Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Andreas Görgen
Service de Physique Nucléaire
CEA Saclay

Sunniva Siem
Department of Physics
University of Oslo
ultimate goal:
comprehensive microscopic description of all nuclei and low-energy reactions from the basic interactions between the constituent nucleons

specific goal:
provide experimental data on nuclear shapes and collectivity in a sensitive region of shape transition and shape coexistence for benchmarking
Mean field and beyond: an example

Self-consistent HFB constrained to collective coordinate, e.g. \((q_{20}, q_{22})\)

- set of basis states \(\ket{\Phi_q}\)
- potential energy surface

Correlations beyond mean field

- configuration mixing \(\ket{\Psi_i} = \int f_i(q) \ket{\Phi_q} dq\)
- properties of excited states: \(E_x, Q_s, B(E2), \ldots\)

Approaches / choices

- collective coordinates: e.g. axial, triaxial, octupole, …
- relativistic or non-relativistic
- effective interaction: Skyrme, Gogny

Experiment: \(E_x, Q_s, B(E2)\) from low-energy Coulomb excitation

![Diagram](https://example.com/diagram.png)
Multi-step Coulomb excitation

- safe energy ⇒ purely electromagnetic excitation
- transitional matrix element ⇒ $B(E2)$
- diagonal matrix element ⇒ Q_s
- reorientation effect ⇒ sensitive to nuclear shape
- multi-step excitation
- de-excitation γ-ray yields ⇒ $d\sigma/d\theta$
- χ^2 minimization of matrix elements to reproduce experimental γ-ray yields
Nuclear shapes

Gogny HFB

M. Girod, CEA Bruyères-le-Châtel

oblate shapes in medium / heavy nuclei just beneath shell closure ➢ holes in $\Omega=1/2$ orbitals

region of ➢ oblate shapes ➢ rapid shape transition ➢ shape coexistence ?

Andreas Görgen

INTC 16.2.2009
Previous experiments

- No lifetimes known at low spin
- Only few non-yrast states from β decay studies
- No experimental information on the shape at low spin

Extensive studies at high spin e.g. magnetic dipole bands

E.O. Lieder et al.
Predictions for 142Gd

experiment

configuration mixing calculation GCM(GOA)
5-dimensional ($q_{20}, q_{22}, \alpha, \beta, \gamma$)
Gogny D1S interaction parameter free

analytic solution of Bohr Hamiltonian with square-well potential
E(5) symmetry
normalized to experimental $E_x(2^+)$ and $B(E2, 2^+ \rightarrow 0^+)$ from GCM(GOA)

need $B(E2)$ values and quadrupole moments to test predictions

oblate shape near ground state
transition to prolate at higher spin
γ vibration built on oblate states
Shape transitions

M. Girod et al.
CEA Bruyères-le-Châtel

Andreas Görgen
INTC
16.2.2009
Shape coexistence?

shape transitions
- neutron number: spherical (N=82) \Rightarrow oblate (N=78) \Rightarrow prolate (N<78)
- proton number: prolate (Nd, Sm) \Rightarrow oblate (Gd, Dy)
- spin: oblate near ground state (Gd) \Rightarrow prolate above 4$^+$ (Gd)

is there also shape coexistence?
indication: low-lying 0$^+$ states
(tentative) 0$^+$ state in 140Sm at 990 keV
Simulation

\[^{142}\text{Gd} \]

experimental level scheme theoretical B(E2) and \(Q_s \)

- \(6^+ \)
- \(4^+ \)
- \(2^+ \)
- \(0^+ \)

\[^{142}\text{Gd} + ^{208}\text{Pb} \]

2.9 MeV / u

- 2 \times 10^4 \text{ pps}
- 1 \text{ mg/cm}^2 \]

15 shifts
Differential cross section

\[^{142}\text{Gd} + ^{208}\text{Pb} \]

2.9 MeV / u

Experimental level scheme

Theoretical B(E2) and Q_s

\[\text{prolate} \]

\[\text{oblate} \]

\[^{138}\text{Nd}, ^{140}\text{Sm}, ^{142}\text{Gd}, ^{144}\text{Dy} \]
Sensitivity to quadrupole moments

142Gd

experimental level scheme
theoretical $B(E2)$ and Q_s

σ / Ω (mb/sr) vs θ_{CM} (deg)

138Nd 140Sm 142Gd 144Dy

6^+ 5135 2^+ 3647 2^+ 2376 0^+

4^+ 3775 2^+ 119 1623 (0^+)

2^+ 8 2^+ 1
Proposed experiment

- REX beams at maximum energy of 2.95 MeV/u
- Measured yields realistic beam intensities
 - 138Nd: ? (large) $\sim 10^6$
 - 140Sm: 2×10^8
 - 142Gd: 1.2×10^6
 - 144Dy: ?
- RILIS to suppress isobaric contaminants crucial
- Ionization schemes exist, Sm and Gd not yet tested at ISOLDE
- Coulomb excitation target: 206Pb or 208Pb
 (normalization point vs. spectrum simplicity)
- Double-sided annular silicon detector and MINIBALL

shape transition and coexistence predicted for N=78 isotones

- Measure quadrupole moments for 2_1^+ (2_2^+, 4_1^+) in 140Sm and 142Gd
- Measure transition rates between all low-lying states
- Identify low-lying 0^+ states
- Extend study to 144Dy and N=76 if feasible

beam time request

- 140Sm: 6+3 shifts
- 142Gd: 15+3 shifts

Testing required to determine / improve intensity and purity
Collaboration

CEA Saclay, IRFU/SPhN A. Görgen, W. Korten, A. Obertelli, B. Sulignano, Ch. Theisen

CEA DIF, Bruyères-le-Châtel J.-P. Delaroche, M. Girod

CERN-ISOLDE J. Cederkäll, J. Van de Walle

GANIL E. Clément, G. de France, J. Ljungvall

University of Liverpool P.A. Butler, M. Scheck

University of York D.G. Jenkins

University of Manchester S. Freeman

Universität Köln P. Reiter, M. Seidlitz, A. Wendt