UV/IR Mixing In Non-Fermi Liquids ### **Ipsita Mandal** ### Collaborator Sung-Sik Lee (PI and McMaster University) #### Plan of the Talk - Prologue - Landau Fermi-Liquid Theory - Breakdown of FL Theory → Non-Fermi Liquids - Ising-Nematic QCP - Dimensional & Co-dimensional RG - Critical Dimension - Beta-Functions & Critical Exponents - Stable NFL Fixed Point - Superconducting Instability - Epilogue ### Landau Fermi-Liquid Theory [Landau (1951)]: A finite density of interacting fermions doesn't depend on specific microscopic dynamics of individual systems:- - **Ground state**: characterized by a sharp Fermi surface (FS) in momentum space - Low energy excitations: weakly interacting quasiparticles around FS $$(\omega = 0, \quad k_{\perp} \equiv k - k_F = 0)$$ $$G_R(\omega, \vec{k}) = \frac{Z}{\omega - v_F k_\perp + i \Gamma}$$ - **Q**uasiparticle lifetime diverges close to FS lacksquare Decay rate $\Gamma \sim \omega^2$ ### Breakdown of FL Theory #### **Goals** - Construct minimal field theories that capture universal low-energy physics. - Understand the dynamics in controlled ways. - Eventually come up with a systematic classification for NFL's. - Broadly we have 2 cases: Dynamics depends on FS dim (m) in addition to spacetime dim (d+1). Here we focus on m & d-m dependence for case 1. #### **Critical FS States** - Are there states with - a sharp FS - o no Landau quasiparticles? $$G_R(\omega, \vec{k}) \neq \frac{Z}{\omega - v_F (k - k_F)}$$ - d=1 Luttinger liquid - d>1 ~ Proposed realizations: QCPs associated with onset of order in metal (antiferromagnet, nematic) Spinon FS [U(1) spin-liquid] state of Mott-insulator Halperin-Lee-Read composite fermion liquid of ½-filled Landau level ### Example: High T_c SC ### **Example: Heavy Fermions** ### Killing the FS In such T=0 phase transition in metals, an entire FS may disappear/change discontinuosly. • If 2nd order/continuous, NFL guaranteed as at QCP, FS remains sharply defined even though there is no Landau quasiparticle. [Senthil (2008)] - Disappearance of FS through a continuous phase transition requires a critical fixed point : - $\mathbf{0} Z = 0$ - FS sharp ### How Can a FS Disappear Continuosly? One route **Z** vanishes continuously everywhere on the FS. [Brinkman and Rice (1970)] ### **Unusual Scaling Phenomenology** - 1 Calculational framework that replaces FL theory needed. - 2 QFT of metals low symmetry + extensive gapless modes need to be kept in low energy theories less well understood compared to relativistic QFTs. # Roughly Common Phase Diagram for many NFL ### "Natural" Assumptions NFL - Universal physics associated with QCP between A & B phases. Landau - Universal critical singularities - order parameter fluctuation for $A \rightleftharpoons B$ transition: Attempt to describe NFL as FS + gapless order parameter fluctuations ### Ising-Nematic QPT ■ From theoretical viewpoint ► Ising-nematic (ISN) QCP one of the simplest phase transitions in metals providing a remarkable strongly-coupled NFL with critical fluctuations of ISN order. QPT to nematic states with spontaneously broken point group symmetry order