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INTRODUCTION

The dielectric properties of biological cells and tissues are

very remarkable. They typically display extremely high

dielectric constants at low frequencies, falling off in more

or less distinct steps as the excitation frequency is in-

creased. Their frequency dependence permits identifica-

tion and investigation of a number of completely different

underlying mechanisms, and hence, dielectric studies of

biomaterials have long been important in electrophysiol-

ogy and biophysics. As an example, Höber (1, 2) deduced

from dielectric studies that erythrocytes are composed of

a poorly conducting envelope enclosing a conducting

electrolyte, and in 1925, Fricke (3) derived a value of 3.3

nm for the thickness of this envelope. Hence their bioim-

pedance research provided early indication of the ultrathin

cell membrane.

As we shall see later, interfaces play a significant role in

the frequency dependence of complex materials, particu-

larly at audio and subaudio frequencies.

RELAXATION AND DISPERSION

Electric polarization may be defined as the electric field-

induced disturbance of the charge distribution in a region

(4). This polarization does not occur instantaneously, and

the associated time constant is called the relaxation time t.

The relaxation time for a system can be measured by

applying a step function as excitation and then monitoring

the relaxation process toward a new equilibrium in the

time domain. The relaxation of electrons and small dipolar

molecules is a relatively fast process, with relaxation times

in the pico- and nanosecond range, while interfacial polar-

ization may give relaxation times of the order of seconds.

Dielectric dispersion is the corresponding frequency

dependence of permittivity. In Fig. 1, the real part of the

relative permittivity drops off in distinct steps as the fre-

quency increases. A dispersion will then be the transition

from one level to another, where the median value between

these two levels will occur at the characteristic frequency

fc = 1/2pt. In biological tissue, these dispersions may be

more or less discernible.

At first glance the electrical properties of tissues and

cell suspensions could be expressed by logarithmic fre-

quency dependence over the whole frequency range from a

few Hertz to many gigaHertz. This sort of behavior is not

unexpected for fractal systems, and tissues would certainly

qualify on that account. Schwan (5) measured tissue and

cell suspension electrical properties over a much broader

frequency range, which had become available for such

purposes after World War II. He observed that the prop-

erties are characterized by three major dispersions, which

he termed a-b-g and that different mechanisms account for

low frequency (a), radio frequency (b), and microwave

frequency (g) data. Finally, additional smaller magnitude

fine structure effects lead to further differentiation since

low-frequency, radio frequency, and microwave effects in

turn exhibit multiple relaxational behavior.

The radio frequency (b) dispersion was first investi-

gated and recognized as a Maxwell-Wagner relaxation

caused by cell membranes (6). A large-magnitude, low-

frequency dispersion was observed by Schwan with

muscle tissue (7) and is related in part at least to the tubu-

lar system (8). Colloidal particle suspensions also display

this phenomenon (9, 10). It is caused by the counterion
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atmosphere surrounding the charged particle surface. A

first theory of this counterion relaxation was published by

Schwarz (11).

Rajewsky and Schwan (12) noted a third dispersion at

microwave frequencies. It is caused by abundant tissue

water. Several effects of smaller magnitude were later

added by Schwan (13). Membrane relaxation is anticipated

from the Hodgkin-Huxley membrane model (14, 15) and

adds to the a-effects caused by the sarcoplasmic reticulum,

gap junctions, and counterion relaxation. A number of b-

effects of small magnitude occur at the tail of the b-

dispersion. These effects are caused by proteins, protein-

bound water (d-dispersion), and cell organelles such as

mitochondria (16). A second Maxwell-Wagner dispersion

is characteristic of suspended particles surrounded by a

shell and usually of small magnitude (17). It occurs at

frequencies well above those of the main b-dispersion.

The maximum dispersion magnitudes for tissue given

by Schwan (18), shown in Table 1, agree well with the

useful control equation, which gives the relationship bet-

ween De, t, and Ds:

De0 ¼ tDs0 ¼ Ds0

oc

ð1Þ

where fc = oc/2p. The conductivity in this equation does

not account for dc conductivity, only for dielectric loss.

The possible mechanisms behind these dispersions will be

discussed for different systems and tissues later in this

article.

