UV/IR Mixing In Non-Fermi Liquids

Ipsita Mandal

Collaborator

Sung-Sik Lee

(PI and McMaster University)

Plan of the Talk

- Prologue
- Landau Fermi-Liquid Theory
- Breakdown of FL Theory → Non-Fermi Liquids
- Ising-Nematic QCP
- Dimensional & Co-dimensional RG
- Critical Dimension
- Beta-Functions & Critical Exponents
- Stable NFL Fixed Point
- Superconducting Instability
- Epilogue

Landau Fermi-Liquid Theory

[Landau (1951)]: A finite density of interacting fermions doesn't depend on specific microscopic dynamics of individual systems:-

- **Ground state**: characterized by a sharp Fermi surface (FS) in momentum space
- Low energy excitations: weakly interacting quasiparticles around FS

$$(\omega = 0, \quad k_{\perp} \equiv k - k_F = 0)$$

$$G_R(\omega, \vec{k}) = \frac{Z}{\omega - v_F k_\perp + i \Gamma}$$

- **Q**uasiparticle lifetime diverges close to FS lacksquare Decay rate $\Gamma \sim \omega^2$

Breakdown of FL Theory

Goals

- Construct minimal field theories that capture universal low-energy physics.
- Understand the dynamics in controlled ways.
- Eventually come up with a systematic classification for NFL's.
- Broadly we have 2 cases:

Dynamics depends on FS dim (m) in addition to spacetime dim (d+1). Here we focus on m & d-m dependence for case 1.

Critical FS States

- Are there states with
 - a sharp FS
 - o no Landau quasiparticles?

$$G_R(\omega, \vec{k}) \neq \frac{Z}{\omega - v_F (k - k_F)}$$

- d=1 Luttinger liquid
- d>1 ~ Proposed realizations:

QCPs associated with onset of order in metal (antiferromagnet, nematic)

Spinon FS
[U(1) spin-liquid] state
of Mott-insulator

Halperin-Lee-Read composite fermion liquid of ½-filled Landau level

Example: High T_c SC

Example: Heavy Fermions

Killing the FS

In such T=0 phase transition in metals, an entire FS may disappear/change discontinuosly.

• If 2nd order/continuous, NFL guaranteed as at QCP, FS remains sharply defined even though there is no Landau quasiparticle.

[Senthil (2008)]

- Disappearance of FS through a continuous phase transition requires a critical fixed point :
 - $\mathbf{0} Z = 0$
 - FS sharp

How Can a FS Disappear Continuosly?

One route **Z** vanishes continuously everywhere on the FS. [Brinkman and Rice (1970)]

Unusual Scaling Phenomenology

- 1 Calculational framework that replaces FL theory needed.
- 2 QFT of metals low symmetry + extensive gapless modes need to be kept in low energy theories less well understood compared to relativistic QFTs.

Roughly Common Phase Diagram for many NFL

"Natural" Assumptions

NFL - Universal physics associated with QCP between A & B phases.

Landau - Universal critical singularities - order parameter

fluctuation for $A \rightleftharpoons B$ transition:

Attempt to describe NFL as

FS + gapless order parameter fluctuations

Ising-Nematic QPT

■ From theoretical viewpoint ► Ising-nematic (ISN) QCP one of the simplest phase transitions in metals providing a remarkable strongly-coupled NFL with critical fluctuations of ISN order.

QPT to nematic states with spontaneously broken point group symmetry
 order parameter is a real scalar boson with strong qtm fluctuations at QCP.

Why is ISN QPT Important?

• Many recent experiments noted presence of ISN order in the enigmatic normal state of cuprate SC's.

YBa₂Cu₃O_y → Nernst signal anisotropy → ISN order sets at T=T*
 boundary between "pseudogap" & "strange metal" → need theory of QPT involving ISN order → will also play imp role in theory of strange metals.

[Daou et al, Nature (London) 463, 519 (2010)]

Sr₃Ru₂O₇ ⇐ Resistance anisotropies ⇐ spontaneous ISN ordering.

[Borzi et al, Science 315, 214 (2007)]

Pnictides ← Clear indications of ISN order driven by e⁻- e⁻ correlations.

