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Landau Fermi-Liquid Theory

[ Landau (1951) ]: A finite density of interacting fermions 
doesn't depend on specific microscopic dynamics of 
individual systems :– 

Ground state: characterized by a sharp Fermi 
surface (FS) in momentum space

Low energy excitations: weakly interacting quasi-
particles around FS

 ❶ Quasiparticle lifetime diverges close to FS ☛ Decay rate 

 ❷ Electron has a finite overlap with quasiparticle adiabatically connected to        

   non-interacting Fermi gas ☛ quasi-particle wt 



  

Breakdown of FL Theory
can be 

diagonalized in 
single-particle 

basis of      
quasiparticles  

no such basis 
 ☛ genuinely 

interacting 
QFT   

Low energy QFT

Fermi Liquid
Metals

Non-Fermi Liquid
States

can arise when FS 
coupled with 

a 
gapless boson

Heavy fermion compounds 
near magnetic QCPs, 

QCP for Mott Transitions,
nematic QCP

☛ NFL phase at QPT Bose metals &  = 1/2 FQH state support ν
fractionalized fermionic excitations

+ emergent gauge field  

☛ NFL phases in extended region 
in parameter space  

gapless boson
by

dynamical tuning

gapless boson by
fine-tuning microscopic

parameters



  

Goals

Construct minimal field theories that capture universal low-energy physics.

Understand the dynamics in controlled ways.

Eventually come up with a systematic classification for NFL's.

Broadly we have 2 cases:

Dynamics depends on FS dim (m) in addition to spacetime dim (d+1). Here 
we focus on  m & d-m dependence for case 1.

critical boson mom q = 0  
☛ Ising-nematic QCP, 
gauge field + spinon FS

critical boson mom q ≠ 0  
☛ SDW or 

CDW critical pts



  

Critical FS States

Are there states with 
 ❶ a sharp FS  

 +
❷ no Landau quasiparticles ?

d=1 ☛  Luttinger liquid

d>1 ☛ Proposed realizations :
 

QCPs associated with 
onset of order in metal

(antiferromagnet, nematic)

Spinon FS
 [ U(1) spin-liquid ] state 

of Mott-insulator
Halperin-Lee-Read 

composite fermion liquid 
of ½-filled Landau level



  

Example: High Tc SC

underdoped optimally overdoped
 doped

(holes per CuO2)

NFL
Strange Metal Regime :

☛ Power laws in many 

physical quantities 

distinct from that in FL

 ☛ FS but no 

Landau quasi-particles



  

Example: Heavy Fermions

 Onset of antiferromagnetism
in rare earth alloys  

CeCu6−xAux , CePd2Si2, 
YbRh2Si2, ...

AF
Metal

T

Some parameter
(e.g. pressure) Drastic change in   

FS topology
expected across QPT 
☛ experiments ☛ FS 

may reconstruct
dramatically 



  

Killing the FS

In such T=0 phase transition in metals, an entire FS may 
disappear/change discontinuosly .

If 2nd order/continuous, NFL guaranteed as at QCP, FS remains 
sharply defined even though there is no Landau quasiparticle.

[ Senthil (2008) ]

Disappearance of FS through a continuous phase transition 
requires a critical fixed point :

 ❶ Z = 0

 ❷ FS sharp



  

How Can a FS Disappear Continuosly?

One route  ☛  Z vanishes continuously everywhere on the FS.
[ Brinkman and Rice (1970) ]
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Interacting Landau FL 
☛ discontinuity Z < 1 of n(k)

at kF

 Phase where FS has disappeared
☛ n(k) smooth everywhere

Critical point
☛ n(k) continuous at kF ,

dicontinuity replaced 
by kink singularity 

Z < 1

kF

kF

kF
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Unusual Scaling Phenomenology

 ❶ Calculational framework that replaces FL theory needed.

 ❷ QFT of metals ☛ low symmetry + extensive gapless modes need to be kept in      
    low energy theories  ☛ less well understood compared to relativistic QFTs.          
    

