Design of a Prototype Communication System for the CubeSTAR Nano-satellite

Master presentation
by Johan Tresvig
24th Aug. 2010

The CubeSTAR Project

- Student satellite project at the University of Oslo
- Scientific motivation:
 - Demonstrate a new "Space weather" satellite
- Academic motivation:
 - Recruit students to space science and engineering
- Built by graduate and under-graduate students
The CubeSTAR Project

- Satellite systems built by students
 - Electronic Power System (EPS)
 - Attitude Determination and Control System (ADCS)
 - Communication system (COMM)
 - On-Board Data and Handling (OBDH)
 - Ground Station (GS)
- Project time frame, 2008-2012/13
- 2nd satellite in the ANSAT program
- CubeSTAR is built after the Cubesat satellite standard

The Cubesat-standard

- Pico-/Nano-satellite size
- Developed by Calpoly and Stanford University
- Designed for “piggy-backing” on commercial satellite launches
- “1U”
 - Dimensions: 10x10x10cm
 - Weight < 1.33kg
- The CubeSTAR satellite
 - “2U”
 - 10x10x20cm
Scientific Experiment

- Space weather
 - Solar storms and "North-light"
 - Impacts the satellite operation
 - Communication and navigation is affected

- Langmuir probes is used to measure electron density
 - Sweep bias probe
 - Fixed bias probe

- Multiple-Needle Langmuir Probes (m-NLP)
 - New concept developed at UiO
 - 4 fixed bias langmuir probes
 - Measure electron density
 - High spatial resolution

CubeSTAR Communication Group

COMM group is responsible for:

- Ground station
 - De-/encoding equipment
 - Radio
 - Antennas

- Space segment
 - Transceiver system
 - Antenna

- Communication protocol
 - A version of the AX25 packet protocol
Thesis Goals

- Define the requirements of the CubeSTAR communication system (space segment)
 - Functional
 - Communication
 - Regulations
 - Space environment
- Design and implement the system
- Develop firmware drivers to interface the system with the CubeSTAR communication protocol
- Discuss and identify an antenna solution for the CubeSTAR satellite

Functional Requirements

- Data link
 - Uplink, transmit commands from the ground station to the satellite
 - Downlink, transmit telemetry and housekeeping data from the satellite to the ground station
- Tracking signal
 - Beacon, transmit a tracking signal containing housekeeping data
 - Help the ground station team to locate the satellite
 - Transmit satellite status in the event that the data link cannot be established
The Global Educational Network for Satellite Operations (GENSO)

- A software standard designed to connect ground stations and satellites of educational space missions
- Allows for teams to operate amateur satellite ground stations through the internet
- Designed for the amateur and academic community
- The CubeSTAR ground station is designed after the GENSO reference ground station

Communication Scheme

- GENSO has recommended frequency bands:
 - Amateur satellite bands, greatly simplifies the application process for frequency band
 - VHF, UHF, S-band
- and radio configurations:
 - 9600bps / Gaussian Frequency Shift Keying (FSK) modulation scheme
 - 1200bps / Audio Frequency Shift Keying (AFSK) modulation scheme
 - Neither was applicable due to bandwidth and technical constraints
Radio configuration

- Frequency band
 - 434.5-438MHz
 - Amateur satellite band

- Data link
 - 4800 bps
 - Frequency Shift Keying
 - Gaussian filtering

- Beacon
 - Morse code, a common communication protocol, no decoding equipment is required
 - On-Off Keying (OOK) / Continuous Wave (CW)
 - requires less output power
 - 10-15 Words per Minute (WPM)

Inter-/National Regulations

- International Telecommunication Union (ITU)
 - Makes recommendations to regional and national regulatory bodies

- Norwegian Post and Telecommunication Agency (NPT)
 - amateur satellite frequencies
 - available bandwidth

- International Amateur Radio union (IARU)
 - responsible for coordination of amateur satellite frequencies
Space Environment

- Radiation
 - Total Ionization Dose, performance degradation caused by accumulated radiation dose
 - Singel Event Upset, software corruption caused by a high energy particle
 - Single Event Latchup, electric shortcut caused by a high energy particle