[Chuang et al, Science 327, 181 (2010)]

Earlier Approaches to ISN QPT

Earlier works relied on Hertz's perspective: e⁻'s integrated out, including those lying on FS, yielding a Landau-damped effective action for scalar order parameter Φ.

[Oganesyan, Kivelson, Fradkin (2001); Lawler, Barci, Fernandez, Fradkin, Oxman (2006)]

Successive integration of fermionic & bosonic d.o.f. dangerous integrating out gapless modes on FS give rise to non-analytic & singular effective interactions among bosons.

A complete analysis of ISN should be based on a local QFT, providing a scheme for computing scaling dim of all perturbations at QCP.

RG Studies of NFLs

 Essential to treat bosonic & fermionic excitations at equal footing - RG methods to unravel scaling str of the critical theory.

[Lee (2009); Metlitski and Sachdev (2010); Mross, McGreevy, Liu and Senthil (2010); Dalidovich and Lee (2013); Sur and Lee (2013)]

- Earlier works showed low-energy properties of FS qualitatively modified by coupling with gapless bosons:
 - → 3d ⇒ logarithmic corrections arise due to Yukawa coupling.
 [Holstein, Norton and Pincus (1973); Reizer (1989); Mahajan, Ramirez, Kachru and Raghu (2013)]
 - 2d ⇒ NFLs flow to strongly interacting fixed points at low energies.

Ways to Obtain Perturbative NFLs

Most natural attempt Enlarge flavour symmetry group extra flavours don't introduce qualitatively new element to the theory.

```
[ Polchinski (1994); Altshuler, Ioffe and Millis (1994); Kim, Furusaki, Wen and Lee (1994); Kim, Lee and Wen (1995) ]
```

Problem Infinite flavour limit not described by a mean-field theory due to large residual qtm fluctuations of FS.

```
[ Lee (2009); Metlitski and Sachdev (2010) ]
```

- Modify spacetime dim continuously to gain a controlled access to NFL states
 - Extend
 - FS dim [Chakravarty, Norton and Syljuasen (1995)] or
 - 2 FS co-dim [Senthil and Shankar (2009); Dalidovich and Lee (2013)]

• Here we generalise the above extending both dim & co-dim.

Dimension as a Tuning Parameter

For d < upper critical dim d_c theory flows to interacting NFL at low energies.

• For $d > d_c - expected$ to be described by FL.

- Choice of regularization scheme for systematic RG in relativistic QFT:
 - Locality
 - Consistent with many symmetries

- Our Dimensional Regularization (DR) scheme:

[Locality broken in DR scheme of Senthil & Shankar (2009)]

Two Patch Theory

Fermi Sea

Time-Reversal Invariance assumed

Low energy limit

- Fermions coupled with bosonwith mom tangential to FS
 - scatter tangentially

Not true for m-dim FS with m > 1

k_F enters as adimensionful parameter

Low Energy QFT

RG very hard compared to relativistic QFT

Significance of m for d < d_c

d controls strength of qtm fluctuations & m controls extensiveness of gapless modes.

• For $d < d_c$ • an emergent locality in mom space for m = 1, but not for m > 1.

- For m = 1 \leftarrow observables local in mom space (e.g. Green's fns) can be extracted from local patches \leftarrow need not refer to global properties of FS \leftarrow (2+1)-d ISN QCP described by a stable NFL state slightly below $d_c = 5/2$.
 - [D. Dalidovich and S-S. Lee, Phys. Rev. B 88, 245106 (2013)]

Role of "k_F"

We devise DR extending both dim & co-dim - FS with m > 1 included naturally.

[IM and S-S. Lee, Phys. Rev. B 92, 035141 (2015)]

• We provide a controlled analysis showing how interactions + UV/IR mixing interplay to determine low-energy scalings in NFL's with general m.

For m > 1 size of FS (k_F) modifies naive scaling based on patch description $-k_F$ becomes a 'naked scale'.

