] includes all diagrams of the sort
shown in Fig. 5, but neglects, among others, diagrams
with vertex corrections shown in Fig. 6.

The final integral over � is performed using the saddle
point approximation, see appendix B, which gives the
condition

NsT

2V

X

q

K
�1
e↵ ~q = 1. (16)

By taking also into account the Gaussian fluctuations in
� about the saddle point value and restoring omitted
constants, we find the following expression for the free
energy density f = �

1
�V lnZ:

f = ���
NsT

2V

X

~q

ln
�
TK

�1
e↵ ~q

�
+

NsT

2V

X

~q

K
�1
e↵ ~q⌃~q

+
T

2V

X

~q

ln
⇣
T

2
D

�1
~q /2V

⌘
�

(Ns � 1)T

2
ln⇡, (17)

FIG. 6. Leading order non-vanishing diagrams in SR.

where the lnD�1
~q – sum also includes the ~q = 0 term.

This expression is similar to that used in Ref. 18 in the
context of the self-consistent screening approximation.
We solve the self-consistent equations (12) and (14)

numerically, as described in details in Ref. 17, and obtain
expressions for K

�1
e↵ , D and ⌃, which are then used to

compute the free energy density from Eq. (17), and the
static structure factor

S(~q) ⌘ h~S�~q ·
~S~qi =

NsT

2
K

�1
e↵ ~q, (18)

as shown in Refs. 16 and 17. We note that the saddle
point condition Eq. (16) is equivalent to the condition
h~S~r ·

~S~ri = 1.

III. J1-J2-J3 MODEL

On the triangular lattice, the momentum space cou-
pling function is

J~q = J1 [cos (q1) + cos (q2) + cos (q3)]

+ J2 [cos (q1 � q2) + cos (q2 � q3) + cos (q3 � q1)]

+ J3 [cos (2q1) + cos (2q2) + cos (2q3)] , (19)

where qi ⌘ ~q · ~ai and the lattice vectors are ~a1 = x̂,

~a2 = �
1
2 x̂ +

p
3
2 ŷ and ~a3 = �

1
2 x̂ �

p
3
2 ŷ. The lattice

spacing has been set to unity. For further analysis, it is
convenient to rewrite J~q as

J~q = 2J3

"✓
A~q �

1

2

✓
1�

J1

2J3

◆◆2
#
+ (J2 � 2J3)B~q +C,

(20)
where A~q ⌘ cos (q1) + cos (q2) + cos (q3),
B~q ⌘ cos (q1 � q2) + cos (q2 � q3) + cos (q3 � q1),
and C is a parameter-dependent constant. We will set
J1 = �1 (FM) which defines our unit of energy.
By minimizing J~q with respect to ~q, we can find which

single-~q states that minimize the energy. For generic
choices of the parameters J2 and J3, these minimal ~Qs
form a discrete set of symmetry-related points in the Bril-
louin zone. The di↵erent regions of ~Qs minimizing J~q are

shown in Fig. 7, with the corresponding ~Qs illustrated in
Fig. 8. We define �M(�K) as the lines connecting the �
point and the M(K) points, illustrated by the green(blue)
lines in Fig. 8.
As shown in Ref. 9, the length of the ~Qs minimizing

J~q in region II is given by

QII =
2
p
3
arccos

✓
1� J2

2J2 + 4J3

◆
, (21)

2

II. METHOD

The NBT is conveniently formulated in momentum
space:

H =
X

~q

J~q
~S�~q ·

~S~q, (2)

where the sum goes over the first Brillouin zone.
The classical spins on all sites are unit length vec-

tors: |~S~r| = 1. These length constraints are enforced
in the partition function as integral representations of
�-functions

�

⇣
|~S~r|� 1

⌘
=

Z 1

�1

�d�~r

⇡
e
�i��~r(~S~r·~S~r�1)

, (3)

where we have scaled the integration variable �~r by the
inverse temperature, � = 1/T . This gives the partition
function

Z =

Z
D~S d�D� e

��
P

~q,~q 0(K~q,~q 0�⇤~q,~q 0)~S⇤
~q ·~S~q 0+�V�

,

(4)
where we have introduced a momentum space matrix
⇤~q,~q 0 ⌘ �i�~q�~q 0(1 � �~q,~q 0), and �~q is the Fourier-
transformed constraint integration variable. We have
separated out its ~q = 0 component and written it as
� ⌘ i�~q=0 and put it into another momentum space ma-
trix K~q,~q 0 ⌘ K~q �~q,~q 0 , where K~q ⌘ J~q +�. The integra-
tion measures are always redefined to include factors of
volume V , �, ⇡ and �i. The inverse of K~q is essentially
the spin-spin correlation function in momentum space,
and � can be interpreted as the average constraint, simi-
lar to the self-consistent field in the self-consistent Gaus-
sian approximation. The NBT goes beyond this as it also
accounts for the fluctuations ⇤~q,~q 0 around the average
constraint. This is essential in order to capture lattice
point group symmetry breaking phase transitions.