[ Custers et al, Nature (2003) ]

 

[ (T) – ρ ρ0 ] ∝ Tε     
  =1 for NFL (yellow)ε

  =2 for FL (blue)ε



  

Roughly Common Phase Diagram 
for many NFL

 Whatever causes phase transition 
between A & B also responsible

for NFL Physics ?



  

“Natural” Assumptions

NFL   ☛  Universal physics associated with QCP between A & B 
phases.

Landau  ☛  Universal critical singularities ~ order parameter 
fluctuation for A ⇌ B transition :

 Attempt to describe NFL as

FS 
+ 

gapless order parameter 
fluctuations



  

Ising-Nematic QPT
From  theoretical viewpoint   ☛ Ising-nematic (ISN) QCP one of the simplest 
phase transitions in metals providing a remarkable strongly-coupled NFL with 
critical fluctuations of ISN order.

                                       

(2+1)-d  ☛  simple choice  ☛  change from ■ to ▬ symmetry.

QPT to nematic states with spontaneously broken point group symmetry           
☛ order parameter is a real scalar boson with strong qtm fluctuations at QCP.

FS has Z4 sym

FS has Z2 sym



  

Why is ISN QPT Important ?

Many recent experiments noted presence of ISN order in the enigmatic 
normal state of cuprate SC's.

YBa2Cu3Oy ☛ Nernst signal anisotropy ☛ ISN order sets at T=T*                           

 ☛ boundary between “pseudogap” & “strange metal” ☛  need theory of QPT 
involving ISN order ☛ will also play imp role in theory of strange metals. 

[ Daou et al, Nature (London) 463, 519 (2010) ]

 

Sr3Ru2O7 ☛ Resistance anisotropies ☛ spontaneous ISN ordering.

        [ Borzi et al, Science 315, 214 (2007) ]

Pnictides ☛ Clear indications of ISN order driven by e-- e- correlations.

 [ Chuang et al, Science 327, 181 (2010) ]



  

Earlier Approaches to ISN QPT

Earlier works relied on Hertz's perspective: e- 's integrated out, including those 
lying on FS, yielding a Landau-damped effective action for scalar order 
parameter Φ.

[ Oganesyan, Kivelson, Fradkin (2001); Lawler, Barci, Fernandez, Fradkin, Oxman (2006) ]

Successive integration of fermionic & bosonic d.o.f. dangerous  ☛  integrating 
out gapless modes on FS give rise to non-analytic & singular effective 
interactions among bosons.

A complete analysis of ISN should be based on a local QFT, providing a 
scheme for computing scaling dim of all perturbations at QCP.



  

RG Studies of NFLs
Essential to treat bosonic & fermionic excitations at equal footing   ☛  RG 
methods to unravel scaling str of the critical theory.                             
                                                                                                                                    
[ Lee (2009); Metlitski and Sachdev (2010); Mross, McGreevy, Liu and Senthil  (2010);                           
  Dalidovich and Lee (2013); Sur and Lee (2013) ]

Earlier works showed low-energy properties of FS qualitatively modified by 
coupling with gapless bosons :

 ☛ 3d ⇛ logarithmic corrections arise due to Yukawa coupling.                                         
    [ Holstein, Norton and Pincus (1973); Reizer (1989); Mahajan, Ramirez, Kachru and Raghu (2013) ]

 ☛ 2d ⇛ NFLs flow to strongly interacting fixed points at low energies.

Non-chiral theories ☛ 2 patches of FS with opposite Fermi velocities ☛ hard to 
understand. One way ☛  deform original theory into a perturbatively solvable regime in 
a continuous way.



  

Ways to Obtain Perturbative NFLs 
Most natural attempt   ☛  Enlarge flavour symmetry group   ☛  extra flavours 
don't introduce qualitatively new element to the theory. 

[ Polchinski (1994); Altshuler, Ioffe and Millis (1994); Kim, Furusaki, Wen and Lee (1994);                                
  Kim, Lee and Wen (1995) ] 

Problem  ☛  Infinite flavour limit not described by a mean-field theory due to 
large residual qtm fluctuations of FS.