Generic Fermi Surface

- At a chosen point K^* on $FS: k_{d-m} \perp local S^m its magnitude measures deviation from <math>k_F$.
- $L_{(k)} = (k_{d-m+1}, k_{d-m+2}, ..., k_d)$ tangential along the local S^m .

Fermions on Antipodal Points

Action

2 halves of m-dim FS coupled with one critical boson in (m+1)-space & one time dim:

$$S = \sum_{s=\pm}^{N} \sum_{j=1}^{N} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \psi_{s,j}^{\dagger}(k) \left[ik_0 + sk_{d-m} + \vec{L}_{(k)}^2 + \mathcal{O}(\vec{L}_{(k)}^3) \right] \psi_{s,j}(k)$$

$$+ \frac{1}{2} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \left[k_0^2 + k_{d-m}^2 + \vec{L}_{(k)}^2 \right] \phi(-k) \phi(k)$$

$$+ \frac{e}{\sqrt{N}} \sum_{s=-1}^{N} \int \frac{d^{m+2}k \, d^{m+2}q}{(2\pi)^{2m+4}} \, \phi(q) \, \psi_{s,j}^{\dagger}(k+q) \, \psi_{s,j}(k)$$

FS in Terms of Dirac Fermions

Interpret $|L_{(k)}|$ as a continuous flavour

Each (m+2)-d spinor can be viewed as a (1+1)-d Dirac fermion

$$\Psi_j(k) = \begin{pmatrix} \psi_{+,j}(k) \\ \psi_{-,j}^{\dagger}(-k) \end{pmatrix}$$

$$S = \sum_{j=1}^{N} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \overline{\Psi_{j}(k)} \left[ik_{0}\gamma_{0} + i\left(k_{d-m} + \vec{L}_{(k)}^{2}\right)\gamma_{1}\right] \Psi_{j}(k) \exp\left(\frac{\vec{L}_{(k)}^{2}}{k_{F}}\right)$$

$$+ \frac{1}{2} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \left[k_{0}^{2} + k_{d-m}^{2} + \vec{L}_{(k)}^{2}\right] \phi(-k) \phi(k)$$

$$+ \frac{ie}{\sqrt{N}} \sum_{j=1}^{N} \int \frac{d^{m+2}k d^{m+2}q}{(2\pi)^{2m+4}} \phi(q) \ \bar{\Psi}_{j}(k+q) \gamma_{1} \Psi_{j}(k) \qquad \text{UV cut-off}$$

Momentum Regularization along FS

Compact FS approx by 2 sheets of non-compact FS with a momentum regularization suppressing modes far away from ±K*:

• We keep dispersion parabolic but exp factor effectively makes FS size finite by damping $|\vec{L}_{(k)}| > k_F^{1/2}$ fermion modes.

Theory in General Dimensions

Add (d-m-1) spatial dim

co-dimensions

$$k_0 \to \vec{K} \equiv (k_0, k_1, \dots, k_{d-m-1})$$

$$\gamma_0 \to \vec{\Gamma} \equiv (\gamma_0, \gamma_1, \dots, \gamma_{d-m-1})$$

$$\gamma_1 (k_{d-m} + \vec{L}_{(k)}^2) \to \gamma_{d-m} \, \delta_k$$

$$\delta_k = k_{d-m} + \vec{L}_{(k)}^2$$

$$S = \sum_{j} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \overline{\Psi_{j}(k)} \left[i\vec{\Gamma} \cdot \vec{K} + i\gamma_{d-m} \, \delta_{k} \right] \Psi_{j}(k)$$

$$+ \frac{1}{2} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \left[|\vec{K}|^{2} + k_{d-m}^{2} + \vec{L}_{(k)}^{2} \right] \phi(-k)\phi(k)$$

$$+ \frac{ie}{\sqrt{N}} \sum_{j} \int \frac{d^{d+1}k \, d^{d+1}q}{(2\pi)^{2d+2}} \phi(q) \bar{\Psi}_{j}(k+q) \gamma_{d-m} \Psi_{j}(k)$$