In the simplest case of a medium with a single relax-

ation mechanism (Debye type (19)), the system will relax

toward a new equilibrium as a first-order process, charac-

terized by a relaxation time t:

DðtÞ ¼ D1 þ D0 � D1
1 � e�t=t

ð2Þ

Eq. 2 and Fig. 2 shows how the electric flux density in the

material increases from one value (D1) to another (D0)

after a step in the applied voltage at t = 0. The subscripts

refer to frequency, so that D1 is the flux density at

t = 0 + , representing the apparently instantaneous polar-

ization of the medium when the voltage step is applied

(high frequency), and D0 is the steady state (or static)

value obtained after a time t >> t (low frequency).

By Laplace transforming Eq. 2 it is possible to obtain

the response in the frequency domain. With the real part

of the permittivity e0 = D/E and C = e0A/d (E is electric

field strength, C is capacitance, A is the cross section of

the medium, and d is its thickness), it is possible to show

that

�eðoÞ ¼ e01 þ De0

1 þ jot
where De0 ¼ e0S � e01 ð3Þ

CðoÞ ¼ C1 þ DC

1 þ jot
where DC ¼ C0�C1 ð4Þ

The subscript s for ‘‘static’’ is used, since e0 is reserved

for the permittivity of vacuum. Hence, as the frequency

increases, the permittivity (and capacitance) drops from

one stable value es to another e1 over roughly one decade

in frequency. The permittivity is halfway between the two

limiting values at the characteristic frequency fc. A drop

in permittivity is associated with an increase in conduc-

tivity according to the general Kramers-Kronig relation:

s1 � ss ¼ es � e1
t

ð5Þ

Fig. 1 Idealised dispersion regions for tissue. Dc conductance

contribution has been subtracted from the er’’ values shown.

Table 1 Maximum dispersion magnitudes

a b g

Der 5� 106 105 75

Ds 10�2 1 80

Fig. 2 Electric flux density in the capacitor dielectric with an

applied voltage step.
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In most real systems, and particularly in complex sys-

tems like biomaterials, the transition from one permittivity

value to another will occur over a frequency band that is

broader than for this idealized system. This is normally

interpreted as being due to a distribution of relaxation

times, e.g., because of the distribution of cell sizes in the

studied biomaterial. Studying the material over a broad

frequency range may also reveal more than one dispersion

if several relaxation mechanisms are involved and their

time constants are sufficiently different.

Maxwell-Wagner Effects

The Maxwell-Wagner effect is an interfacial relaxation

process occurring in all systems where the electric current

must pass an interface between two different dielectrics.

This is often illustrated by means of a plate capacitor with

two different homogenous materials inserted as slabs in

series between the capacitor plates. Fig. 3 shows the

capacitor with a simple dielectric model.

If the resultant parallel capacitance Cp is calculated, we

get

Cp ¼ ðC1R2
1 þ C2R2

2Þ=ðR1 þ R2Þ2
f ! 0

Cp ¼ C1C2=ðC1 þ C2Þ f ! 1 ð6Þ

The capacitance values converge both at low and high

frequencies, and the capacitance at low frequency is higher

than that at high frequency. Thus with the parallel model

of two slabs in series, we have a classical Debye dispersion

even without any dipole relaxation in the dielectric. The

dispersion is due to a conductance in parallel with a ca-

pacitance for each dielectric, so that the interface can be

charged by the conductivity. In an interface without free

charges, the dielectric displacement D is continuous across

the interface according to Poisson’s equation.

Since D ¼ eE, this indicates that the electric field

strength will be smaller on the high-permittivity side. The

ratio of current densities on sides 1 and 2 will then be

equal to 1:

J1

J2

¼ s1E1

s2E2

¼ s1e2

s2e1

ð7Þ

In this special case where s1e2 = s2e1, the interface has

zero density of free charges. However, if s1e2 6¼ s2e1,

the difference in current densities implies that the inter-

face is actually charged. It will also be charged if s1 = 0

and s2 > 0.

Maxwell (20) derived an analytical solution for the

conductivity s of a dilute suspension of spherical

particles:

s� s2

sþ 2s2
¼ pðs1 � s2Þ

s1 þ 2s2
ð8Þ

where p is the volume fraction of spheres, subscript 1 is

for the particle and 2 for the medium. It was extended by

Wagner (21) to ac cases and by Fricke (22, 23) to the

case of oblate or prolate spheroids (Maxwell-Fricke

equation):

�s� �s2

�sþ g�s2

¼ pð�s1 � �s2Þ
�s1 þ g�s2

ð9Þ

where g is a shape factor equal to 2 for spheres and 1 for

cylinders normal to the field.