parameter is a real scalar boson with strong qtm fluctuations at QCP. ### Why is ISN QPT Important? • Many recent experiments noted presence of ISN order in the enigmatic normal state of cuprate SC's. YBa₂Cu₃O_y → Nernst signal anisotropy → ISN order sets at T=T* boundary between "pseudogap" & "strange metal" → need theory of QPT involving ISN order → will also play imp role in theory of strange metals. [Daou et al, Nature (London) 463, 519 (2010)] Sr₃Ru₂O₇ ⇐ Resistance anisotropies ⇐ spontaneous ISN ordering. [Borzi et al, Science 315, 214 (2007)] Pnictides ← Clear indications of ISN order driven by e⁻- e⁻ correlations. [Chuang et al, Science 327, 181 (2010)] ### Earlier Approaches to ISN QPT Earlier works relied on Hertz's perspective: e⁻'s integrated out, including those lying on FS, yielding a Landau-damped effective action for scalar order parameter Φ. [Oganesyan, Kivelson, Fradkin (2001); Lawler, Barci, Fernandez, Fradkin, Oxman (2006)] Successive integration of fermionic & bosonic d.o.f. dangerous integrating out gapless modes on FS give rise to non-analytic & singular effective interactions among bosons. A complete analysis of ISN should be based on a local QFT, providing a scheme for computing scaling dim of all perturbations at QCP. #### **RG Studies of NFLs** Essential to treat bosonic & fermionic excitations at equal footing - RG methods to unravel scaling str of the critical theory. [Lee (2009); Metlitski and Sachdev (2010); Mross, McGreevy, Liu and Senthil (2010); Dalidovich and Lee (2013); Sur and Lee (2013)] - Earlier works showed low-energy properties of FS qualitatively modified by coupling with gapless bosons: - → 3d ⇒ logarithmic corrections arise due to Yukawa coupling. [Holstein, Norton and Pincus (1973); Reizer (1989); Mahajan, Ramirez, Kachru and Raghu (2013)] - 2d ⇒ NFLs flow to strongly interacting fixed points at low energies. ### Ways to Obtain Perturbative NFLs Most natural attempt Enlarge flavour symmetry group extra flavours don't introduce qualitatively new element to the theory. ``` [Polchinski (1994); Altshuler, Ioffe and Millis (1994); Kim, Furusaki, Wen and Lee (1994); Kim, Lee and Wen (1995)] ``` Problem Infinite flavour limit not described by a mean-field theory due to large residual qtm fluctuations of FS. ``` [Lee (2009); Metlitski and Sachdev (2010)] ``` - Modify spacetime dim continuously to gain a controlled access to NFL states - Extend - FS dim [Chakravarty, Norton and Syljuasen (1995)] or - 2 FS co-dim [Senthil and Shankar (2009); Dalidovich and Lee (2013)] • Here we generalise the above extending both dim & co-dim. ### Dimension as a Tuning Parameter For d < upper critical dim d_c theory flows to interacting NFL at low energies. • For $d > d_c - expected$ to be described by FL. - Choice of regularization scheme for systematic RG in relativistic QFT: - Locality - Consistent with many symmetries - Our Dimensional Regularization (DR) scheme: [Locality broken in DR scheme of Senthil & Shankar (2009)] ### Two Patch Theory Fermi Sea Time-Reversal Invariance assumed #### Low energy limit - Fermions coupled with bosonwith mom tangential