The integrals over the spin components can now be
taken as independent Gaussian integrals. We generalize
the spins to have Ns vector components, but will set
Ns = 3 at the end of the calculation. We scale the spin
components by a factor 1/

p
� and perform the Gaussian

integrals to get

Z =

Z
d�D� e

�S[�,�]
, (5)

where the e↵ective constraint action is

S[�,�] ⌘
Ns

2
Tr ln (K�⇤)� �V�. (6)

Expanding this expression in powers of ⇤, we get

S[�,�] = ��V�+
Ns

2
Tr lnK+

1

2

X

~q 6=0

��~qD
�1
0,~q�~q + Sr,

(7)

FIG. 2. A ring with 3 wavy hooks; the n = 3 term in Sr.

(a) = + ⌃

(b) = + ⇧

FIG. 3. Dyson equations for (a) the renormalized spin prop-
agator K�1

e↵ (bold solid line), and (b) the renormalized con-
straint propagator D (bold wavy line).

where we have used the quadratic term in ⇤ to give the
inverse constraint propagator D�1

0 ~q~q 0 ⌘ D
�1
0,~q �~q,~q 0 with

D
�1
0,~q =

Ns

2

X

~p

K
�1
~p+~qK

�1
~p , (8)

and the interaction Sr is

Sr = �
Ns

2

1X

n=3

1

n
Tr

�
K�1⇤

�n
. (9)

There is no linear term in ⇤ because ⇤ has no diagonal
components, which follows from separating out �~q=0.
We then treat Sr as a perturbation about the Gaussian

action defined by the quadratic terms in � and integrate
over � so that

Z =

Z
d�e

�S[�]
, (10)

where

S[�] ⌘ ��V�+
Ns

2
Tr lnK+

1

2
Tr lnD�1

0 � ln he�Sr i.

(11)
The brackets hi indicate an average with respect to the
Gaussian action.
The perturbation theory can be formulated diagram-

matically with solid and wavy lines indicating K
�1 and

D0 respectively. Interactions in Sr are ring diagrams hav-
ing hooks where wavy lines can attach, see Fig. 2. We
then use a self-consistent procedure where a self-energy
⌃~q,~q 0 ⌘ ⌃~q �~q,~q 0 and a polarization ⇧~q,~q 0 ⌘ ⇧~q �~q,~q 0 are
defined to renormalize K�1 and D0 respectively accord-
ing to the Dyson equations shown in Fig. 3.
The Dyson equations yield Ke↵ = K�⌃ and D�1 =

D�1
0 �⇧. The self-energy and the polarization are next

approximated self-consistently by the diagrams in Fig. 4,
which are equivalent to the equations

⌃~q = �

X

~p 6=0

K
�1
e↵ ~q�~pD~p, (12)

⇧~q = �
Ns

2

X

~p

K
�1
e↵ ~p+~qK

�1
e↵ ~p +

Ns

2

X

~p

K
�1
~p+~qK

�1
~p . (13)

9

S2 =
1

2
Y†D�1Y (50)

K
�1 � K̃

�1
D̃ (51)

Generalizing the number of spin components from 3 to Ns and integrating over the spins

and the phonon momenta P we arrive at the following expression for the partition function

Z = C

Z
DYD�D✏̃ e

�S (52)

where we have factored out the field-independent constants from the measures and put them

into C, so that

C =

✓r
⇡

�

◆NNs
 
�
p
N

⇡

!N

(�i)

0

@
Y

n,~q 6=0

1

!n,~q

1

A
2 ⇣p

2⇡
⌘2(N�1)

(53)

The first factor comes from the integral over the spins, and the last factor comes from the

integration over phonon momenta. The measures are

DY =
Y

~q 6=0,m

dY
m

~q
, D� = d�, D✏̃ =

3Y

k=1

d✏̃k, (54)

and the e↵ective action S reads

S = S0 + S2 + Sr, (55)

where

S0 = ��V�+
�V

2
µk ✏̃

2
k
+

Ns

2
Tr lnK (56)

and

S2 = � Ns

2 · 2Tr
�
K�1⇤K�1⇤

�
+

�

2

2X

~q,m=1

Y
m⇤
~q

Y
m

~q
⌘ 1

2
Y†D�1Y (57)

Sr = �
1X

n=3

Ns

2 · nTr
�
K�1⇤

�n
(58)

This can be made into a diagrammatic theory by extracting the quadratic term S2 and

taking gaussian averages with respect to that

Z = CZ2

Z
D�D✏̃e

�S0
1

Z2

Z
DY e

�Sre
�S2 (59)
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� =
Ns

V

X

~q

K̃
�1
~q

(72)