A Physical Realization for d=3, m=1

$$S = \int \frac{d^4k}{(2\pi)^4} \left\{ \sum_{s=\pm} \sum_{j=\uparrow,\downarrow} \psi_{s,j}^{\dagger}(k) \left(ik_0 + sk_2 + k_3^2 \right) \psi_{s,j}(k) \right\}$$

$$-k_1 \left(\psi_{+,\uparrow}^{\dagger}(k) \psi_{-,\uparrow}^{\dagger}(-k) + \psi_{+,\downarrow}^{\dagger}(k) \psi_{-,\downarrow}^{\dagger}(-k) + h.c. \right)$$

Turn on p-wave SC order parameter

 gap out the cylindrical FS except for a line node

Applying DR

- There is an implicit UV cut-off Λ for **K** with $k << \Lambda << k_F$.
- Λ \bullet sets the largest energy fermions can have \bot FS; k_F \bullet sets FS size.
- We consider RG flow by changing Λ & requiring low-energy observables independent of it.
- To access perturbative NFL, we fix m & tune d towards a critical dim d_c at which qtm corrections diverge logarithmically in Λ .

Critical Dimension

• Naïve critical dim \leftarrow scaling dim of e = 0:

$$d_c' = \frac{4+m}{2}$$

• True critical dim • one-loop fermion self-energy $\Sigma_{\mathbf{l}}(\mathbf{q})$ blows up logarithmically :

$$d_c = m + \frac{3}{m+1}$$

One-Loop Results for $d = d_c - \epsilon$

& control parameter in loop expansions

$$k_F = \mu \, \tilde{k}_F$$

$$\tilde{\beta} \equiv \frac{\partial e_{eff}}{\partial \ln \mu} = \frac{(m+1)(u_1 e_{eff} - N\epsilon) e_{eff}}{3N - (m+1)u_1 e_{eff}} = 0$$

Interacting Fixed Point

$$e_{eff}^* = \frac{N\epsilon}{u_1}$$

$$z^* = 1 + \frac{(m+1)\epsilon}{3}$$

$$\eta_{\psi}^* = \eta_{\phi}^* = -\frac{\epsilon}{2}$$

Dynamical critical exponent

Anomalous dimensions for fermions & boson

Stable NFL Fixed Point

$$\tilde{\beta} = -\frac{(m+1)\epsilon}{3} e_{eff} + \frac{(m+1)\{3 - (m+1)\epsilon\} u_1}{9N} e_{eff}^2 + \mathcal{O}(e_{eff}^3)$$

Two-point Fns at IR Fixed Point

Using RG eqns •

$$\langle \phi(-k)\phi(k)\rangle = \frac{1}{(\vec{L}_{(k)}^2)^{2\Delta_{\phi}}} f_D\left(\frac{|\vec{K}|^{1/z^*}}{\vec{L}_{(k)}^2}, \frac{k_{d-m}}{k_F}, \frac{\vec{L}_{(k)}^2}{k_F}\right)$$

$$\left\langle \psi(k)\bar{\psi}(k)\right\rangle = \frac{1}{|\delta_k|^{2\Delta_{\psi}}} f_G\left(\frac{|\vec{K}|^{1/z^*}}{\delta_k}, \frac{\delta_k}{k_F}, \frac{\vec{L}_{(k)}^2}{k_F}\right)$$

One-loop order •

One-loop order
$$\bullet$$

$$f_D(x, y, z) = \left[1 + \beta_d \, \tilde{e}^{\frac{3}{m+1}} x^{\frac{3}{m+1}} z^{-\frac{3(m-1)}{2(m+1)}}\right]^{-1}$$

$$f_G(x, y, z) = -i \left[C \, (\vec{\Gamma} \cdot \hat{\vec{K}}) \, x + \gamma_{d-m}\right]^{-1}$$

Two-Loop Results: Boson Self-Energy

• For m > 1

$$\Pi_2(q) \sim \frac{e_{eff}^{\frac{m}{m+1}}}{k_F^{\frac{m-1}{2(m+1)}}} \frac{|\vec{Q}|^{\frac{m}{m+1}}}{N|\vec{L}_{(q)}|} \Pi_1(q)$$

★ k_F suppressed no correction at 2-loop

• For m = 1 • UV-finite, gives a finite correction • $\Pi_2(q) \sim \left(\frac{e^2}{N|L_{(q)}|}\right) e_{eff}$

Two-Loop Results: Fermion Self-Energy

- For m > 1 $\Sigma_2(q)$ ~ $k_F-suppressed$
 - no correction at 2-loop

• For $m = 1 \leftarrow UV$ -divergent

Pairing Instabilities of Critical FS States

Regular FL unstable to arbitrary weak interaction in BCS channel leading to Cooper pairing How about a critical FS?