- Vacuum
 - Outgassing
 - Deformation

- Temperature
 - Operating temperature
 - $\frac{\pm 40 \, ^{\circ} C}{30 \, ^{\circ} C} \leq T \leq 40 \, ^{\circ} C \rightarrow 85 \, ^{\circ} C$

Link Budget

- Used to evaluate a wireless communication link given parameters like:
 - Transmitted power
 - Frequency
 - Bandwidth
 - Path loss
 - Modulation

- A budget for gain and attenuation of a radio signal
- Signal-to-Noise Ratio (SNR)
- Bit Error Rate (BER)
- Link margin, an error margin to account for unexpected attenuation in the link

\[
\frac{S}{N} [dB] = \left(\frac{P_t + G_t - L_{Path} - L_{ant} + G_r}{\text{Signal}} \right) - \left(k_{\text{Boltzmann}} + T_{\text{Noise}} + \text{Bandwidth} \right)
\]

\[
\frac{S}{N} - \frac{S}{N_{req}} = \text{Link margin} \geq 10 - 12 dB
\]
System Design

The CubeSTAR communication system

Transceiver Chip

- TI CC1101 Sub-1GHz transceiver chip
- Frequency band: 387-464MHz
- Modulation schemes
 - Frequency Shift Keying (FSK)
 - On-Off Keying (OOK)
 - Minimum Shift Keying (MSK)
- Operational mode
 - Serial mode
 - Packet handling mode

TI CC1101 transceiver chip
PCB

- Top signal layer
- Ground
- Power
- Bottom signal layer

RF Design Methods

- Optimal power transfer
- Characteristic impedance,
 - (50 +/- j0) ohm
- 2-port network
- Shielding to protect RF circuit from external EMI and reduce EMI emissions
Hardware Abstraction Layer (HAL)

- HAL package is a library of system drivers for the communication system.
- Used by the protocol layer to interface with the hardware
- Interface
 - Send_packet(type, buffer, nr_bytes)
 - New_command
 - Command_buffer

The HAL architecture

Antenna Considerations

- Omni-directional vs directional
- Polarization
- Simple mechanical design
- Small size
- 2 alternatives
 - Dipole antenna
 - Turnstile antenna

Radiation pattern of a dipole and a isotropic antenna

Linear, circular and elliptical polarized waves

Radiation pattern of a Yagi antenna
Antenna - two alternatives

ISIS Turnstile Antenna
- Configurable
 ● 2 dipol
 ● Turnstile
- Tested
- Acquired

UIO produced antenna
- Configurable
 ● 2 dipol
 ● Turnstile
- Gain knowledge of antenna design
- Produce papers

Test of Downlink and Beacon

CubeSTAR transceiver
Control and debug equipment
MixW Software TNC
Ground station radio
Remaining work

- **Firmware development**
 - The data link must be able to handle packets longer than 64 byte
 - Develop an I2C driver for the internal CubeSTAR bus
 - Integrate the HAL driver into the protocol layer

- **Testing**
 - RF testing using network and spectrum analyser
 - EMC testing and antenna integration using an anechoic chamber (is external bandpass filter needed?)
Recommendations

- Consider the current modulation scheme against other modulation schemes with a higher spectral efficiency (bps/Hz)
- Operational redundancy, to increase the chance of mission success
 - An extra transceiver system for redundancy
 - Mitigate antenna problems and electrical malfunction
- Adaptive radio
 - Range between satellite and ground station may vary between from 600km to 1900km
 - Current link budget assumes max distance 1900 km
 - The transmitter output power may be reduced as the distance between satellite and ground station closes and conserve power
 - Important to maintain a constant S/N

Conclusion

- Identified the key requirements for a CubeSTAR communication system
- Analysed the link through a link budget and verified that the link closes
- Designed and implemented a prototype system
- Transmitted an AX25 data packet from the communication system to the ground station
- Transmitted a beacon from the communication system
- Remaining work:
 - Consider using a more spectral efficient modulation scheme to increase the data throughput
 - Verify through testing that the system upholds the current EMC regulations and if not modify the design
 - Integrate the HAL driver into the protocol layer
Questions?