Maxwell’s equation is rigorous only for dilute con-

centrations, and Hanai (24) extended the theory for high

volume fractions. The difference between the values pre-

dicted by the theories of Maxwell and Hanai is not

pronounced, at least for the case of poorly conducting

particles; e.g., for a volume concentration of p = 0.5, the

suspension conductivities differ by only 11%. Experi-

mental data agree with Maxwell (25). For more details, see

Schwan and Takashima (26).

In order to better model biological systems such as

blood or cell suspensions, this theory has been modified to

apply to, e.g., dilute suspensions of membrane covered

spheres, where membrane thickness d is much less than

large sphere radius a. Fricke (27) gives the expression for

the complex conductivity of one membrane covered

sphere:

�s1 ¼ �si � ð2d=aÞð�si � �sshÞ
ð1 þ d=aÞð�si � �sshÞ=�ssh

ð10Þ

where subscript i is for the sphere material and sh is for the

sheath membrane. This equation is inserted into the Max-

well-Fricke equation to yield the total expression for a di-

lute suspension of membrane-covered spheres.
Fig. 3 Equivalent circuit for the Maxwell-Wagner effect in a

simple dielectric model.
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Pauly and Schwan (5, 17, 28) adapted these equations

to the case of a cell suspension with cell membranes do-

minated by a membrane capacitance Cm:

De0 ¼ 9paCm=4e0 ð11Þ

ss ¼ s2ð1 � 3p=2Þ ð12Þ

t ¼ aCmð1=2s2 þ 1=s1Þ ð13Þ

where subscript 1 is for the particle and 2 for the medium.

These Pauly-Schwan equations correspond to a large dis-

persion at radio frequencies due to cell membrane char-

ging effects and a small dispersion at higher frequencies

due to the different conductivities of the cytoplasm and the

extracellular liquids. The equations also assume that the

membrane conductance is zero, and they apply for small

values of p. For equations including membrane conduc-

tance, see Schwan (5). Schwan and Morowitz (29) ex-

tended the theory to small vesicles of radii 100 nm. With

even smaller particles, the two dispersion regions overlap

in frequency (30).

Dipolar Relaxation Effects

Some molecules are polar, e.g., water and many proteins.

Permanent dipoles will be randomly oriented, but if an

external electric field is applied, they will reorient sta-

tistically. Induced dipoles will have the direction of the

applied field. The rotational force exerted by the field on a

permanent dipole is defined by the torque:

t ¼ qL � E ð14Þ

where q is the charge, L is charge separation, and E is the

electric field strength.

The relation between the polarization and the molecu-

lar structure of a nonpolar medium is given by the Clau-

sius-Mosotti equation:

er � 1

er þ 2
¼ Na

3e0

ð15Þ

where N is the volume density of atoms or molecules,

and a is the polarizability. Debye (19) derived an equation

where also the contribution from polar molecules is

included:

er � 1

er þ 2
¼ NA

3vm

aþ p2

3kT

� �
ð16Þ

where vm is the molar volume, p is the dipole moment, and

NA is Avogadro’s constant. The kT factor is due to the

statistical distribution of polar molecules causing the

orientational polarization. Intermolecular interactions are

neglected in Eq. 16, so it is in best agreement with very

diluted systems such as gases. Kirkwood (31), Onsager

(32), and others later extended the theory to more con-

centrated systems.

The orientation of polar molecules in an applied electric

field requires time and, hence, causes a dispersion of the

type given in Eq. 3, which is valid for any one time cons-

tant relaxation mechanism. However, a distribution of

time constants will often be found due to molecular inho-

mogeneity and nonspherical shape. The time constant is

proportional to the cube of the radius of the molecules, and

typical characteristic frequencies are, e.g., 15–20 GHz for

water and 400–500 MHz for simple amino acids ( j ).

Proteins add another dispersion typically centered in the

1–10 MHz range. It is of smaller magnitude than the b-

dispersion (26).

Counterion Relaxation Effects

Schwartz (11) used theories of electric double layers to

describe the measured a-dispersion of particle suspen-

sions. He considered the case where counterions are free to

move laterally but not transversally on the particle surface.