to FS - scatter tangentially Not true for m-dim FS with m > 1 k_F enters as adimensionful parameter ### Low Energy QFT RG very hard compared to relativistic QFT ### Significance of m for d < d_c d controls strength of qtm fluctuations & m controls extensiveness of gapless modes. • For $d < d_c$ • an emergent locality in mom space for m = 1, but not for m > 1. - For m = 1 \leftarrow observables local in mom space (e.g. Green's fns) can be extracted from local patches \leftarrow need not refer to global properties of FS \leftarrow (2+1)-d ISN QCP described by a stable NFL state slightly below $d_c = 5/2$. - [D. Dalidovich and S-S. Lee, Phys. Rev. B 88, 245106 (2013)] ### Role of "k_F" We devise DR extending both dim & co-dim - FS with m > 1 included naturally. [IM and S-S. Lee, Phys. Rev. B 92, 035141 (2015)] • We provide a controlled analysis showing how interactions + UV/IR mixing interplay to determine low-energy scalings in NFL's with general m. For m > 1 size of FS (k_F) modifies naive scaling based on patch description $-k_F$ becomes a 'naked scale'. #### Generic Fermi Surface - At a chosen point K^* on $FS: k_{d-m} \perp local S^m its magnitude measures deviation from <math>k_F$. - $L_{(k)} = (k_{d-m+1}, k_{d-m+2}, ..., k_d)$ tangential along the local S^m . ### Fermions on Antipodal Points #### Action 2 halves of m-dim FS coupled with one critical boson in (m+1)-space & one time dim: $$S = \sum_{s=\pm}^{N} \sum_{j=1}^{N} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \psi_{s,j}^{\dagger}(k) \left[ik_0 + sk_{d-m} + \vec{L}_{(k)}^2 + \mathcal{O}(\vec{L}_{(k)}^3) \right] \psi_{s,j}(k)$$ $$+ \frac{1}{2} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \left[k_0^2 + k_{d-m}^2 + \vec{L}_{(k)}^2 \right] \phi(-k) \phi(k)$$ $$+ \frac{e}{\sqrt{N}} \sum_{s=-1}^{N} \int \frac{d^{m+2}k \, d^{m+2}q}{(2\pi)^{2m+4}} \, \phi(q) \, \psi_{s,j}^{\dagger}(k+q) \, \psi_{s,j}(k)$$ #### FS in Terms of Dirac Fermions Interpret $|L_{(k)}|$ as a continuous flavour Each (m+2)-d spinor can be viewed as a (1+1)-d Dirac fermion $$\Psi_j(k) = \begin{pmatrix} \psi_{+,j}(k) \\ \psi_{-,j}^{\dagger}(-k) \end{pmatrix}$$ $$S = \sum_{j=1}^{N} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \overline{\Psi_{j}(k)} \left[ik_{0}\gamma_{0} + i\left(k_{d-m} + \vec{L}_{(k)}^{2}\right)\gamma_{1}\right] \Psi_{j}(k) \exp\left(\frac{\vec{L}_{(k)}^{2}}{k_{F}}\right)$$ $$+ \frac{1}{2} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \left[k_{0}^{2} + k_{d-m}^{2} + \vec{L}_{(k)}^{2}\right] \phi(-k) \phi(k)$$ $$+ \frac{ie}{\sqrt{N}} \sum_{j=1}^{N} \int \frac{d^{m+2}k d^{m+2}q}{(2\pi)^{2m+4}} \phi(q) \ \bar{\Psi}_{j}(k+q) \gamma_{1} \Psi_{j}(k) \qquad \text{UV cut-off}$$ ### Momentum Regularization along FS Compact FS approx by 2 sheets of non-compact FS with a momentum regularization suppressing modes far away from ±K*: • We keep dispersion parabolic but exp factor effectively makes FS size finite by damping $|\vec{L}_{(k)}| > k_F^{1/2}$ fermion modes. ### Theory in General Dimensions Add (d-m-1) spatial dim co-dimensions $$k_0 \to \vec{K} \equiv (k_0, k_1, \dots, k_{d-m-1})$$ $$\gamma_0 \to \vec{\Gamma} \equiv (\gamma_0, \gamma_1, \dots, \gamma_{d-m-1})$$ $$\gamma_1 (k_{d-m} + \vec{L}_{(k)}^2) \to \gamma_{d-m} \, \delta_k$$ $$\delta_k = k_{d-m} + \vec{L}_{(k)}^2$$ $$S = \sum_{j} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \overline{\Psi_{j}(k)} \left[i\vec{\Gamma} \cdot \vec{K} + i\gamma_{d-m} \, \delta_{k} \right] \Psi_{j}(k)$$ $$+ \frac{1}{2} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \left[|\vec{K}|^{2} + k_{d-m}^{2} + \vec{L}_{(k)}^{2} \right] \phi(-k)\phi(k)$$ $$+ \frac{ie}{\sqrt{N}} \sum_{j} \int \frac{d^{d+1}k \, d^{d+1}q}{(2\pi)^{2d+2}} \phi(q) \bar{\Psi}_{j}(k+q) \gamma_{d-m} \Psi_{j}(k)$$ ### A Physical Realization for d=3, m=1 $$S = \int \frac{d^4k}{(2\pi)^4} \left\{ \sum_{s=\pm} \sum_{j=\uparrow,\downarrow} \psi_{s,j}^{\dagger}(k) \left(ik_0 + sk_2 + k_3^2 \right) \psi_{s,j}(k) \right\}$$ $$-k_1 \left(\psi_{+,\uparrow}^{\dagger}(k) \psi_{-,\uparrow}^{\dagger}(-k) + \psi_{+,\downarrow}^{\dagger}(k) \psi_{-,\downarrow}^{\dagger}(-k) + h.c. \right)$$ Turn on p-wave SC order parameter gap out the cylindrical FS except for a line node ### Applying DR - There is an implicit UV cut-off Λ for **K** with $k << \Lambda << k_F$. - Λ \bullet sets the largest energy fermions can have \bot FS; k_F \bullet sets FS size. - We consider RG flow by changing Λ & requiring low-energy observables independent of it. - To access perturbative NFL, we fix m & tune d towards a critical dim d_c at which qtm corrections diverge logarithmically in Λ . #### **Critical Dimension** • Naïve critical dim \leftarrow scaling dim of e = 0: $$d_c' = \frac{4+m}{2}$$ • True critical dim • one-loop fermion self-energy $\Sigma_{\mathbf{l}}(\mathbf{q})$ blows up logarithmically : $$d_c = m + \frac{3}{m+1}$$ ### One-Loop Results for $d = d_c - \epsilon$ & control parameter in loop expansions $$k_F = \mu \, \tilde{k}_F$$ $$\tilde{\beta} \equiv \frac{\partial e_{eff}}{\partial \ln \mu} = \frac{(m+1)(u_1 e_{eff} - N\epsilon) e_{eff}}{3N - (m+1)u_1 e_{eff}} = 0$$ #### **Interacting Fixed Point** $$e_{eff}^* = \frac{N\epsilon}{u_1}$$ $$z^* = 1 + \frac{(m+1)\epsilon}{3}$$ $$\eta_{\psi}^* = \eta_{\phi}^* = -\frac{\epsilon}{2}$$ Dynamical critical exponent Anomalous dimensions for fermions & boson #### Stable NFL Fixed Point $$\tilde{\beta} = -\frac{(m+1)\epsilon}{3} e_{eff} + \frac{(m+1)\{3 - (m+1)\epsilon\} u_1}{9N} e_{eff}^2 + \mathcal{O}(e_{eff}^3)$$ ### Two-point Fns at IR Fixed Point Using RG eqns • $$\langle \phi(-k)\phi(k)\rangle = \frac{1}{(\vec{L}_{(k)}^2)^{2\Delta_{\phi}}} f_D\left(\frac{|\vec{K}|^{1/z^*}}{\vec{L}_{(k)}^2}, \frac{k_{d-m}}{k_F}, \frac{\vec{L}_{(k)}^2}{k_F}\right)$$ $$\left\langle \psi(k)\bar{\psi}(k)\right\rangle = \frac{1}{|\delta_k|^{2\Delta_{\psi}}} f_G\left(\frac{|\vec{K}|^{1/z^*}}{\delta_k}, \frac{\delta_k}{k_F}, \frac{\vec{L}_{(k)}^2}{k_F}\right)$$ One-loop order • One-loop order $$\bullet$$ $$f_D(x, y, z) = \left[1 + \beta_d \, \tilde{e}^{\frac{3}{m+1}} x^{\frac{3}{m+1}} z^{-\frac{3(m-1)}{2(m+1)}}\right]^{-1}$$ $$f_G(x, y, z) = -i \left[C \, (\vec{\Gamma} \cdot \hat{\vec{K}}) \, x + \gamma_{d-m}\right]^{-1}$$ ### Two-Loop Results: Boson Self-Energy • For m > 1 $$\Pi_2(q) \sim \frac{e_{eff}^{\frac{m}{m+1}}}{k_F^{\frac{m-1}{2(m+1)}}} \frac{|\vec{Q}|^{\frac{m}{m+1}}}{N|\vec{L}_{(q)}|} \Pi_1(q)$$ ★ k_F suppressed no correction at 2-loop • For m = 1 • UV-finite, gives a finite correction • $\Pi_2(q) \sim \left(\frac{e^2}{N|L_{(q)}|}\right) e_{eff}$ ### Two-Loop Results: Fermion Self-Energy - For m > 1 $\Sigma_2(q)$ ~ $k_F-suppressed$ - no correction at 2-loop • For $m = 1 \leftarrow UV$ -divergent ### Pairing Instabilities of Critical FS States Regular FL unstable to arbitrary weak interaction in BCS channel leading to Cooper pairing How about a critical FS? Metlitski, Mross, Sachdev & Senthil [arXiv:1403.3694] studied SC instability in (2+1)-d for NFL. - Chung, IM, Raghu & Chakravarty [Phys. Rev. B 88, 045127 (2013)] - found Hatree-Fock soln of self-consistent gap eqn for a FS coupled to a transverse U(1) gauge field in (3+1)-d. • We want to consider ISN scenario for $m \ge 1$. [IM and S-S. Lee, in progress] ### Superconducting Instability Add generic 4-fermion terms to analyse SC instability: $$S_{4f} = \mu^{d_v} \sum_{j,j'} \int \frac{d^{d+1}k \, d^{d+1}k_1 \, d^{d+1}k_2}{(2\pi)^{3d+3}} \\ \left[V_1 \left\{ \bar{\Psi}_j(k_1+k) \, \gamma_{d-m} \Psi_j(k_1) \right\} \left\{ \bar{\Psi}_{j'}(k_2-k) \, \gamma_{d-m} \Psi_{j'}(k_2) \right\} \right. \\ + V_2 \sum_{\mu=0}^{d-m-1} \left\{ \bar{\Psi}_j(k_1+k) \, \Gamma_{\mu} \Psi_j(k_1) \right\} \left\{ \bar{\Psi}_{j'}(k_2-k) \, \Gamma_{\mu} \Psi_{j'}(k_2) \right\} \\ + V_3 \sum_{t} \left\{ \bar{\Psi}_j(k_1+k) \, \sigma_t \Psi_j(k_1) \right\} \left\{ \bar{\Psi}_{j'}(k_2-k) \, \sigma_t \Psi_{j'}(k_2) \right\} \right]$$ $$(\sigma_t, \Gamma_\mu, \gamma_{d-m}) \in \{\mathbb{I}_{2\times 2}, \sigma_x, \sigma_y, \sigma_z\}$$ ### Some One-Loop Diagrams ### Beta-Fns for Va's • Scatterings in pairing channel enhanced by volume of FS $\sim (k_F)^{m/2}$. • Effective coupling that dictates potential instability: $$\tilde{V}_a = \tilde{k}_F^{m/2} V_a$$ • \tilde{V}_a marginal at co-dim d - m = 1. • For d-m>1 \leftarrow no perturbative instability for sufficiently small $\epsilon = d_c - d$. ● When $d - m - 1 \le \epsilon \& d - d_c \sim \epsilon$ interaction plays an imp role to determine pairing instability. ### Beta-Fns for d-m-1 $\leq \in \mathcal{C} d-d_c - \in$ Can cause usual BCS instability $$\tilde{\beta}_{a} = \underbrace{-\epsilon \tilde{V}_{a} + \sum_{b,c} B_{abc} \tilde{V}_{b} \tilde{V}_{c}}_{+(1-\epsilon)\frac{u_{1} e_{eff} \tilde{V}_{a}}{N} + \frac{e_{eff}}{N} \sum_{b} A_{ab} \tilde{V}_{b}}$$ ### **Epilogue** ■ RG analysis for QFTs with FS scaling behaviour of NFL states in a controlled approx. • m-dim FS with its co-dim extended to a generic value \leftarrow stable NFL fixed points identified using $\epsilon = d_c - d$ as perturbative parameter. SC instability in such systems as a fn of dim & co-dim of FS. • Key point $\leftarrow k_F$ enters as a dimensionful parameter unlike in relativistic QFT \leftarrow modify naive scaling arguments. • Effective coupling constants - combinations of original coupling constants & $\mathbf{k}_{\mathbf{F}}$. ## Thank you for your attention!