Metlitski, Mross, Sachdev & Senthil [arXiv:1403.3694] studied SC instability in (2+1)-d for NFL.

- Chung, IM, Raghu & Chakravarty [Phys. Rev. B 88, 045127 (2013)]
 - found Hatree-Fock soln of self-consistent gap eqn for a FS coupled to a transverse U(1) gauge field in (3+1)-d.

• We want to consider ISN scenario for $m \ge 1$.

[IM and S-S. Lee, in progress]

Superconducting Instability

Add generic 4-fermion terms to analyse SC instability:

$$S_{4f} = \mu^{d_v} \sum_{j,j'} \int \frac{d^{d+1}k \, d^{d+1}k_1 \, d^{d+1}k_2}{(2\pi)^{3d+3}} \\ \left[V_1 \left\{ \bar{\Psi}_j(k_1+k) \, \gamma_{d-m} \Psi_j(k_1) \right\} \left\{ \bar{\Psi}_{j'}(k_2-k) \, \gamma_{d-m} \Psi_{j'}(k_2) \right\} \right. \\ + V_2 \sum_{\mu=0}^{d-m-1} \left\{ \bar{\Psi}_j(k_1+k) \, \Gamma_{\mu} \Psi_j(k_1) \right\} \left\{ \bar{\Psi}_{j'}(k_2-k) \, \Gamma_{\mu} \Psi_{j'}(k_2) \right\} \\ + V_3 \sum_{t} \left\{ \bar{\Psi}_j(k_1+k) \, \sigma_t \Psi_j(k_1) \right\} \left\{ \bar{\Psi}_{j'}(k_2-k) \, \sigma_t \Psi_{j'}(k_2) \right\} \right]$$

$$(\sigma_t, \Gamma_\mu, \gamma_{d-m}) \in \{\mathbb{I}_{2\times 2}, \sigma_x, \sigma_y, \sigma_z\}$$

Some One-Loop Diagrams

Beta-Fns for Va's

• Scatterings in pairing channel enhanced by volume of FS $\sim (k_F)^{m/2}$.

• Effective coupling that dictates potential instability:

$$\tilde{V}_a = \tilde{k}_F^{m/2} V_a$$

• \tilde{V}_a marginal at co-dim d - m = 1.

• For d-m>1 \leftarrow no perturbative instability for sufficiently small $\epsilon = d_c - d$.

● When $d - m - 1 \le \epsilon \& d - d_c \sim \epsilon$ interaction plays an imp role to determine pairing instability.

Beta-Fns for d-m-1 $\leq \in \mathcal{C} d-d_c - \in$

Can cause usual BCS instability

$$\tilde{\beta}_{a} = \underbrace{-\epsilon \tilde{V}_{a} + \sum_{b,c} B_{abc} \tilde{V}_{b} \tilde{V}_{c}}_{+(1-\epsilon)\frac{u_{1} e_{eff} \tilde{V}_{a}}{N} + \frac{e_{eff}}{N} \sum_{b} A_{ab} \tilde{V}_{b}}$$

Epilogue

■ RG analysis for QFTs with FS scaling behaviour of NFL states in a controlled approx.

• m-dim FS with its co-dim extended to a generic value \leftarrow stable NFL fixed points identified using $\epsilon = d_c - d$ as perturbative parameter.

SC instability in such systems as a fn of dim & co-dim of FS.

• Key point $\leftarrow k_F$ enters as a dimensionful parameter unlike in relativistic QFT \leftarrow modify naive scaling arguments.

• Effective coupling constants - combinations of original coupling constants & $\mathbf{k}_{\mathbf{F}}$.

Thank you for your attention!