When an external field is applied, the system will be

polarized since the counterions will be slightly displaced

relative to the particle. The re-establishment of the original

counterion atmosphere after the external field is switched

off will be diffusion controlled, and the corresponding

time constant according to Schwartz’ theory is

t ¼ a2e

2mkT
ð17Þ

where a is the radius of the sphere, e is the elementary

charge, and m is counterion mobility. This will lead to a

permittivity dispersion.

Improvement of the Schwartz’ theory, e.g., to also ac-

count for diffusion of ions in the bulk solution near the

surface, has been presented in a large number of articles

(see e.g., the review by Mandel and Odijk (33)). A more

detailed discussion of this work is given elsewhere in this

encyclopedia.

Although Schwartz’ theory has obvious limitations, it is

simple to use and will in many cases provide an acceptable

estimate of what to expect from dielectric measurements.

As an example, we used Schwartz’ theory to analyze data

from four-electrode measurements on 6-mm-thick micro-

porous polycarbonate membranes in electrolyte solution

(34). The membranes had 3�108 cylindrical pores per

cm2 with a pore diameter of 100 nm. Takashima had ear-

lier modified Schwartz’ equations to apply to a suspension

of long cylinders subject to an external field along their

major axis (35):

D�e ¼ e2qsa
2

bkT

9pp

2ð1 þ pÞ2

1

1 þ jot
if a >> b ð18Þ

2646 Interface Phenomena and Dielectric Properties of Biological Tissue



where qs is the surface density of charged groups, a and b

are cylinder length and radius, respectively, and p is the

volume fraction of cylinders. The corresponding relaxa-

tion time t is given by the counterion mobility m:

t ¼ ða2 þ b2Þe
2mkT

� a2e

2mkT
ð19Þ

The approximation in Eq. 19 is valid if a >> b. Fig. 4

shows the measured dispersion together with the calcu-

lated real and imaginary parts from Eq. 18. Any measured

dielectric loss is not plotted in the figure, as it was totally

hidden in the much greater background conductance of

the KCl solution used in the experiment.

In the calculation of the counterion mobility m, a min-

imum distance of 0.51 nm between counterion and surface

charge and an effective relative permittivity of 22 were

used in order to fit the calculated curves to the measured

data. It is concluded in the article that these values seem

sensible and are in agreement with Pethig (36), who re-

ports that permittivity values are expected to drop rapidly

at distances <0.6 nm.

CELLS AND TISSUE

Cell suspensions will typically exhibit a significant b-dis-

persion in the radio frequency range. This is due to the

Maxwell-Wagner effect at the interface between the intra-

or extracellular solution and the phospholipid membrane

(26, 37). In addition, the water molecules will cause a

g-dispersion, and any proteins or other macromolecules

will produce dispersions at frequencies ranging from the

a- through the g-range, depending on the size and charge

of the molecules. Water bound to the protein will also

cause a d-dispersion. The b-dispersion exhibited by the

proteins are of much smaller magnitude than that caused

by the cell membranes, and the characteristic frequency is

typically somewhat higher. The protein relaxation will

hence typically appear as a small tail to the large cell mem-

brane b-dispersion. Contribution to this tail may also come

from the dispersion of organelles, which because of their

smaller size, have a higher characteristic frequency than

the main cell membrane.

Cell suspensions will also display a large a-dispersion

because of counterion relaxation on the cell surface. How-

ever, whole blood does curiously not display any a-dis-

persion (38, 39), whereas cell ghosts do (40). Many cells

also possess channels or tubular systems such as muscle

cells. Fatt (41) argued that the measured a-dispersion of

muscle cells originates from polarization of the entrance

of these channel systems. This was discussed by Foster

and Schwan (28), who concluded that probably both the

polarization of the channel system and counterion polar-

ization at the cell surface were responsible for the a-

dispersion.

Tissue is a highly inhomogenuous material, and it is

obvious that interfacial processes play an important role in

the electrical properties of tissue. It is also generally an

Fig. 4 Dielectric dispersion of a microporous polycarbonate

membrane in electrolyte solution. (From Ref. 34.)

Fig. 5 Anisotropy of relative permittivity and conductivity of

dog skeletal muscle. (Redrawn from Ref. 42.)
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anisotropic medium because of the orientation of cells,

macromembranes, and organs.