[ Lee (2009); Metlitski and Sachdev (2010) ] 

Modify spacetime dim continuously to gain a controlled access to NFL states
☛ Extend
❶ FS dim [ Chakravarty, Norton and Syljuasen (1995) ]

or
❷ FS co-dim [ Senthil and Shankar (2009); Dalidovich and Lee (2013) ]

Here we generalise the above extending both dim & co-dim.



  

Dimension as a Tuning Parameter
For d < upper critical dim dc ☛ theory flows to interacting NFL at low 

energies.

For d > dc ☛ expected to be described by FL .

Choice of regularization scheme for systematic RG in relativistic QFT :
☛ Locality                                                                                             
☛ Consistent with many symmetries

 Our Dimensional Regularization (DR) scheme:

☛ Advantage ⇛ locality maintained                                                                 
[ Locality broken in DR scheme of Senthil & Shankar (2009) ]

☛ Disadvantage ⇛  some symmetries broken [ global U(1) ]



  

Two Patch Theory 

Fermi SeaFermi Sea

Fermi Sea

Low energy limit

 ☛ Fermions coupled with boson 

with mom tangential to FS

☛ scatter tangentially

Circular FS (m=1)  ☛ fermions in different patches

decoupled except antipodal points

Not true for 

m-dim FS 

with m > 1

kF  enters as a 
dimensionful parameter

Time-Reversal 
Invariance assumed



  

Low Energy QFT

Fermions :

low energy region is annulus 
of width 2Λ 

symmetrically enclosing FS

Boson :

low energy region 
is sphere of radius

~           √ Λk F

Couples 
with

RG very hard compared to relativistic QFT



  

Significance of m for d < dc 

d controls strength of qtm fluctuations & m controls extensiveness of 
gapless modes.

For d < dc  ☛ an emergent locality in mom space for m = 1, but not for m > 1 .

For  m = 1  ☛ observables local in mom space (e.g. Green’s fns) can be 

extracted from local patches  ☛ need not refer to global properties of FS 

 ☛ (2+1)-d ISN QCP described by a stable NFL state slightly below dc =5/2.

[  D. Dalidovich and S-S. Lee, Phys. Rev. B 88, 245106 (2013) ]   

 For m > 1 ☛ UV/IR mixing ☛ low-energy physics affected by gapless modes

on entire FS ☛ effects patch theory cannot capture through renormalization 
of local properties. 



  

Role  of  “ kF”  

We devise DR extending both dim & co-dim  ☛  FS with m > 1 
included naturally. 

[  IM and S-S. Lee, Phys. Rev. B 92, 035141 (2015) ]

We provide a controlled analysis showing how interactions + 
UV/IR mixing interplay to determine low-energy scalings in 
NFL's with general m.

For m > 1 ☛ size of FS ( kF ) modifies naive scaling based on 
patch description ☛ kF  becomes a ‘naked scale’ .



  

Generic Fermi Surface

At a chosen point K* on FS : kd-m  ⊥ local Sm  ☛  its magnitude 
measures deviation from kF . 

L(k) = ( kd-m+1 , kd-m+2 ,…, kd )  ☛ tangential along the local Sm. 

Patch of m-dim FS 
of arbitrary shape



  

Fermions on Antipodal Points

right (left) moving fermion 
with flavour  j=1,2,...,N



  

Action

2 halves of m-dim FS 
coupled with one critical boson 
in (m+1)-space & one time dim:



  

FS in Terms of Dirac Fermions 

Interpret |L(k)| as a continuous  flavour 

☛ Each (m+2)-d spinor can be viewed 

as a (1+1)-d Dirac fermion

UV cut-off



  

Momentum Regularization along FS

Compact FS approx by 2 sheets of non-compact FS with a 
momentum regularization suppressing modes far away from ±K* :

We keep dispersion parabolic but exp factor effectively makes FS 
size finite by damping                        fermion modes.