�✏̃k = � Ns

2V µk

X

~q

K̃
�1
~q

g~q,k (73)

Note that ~q = 0 is not part of the Tr for the Tr lnD�1 term. Now we carry out the

remaining integrals using the saddle-point approximation. We thus seek the extrema of the

action with respect to ✏i and �i. This gives the equations, see appendix,

1 =
1

�V
Tr

�
K�1Pl

�
, l < M (74)

µk✏k = � 1

2�V
Tr

�
K�1Gk

�
, k 2 {1, . . . , N✏} (75)

where the trace is over both momenta and discrete indices. Pl is matrix diagonal in in q

and spin-space but only non-zero when the sublattice is l. That is P↵�

~q,~q 0,l = �~q,~q 0�
↵�
�
↵l,l

Now since both K�1 and Gk are diagonal in ~q we can also write these equations

T =

2

4 1

V

X

~q

X

↵

K
�1↵↵
~q

�
↵l,l

3

5
�1

, l < M (76)

✏k

T
= � 1

2µiV

X

~q

tr
⇣
K

�1
~q

G~q,k

⌘
, k 2 {1, . . . , N✏} (77)

where the tr is the trace over the discrete indices. Using these saddle-equations to determine

the temperature T and the elastic deformations ✏i we arrive at the free energy density

f = �
X

l

�l +
1

2

N✏X

k=1

µk✏
2
k
� 1

2�V

X
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tr lnK�1
~q

+
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2�V

X

~q
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⌘
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~q 6=,n

ln!~q,n +
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M (Ns � 2) ln

�

⇡
� 1

2�
M lnV � (N � 1)(M + 2Nph)

2�V
ln (2⇡)

� 1

2�V
M ln (2⇡)� 1

2�V
2Nph ln (2⇡) (78)

where the next to last term is the Gaussian corrections to the saddle-point determined by

the fluctuations of �ls. The last term is JUST GUESSED. IT SHOULD COME FROM

THE GAUSSIAN CORRECTION IN FLUCTUATIONS OF ✏k AROUND THE SADDLE-

POINT. IS THE COEFFICIENT REALLY 2Nph? Also the corrections should justify the
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where the tr is the trace over the discrete indices. Using these saddle-equations to determine

the temperature T and the elastic deformations ✏i we arrive at the free energy density
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where the next to last term is the Gaussian corrections to the saddle-point determined by

the fluctuations of �ls. The last term is JUST GUESSED. IT SHOULD COME FROM

THE GAUSSIAN CORRECTION IN FLUCTUATIONS OF ✏k AROUND THE SADDLE-

POINT. IS THE COEFFICIENT REALLY 2Nph? Also the corrections should justify the

Saddle-point equations:



Gibbs free energy density
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Now since both K�1 and Gk are diagonal in ~q we can also write these equations
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where the tr is the trace over the discrete indices. Using these saddle-equations to determine

the temperature T and the elastic deformations ✏i we arrive at the free energy density
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where the next to last term is the Gaussian corrections to the saddle-point determined by

the fluctuations of �ls. The last term is JUST GUESSED. IT SHOULD COME FROM

THE GAUSSIAN CORRECTION IN FLUCTUATIONS OF ✏k AROUND THE SADDLE-

POINT. IS THE COEFFICIENT REALLY 2Nph? Also the corrections should justify the

inclusion of the ~q = 0 term in the Tr for lnD�1. Pulling together terms we arrive at the

final form
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+ · · ·

J1 = �1 g1 = g J2 = 1 g2 = �g (86)

=
V

2
µk ✏̃

2
k

(87)
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where the tr is the trace over the discrete indices. Using these saddle-equations to determine
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THE GAUSSIAN CORRECTION IN FLUCTUATIONS OF ✏k AROUND THE SADDLE-

POINT. IS THE COEFFICIENT REALLY 2Nph? Also the corrections should justify the

inclusion of the ~q = 0 term in the Tr for lnD�1. Pulling together terms we arrive at the
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Now since both K�1 and Gk are diagonal in ~q we can also write these equations
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where the tr is the trace over the discrete indices. Using these saddle-equations to determine

the temperature T and the elastic deformations ✏i we arrive at the free energy density
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where the next to last term is the Gaussian corrections to the saddle-point determined by

the fluctuations of �ls. The last term is JUST GUESSED. IT SHOULD COME FROM

THE GAUSSIAN CORRECTION IN FLUCTUATIONS OF ✏k AROUND THE SADDLE-

POINT. IS THE COEFFICIENT REALLY 2Nph? Also the corrections should justify the

inclusion of the ~q = 0 term in the Tr for lnD�1. Pulling together terms we arrive at the
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