Epstein and Foster (42) measured on dog excised skel-

etal muscle. From the results in Fig. 5, the low-frequency

conductance ratio between transversal and longitudinal di-

rections is about 1:8. The conductance is also less fre-

quency dependent in the longitudinal direction, indicating

that it is probably dominated by direct current paths with

few membranes. As mentioned above, the a-dispersion of

muscle tissue is probably due to a combination of counter-

ion relaxation and polarization of the sarcotubular mem-

brane system. Gap junctions can also produce an a-dis-

persion in some tissues, e.g., in porcine liver at about 7 Hz,

which vanishes completely when the gap junctions close

(43). The very apparent b-dispersion in the transversal

measurements is most likely of the interfacial Maxwell-

Wagner type. A number of studies have also been carried

out on postmortem changes in muscle and other tissues,

with possible applications ranging from meat quality as-

sessment to organ state evaluation in transplantations (44–

48). Relating electrical measurements to knowledge about

the physiological processes occurring after excision is very

useful and has added to the understanding of the mechan-

isms behind the dielectric dispersions.

Human skin is another example where bioimpedance

measurements have proved to be of direct practical value.

Knowledge about the dielectric properties of skin is es-

sential when producing skin electrodes, whether it is for

ECG or, e.g., defibrillation. A number of studies have also

been dedicated to the possible use of skin impedance

measurements for diagnostic purposes such as skin hy-

dration measurements or the detection of skin reactions or

diseases (49–55).

The permittivity and resistivity of skin is shown in

Fig. 6 (56). The uppermost, dead layer of the skin, the stra-

tum corneum, is separated from the viable part of the skin

in this figure, because the stratum corneum has electrical

properties that differ greatly from that of viable skin. The

stratum corneum is only about 15 mm thick on most skin

sites, but nevertheless totally dominates the measured skin

impedance at low frequencies with its resistivity, which is

about four orders of magnitude higher than that of the

viable skin layers. Hence, for typical skin impedance

measurements, the stratum corneum will dominate in the

measurements up to a few kilohertz, and at higher fre-

quencies, the influence from viable skin will be significant

(57). The dc conductance of skin is partly due to the

electrolyte solution (sweat) in the sweat ducts and partly to

free ions in the skin (58, 59). The stratum corneum dis-

plays a very broad a-dispersion, which is probably due

to macromolecules and counterions on very diverse cell

sizes and shapes (see Fig. 6). It also shows a pronounced b-

dispersion, which would be expected since the stratum

corneum consists mainly of compressed, keratinized cell

membranes. Viable skin has electrical properties those

resembles that of other living tissues and hence usually

displays more separated a- and b-dispersions (54). The

interface between the stratum corneum and the viable skin

will also give rise to a Maxwell-Wagner type of dispersion

in the b-range.

DATA AND MODELS

The choice of how to present bioimpedance data is most

crucial. Presented as material constants, such as complex

permittivity in a Cole-Cole plot, the impression and even

interpretation may be entirely different from when the data

are presented, let’s say, as conductance and susceptance in

a Bode plot. The way of presentation should hence always

be chosen with great care, and data should preferably be

presented more than one way before any conclusions are

drawn.

The most fundamental way of presenting impedance

data from measurements at one single frequency is accord-

ing to

Z ¼ R � jX or Y ¼ G þ jB ð20Þ

or alternatively as, e.g., complex permittivity or conduc-

tivity if the geometry is known. Even at this simple level,

the choice is decisive, since the impedance values are

linked to the situation where conduction of free ions and

electrical polarization physically occurs in series, while

the admittance values are linked to a parallel model. Hence

resistance R is not the inverse of conductance G, and

reactance X is not the inverse of susceptance B, and by

choosing either of the two expressions in Eq. 20, a physical

model of the processes involved is inevitably selected at

the same time.
Fig. 6 Average resitivities and relative permittivities in the

stratum corneum and viable skin. (Redrawn from Ref. 56.)
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It is customary in the physical sciences to regard di-

electrica as materials placed between the plates of a capa-

citor and thus subject to an electric field. This implies that

conductance and capacitance physically are in parallel,

and it is natural to present the electrical properties in terms

of conductivity s’ and permittivity e’. As a matter of fact,

there are no corresponding terms in use for the volume-

specific quantities of R and X. The term ‘‘resistivity’’ is

commonly defined as the quantity 1/s’, which is different

from the quantity R per volume unit. Moreover, many

fluids have frequency-independent properties s’ and e’
over a very broad frequency range, e.g., electrolytes.