  

Theory in General Dimensions

Add (d-m-1) spatial dim 
☛ co-dimensions 



  

A Physical Realization for d=3, m=1

Fermi line in 
3d mom space

Turn on p-wave SC order parameter 
☛ gap out the cylindrical FS 

except for a line node



  

Applying DR
There is an implicit UV cut-off Λ for K with k << Λ  << kF .

 Λ   ☛  sets the largest energy fermions can have  ⊥ FS ;                           
 kF   ☛  sets FS size.

We consider RG flow by changing Λ & requiring low-energy observables 
independent of it. 

To access perturbative NFL, we fix m & tune d towards a critical dim dc 
at which qtm corrections diverge logarithmically in Λ .



  

Critical Dimension
Naïve critical dim  ☛ scaling dim of e = 0 :

True critical dim ☛ one-loop fermion self-energy Σ1(q) blows up 
logarithmically :



  

One-Loop Results for d = dc– ϵ

Dynamical critical exponent

 Anomalous dimensions for 
       fermions & boson

Effective coupling 
& control parameter 

in 
loop expansions

Fixed points 

Interacting Fixed Point



  

Stable NFL Fixed Point

eeff

RG Flow

Low energy limit

☛ theory flows to 

a

Stable

NFL

Fixed Point

Small  eeff  expansion :

For small ϵ, interacting f.p.
perturbatively accessible 

though e has +ve scaling dim 
for 1<m<2

eef f  marginal at dc



  

Two-point Fns at IR Fixed Point  

Using RG eqns  ☛ 

One-loop order  ☛ 



  

Two-Loop Results : Boson Self-Energy  

For m > 1  ☛  

☛ kF  suppressed ☛  no correction at 2-loop

For m = 1  ☛ UV-finite, gives a finite correction ☛



  

Two-Loop Results : Fermion Self-Energy  

For m > 1  ☛  

☛  no correction at 2-loop

For m = 1  ☛ UV-divergent



  

Pairing Instabilities of Critical FS States  

Regular FL unstable to arbitrary weak interaction in BCS channel leading 
to Cooper pairing  ☛  How about a critical FS ?

Metlitski, Mross, Sachdev & Senthil [ arXiv:1403.3694 ]  ☛  studied SC 
instability in (2+1)-d for NFL.

Chung, IM, Raghu & Chakravarty [ Phys. Rev. B 88, 045127 (2013) ] 
 ☛ found Hatree-Fock soln of self-consistent gap eqn for a FS coupled to a 

transverse U(1) gauge field in (3+1)-d.

We want to consider ISN scenario for m ≥ 1.                       

[ IM and S-S. Lee, in progress]



  

Superconducting Instability

Add generic 4-fermion terms
to analyse SC instability :



  

Some One-Loop Diagrams



  

Beta-Fns for Va's

Scatterings in pairing channel enhanced by volume of FS ~ (kF )m/2 . 

 Effective coupling that dictates potential instability :

      marginal at co-dim d - m = 1.

For d-m>1 ☛ no perturbative instability for sufficiently small  ϵ = dc – d.

When d – m -1 ≾  ϵ & d - dc ~   ϵ  ☛ interaction plays an imp role to 
determine pairing instability. 



  

Beta-Fns for d–m-1 ≾  &ϵ  d-dc ~ ϵ

Can cause usual 
BCS instability



  

Epilogue
RG analysis for QFTs with FS ☛ scaling behaviour of NFL states in a 
controlled approx.

m-dim FS with its co-dim extended to a generic value ☛ stable NFL 
fixed points identified using  ϵ = dc – d as perturbative parameter. 

SC instability in such systems as a fn of dim & co-dim of FS. 

Key point ☛  kF enters as a dimensionful parameter unlike in 
relativistic QFT  ☛  modify naive scaling arguments. 

Effective coupling constants ☛ combinations of original coupling 
constants & kF .



  

Thank you for your attention !
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