Thus, their quantities R and X per volume unit change

with frequency in a manner that hides the simple un-

derlying mechanism responsible for the frequency inde-

pendence of e’ and s’ and display a relaxation frequency

that changes with salt concentration and has no physical

significance.

In the presence of one relaxation process, the electrical

properties can be represented by either a parallel G-C net-

work in series with a resistor or a capacitor or a series R-C

network parallel to a C or G, depending on whether one

prefers to get a semicircle either in the admittance and

impedance plane or in the dielectric plane. Thus suspen-

sions of spherical cells of fairly uniform size are well pres-

ented by a single relaxation time (5), and a semicircle in

the admittance plane is proper since the parallel compo-

nent is the medium’s electrolyte and its capacitance can be

neglected over most of the frequency range (except at very

high frequencies). When the cells deviate from the spher-

ical shape, the agreement is slightly broadened since a

spectrum of time constants becomes apparent.

Significant deviation from one time constant may re-

quire a second relaxation process. See e.g., Fricke et al.

(60), where the particle axial ratio 1:4 suggests two time

constants that differ by the same ratio. Better agreement

with biological systems has often been found by incorpo-

rating elements with a frequency-independent phase angle,

so-called constant phase elements (CPE). These CPEs can

be interpreted as being due to a distribution of relaxation

time constants, e.g., because of differences in cell size

and shape, and it has been shown that almost any loga-

rithmically symmetrical distribution of time constants will

produce an apparent constant phase angle element (28).

Hence the high-frequency data on liver presented by Stoy et

al. (16) can be modeled by a constant phase element or in a

more explanatory way by two relaxation terms representing

total cell and mitochondrial compartments.

A constant phase admittance can be obtained by giving

the conductance and susceptance the following frequency

dependence:

Gcpe ¼ Go¼1om and Bcpe ¼ Bo¼1om ð21Þ

According to Fricke’s law (61) there is a correlation

between the frequency exponent m and the phase angle j
in many electrolytic systems. Schwan (18) published elec-

trode data in the frequency range 20 Hz to 200 kHz and

noticed m to vary with frequency. Howevere, it can be

shown that Fricke’s law is not in agreement with the Kra-

mers-Kronig transforms if m is frequency dependent (62).

An empirical equation for impedance was proposed by

Cole in 1940 (63) and for complex permittivity by Cole

and Cole in 1941 (64). The impedance version is shown in

Eq. 22, and the corresponding Cole plot in the impedance

plane is shown in Fig. 7.

Z ¼ R1 þ R0 � R1
1 þ ð jotÞa ð22Þ

The subscripts for R refer to frequency, t is a time

constant, e.g., the mean relaxation time in a distribution of

time constants, and a(p/2) is the constant phase angle. The

constant 1�a may also be viewed as describing the width

of the distribution of time constants. Because of their sim-

plicity, the Cole- and Cole-Cole models have been used

extensively in the literature. It should be noted that a cir-

cular arc locus is not proof of any accordance with Fricke’s

law or the Cole equation. Data should be checked for

Fricke compatibility. This, and the use of models and data

presentation in general is broadly covered in Grimnes and

Martinsen (4).

DISPERSION AND ELECTROROTATION

Particles suspended in a liquid may experience a torque in

a rotating E-field. A dipole is induced in the particle, and

since this polarization process is not immediate, the

induced dipole will lag the external field and a frequency-

dependent torque will exist. This torque is dependent on a

relaxation time constant identical to the time constant in

the theory for b-dispersion (65), and is given by (subscript

1 is for the particle and 2 for the medium):

G ¼ �4pa3e2rE2U00 ð23Þ

Fig. 7 Cole plot in the impedance plane.
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where U@ is the imaginary part of the Clausius-Mossotti

factor:

U ¼ �e1 � �e2

�e1 þ 2�e2

¼ �s1 � �s2

�s1 þ 2�s2

ð24Þ

Hence, a torque will exist if U@ 6¼ 0.

Electrorotation of biological cells at radio frequencies

produce results that are consistent with those obtained

with dielectric spectroscopy. However, Arnold et al. (66)

reported on a low frequency peak in the rotation spectrum

of latex particles in addition to the expected Maxwell-

Wagner related peak in the upper kilohertz range (Fig. 8).

Under the assumptions that this is due to dispersive

behavior of the particle itself and that the frequency is so

low that only the real part of the medium conductivity has

to be considered, they find that U@ is given by

U00 ¼ 3s2Ds1ot

ðs1t þ 2s2Þ2 þ ðotÞ2ðs1 þ s1t þ st2Þ2
ð25Þ

where the term s1t describes the low-frequency limit of the

particle conductivity, and Ds1 is the increment (usually

positive) in conductivity due to the dispersion.

However Eq. 25 predicts a counterfield rotation in case

of the usual type of dispersion where the conductivity in-

creases with frequency (Ds1 > 0), whereas the measure-

ments gave a cofield rotation peak. Arnold et al. (66) sug-

gest two alternative explanations for this behavior. Firstly

they point out that the inertia present in the dielectric

because of the effective mass of the moving particle, could

give such a negative dispersion. They do not sustain this

theory, however, since it would predict dispersion at a

frequency about three orders of magnitude higher than the

experimental results indicate. Instead they present a pos-

sible explanation, which will not be predicted by Eq. 25

since the permittivity e2 of the medium was assumed to be

frequency independent. The ionic double layer of coun-

terions attracted to charges groups on the particle surface

will change the effective permittivity of the medium next

to the particle. When the particle rotates, only the closest

adsorbed ions, i.e., the part of the diffuse double layer

situated inside the shear plane, will move with the particle.

This gives a qualitative understanding that dielectric spec-

troscopy will give results reflecting particle properties as

seen from the outside of the double layer, whereas particle

rotation measurements will reflect the properties of the

particle with closely adsorbed ions only. Hence, the coun-

terion relaxation effects and the spatial changes in per-

mittivity in the diffuse double layer must be taken into

account when calculating particle rotation.

Zhou et al. (67) reported the same anomalous low fre-

quency rotation peak in their measurements on polysty-

rene beads. They give the following differential equation

describing the displacement of counterions in the inner

double layer caused by an applied field Ee jot:

dðdqÞ
dt

þ Ks

r
þ s2

� �
dq

e2

¼ Ks

r
E ð26Þ

where Ks is the surface conductivity of the equilibrium

double layer. The resulting induced dipole moment has

magnitude of the order r3dq, where r is particle radius and

dq is the change in charge per unit area of the double layer

caused by the external field. This induced moment goes

through a dispersion and decreases with increasing fre-

quency about a characteristic frequency fc1 given by

fc1 ¼ 1

2p
1 þ Ks

s2r

� �
e2

s2

�
ð27Þ

Since the induced dipole moment decreases with fre-

quency, it will result in a counterfield electrorotaion peak

centered around fc1. For the system of 6-mm polystyrene

beads in a 1 mS/m medium used by Zhou et al. (67), fc1 is

found to be of the order 450 kHz.

Zhou et al. (67) further point out that the initial rapid

displacement of counterions near to the surface of the

particle is counteracted by changes in both counterion and

co-ion densities beyond the electrical double layer. The

steady state condition is thus approached with a charac-

teristic time-constant equal to that required for an ion to

diffuse through a distance of the order of the particle ra-

dius. This process will give a characteristic frequency:

fc2 ¼ 1

2p
D

r2
ð28Þ

where D is the ion diffusivity. The effective induced dipole

moment will increase with increasing frequency, leading

to co-field electrorotation. In their system fc2 will be about

35 Hz.

Grosse and Shilov (68) propose electro-osmosis as an

alternative explanation of the co-field rotation. They show

that the main cause of the particle rotation at low fre-
Fig. 8 Rotation spectrum of 5.29-mm latex particles in 7 mS/cm

medium. (Redrawn from Ref. 66.)
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quencies is the electroosmotic velocity of the electrolyte

inside the double layer, rather than the torque exerted by

the rotating electric field on the imaginary part of the

induced dipole moment. Separate expressions for the two

mechanisms involved, dipole-electric field interaction and

electroosmosis, are given in the paper. The analytical so-

lution presented by Grosse and Shilov (68) is too compre-

hensive to be presented here, and we hence refer the reader

to the original article. Recently, Georgieva et al. (69) and

others have presented experimental results that are con-

sistent with the theory of Grosse and Shilov.
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