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ABSTRACT 

This paper presents an algorithm for locally adaptive template sizes 
in normalized cross-correlation (NCC) based image matching for 
measuring surface displacement of mass movements. After 
adaptively identifying candidate templates based on the image 
signal-to-noise ratio (SNR), the algorithm iteratively looks for the 
size at which the maximum cross-correlation coefficient attains a 
local peak and the matching position gets fixed. The algorithm is 
tested on Landsat7 ETM+ and radar intensity (Radarsat-2) image 
pairs of glacier flow. It is evaluated in comparison with globally 
(image-wide) fixed template sizes ranging from 11 to 101 pixels 
based on the performance of the matching. The adaptive algorithm 
results in more reliable displacement estimates as it matches the 
pixels more accurately. 

Index Terms— Image matching, Repeat imagery, Normalized 
cross-correlation, Adaptive template

1. INTRODUCTION 

Horizontal displacement of mass movements is measured from 
repeat remotely sensed images usually by matching image subsets 
(templates) of certain size and computing the shift in position 
between the two matching templates [1-4]. This approach, referred 
to as area-based method, most often uses the normalized cross 
correlation as the similarity measure between the two templates.   
The performance of this approach is highly influenced among 
others by the size of the templates being matched [5-7]. Matching 
with small templates is ambiguous due to inadequate signal 
variance or noise, while matching with large templates is affected 
by projective distortion due to the velocity gradient within the 
template. When measuring displacements on Earth surface mass 
movements from repeat images, two major reasons make finding a 
solution to this conflicting situation even more important and 
challenging. Firstly, Earth surface masses often move incoherently 
with spatially variable velocity. Secondly, image pairs or 
sequences are usually taken with large temporal baseline leading to 
significant intensity differences and noise. An optimum template 
size needs to compromise between the influence of ambiguity and 
projective distortion differently at each location.

Most of the previous attempts to deal with this problem 
[7-11] are made in machine vision, particularly stereoscopy, where 
the temporal baseline is often very short, i.e. low level of noise, 
and the sampling rate (pixel resolution) is very high. None of them 
targets Earth surface mass movements as its area of application. 
Most are not tested on NCC but on other similarity measures such 
as the Sum of Squared Differences. Most of them involve 
complicated statistical computation and rely on numerous 

assumptions. The algorithm presented here aims at locally adaptive 
optimization of template sizes in NCC-based image matching for 
displacement measurement of Earth surface mass movements using 
glacier flow as an example.  

2. TEMPLATE SIZE, SNR AND NCC 

The SNR of an image subset varies with its size (Fig. 1). 
Computation made on synthetic and real remote sensing images 
show that SNR increases with the template size until it attains a 
peak. The peak is attained when edge is crossed or when new 
sources of signal cease to appear.  If the computation proceeds 
with larger template sizes other peaks may appear. As the figure 
shows, such peaks are absent in image subsets that lack signal 
variance, e.g. shadows, snow-covered areas, and water bodies. The 
size at which the first peak is attained is the smallest size of a 
template with optimum SNR which can be considered as the size 
of smallest distinct feature at that location.  

Likewise, template size determines the maximum NCC 
coefficient that is used in locating true matches. For an image 
subset with adequate signal variability, the peak of the NCC 
coefficient is high for small template sizes due to the noise 
duplicates (Fig. 2). As the template size increases, the noises get 
suppressed and the NCC peak decreases. After the noise is 
maximally suppressed the NCC peak increases and attains a peak 
after which it decreases again. The peak is attained at a size at 
which the noises are optimally suppressed, and the velocity 
gradient is still below a pixel. The actual matching position is 
therefore fixed reliably when this size is used. Larger sizes are 
affected by velocity gradient within the template while smaller 
sizes are affected by ambiguity.  Image subsets that lack signal 
variance, or that are occluded, lack such clear peak of the NCC 
maxima. 

Therefore, SNR peak can be used to identify matchable 
templates while the maximization of the NCC peak can be used to 
unambiguously and accurately match the template. Images lacking 
adequate signal variability are filtered twice; first based on the 
maximization of SNR and then based on the maximization of the 
NCC peak reducing the need for manual filtering and its heuristic 
impacts.   
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Fig. 1 Image intensity variance (A), noise variance (B) and signal-
to-noise ratio together with the first local maximum (D) as plotted 
against the window size for an aerial image of real rock block 
(upper left) shadow area (lower left) 

Fig. 2 The relationship between template size and the maximum 
NCC coefficient (B) and the displacement estimates (C) for an 
image subset (A) that contains good signal variance

3. METHODS 

The algorithm was implemented on Landsat7 ETM+ panchromatic 
image pair with 15m resolution captured on June 16, 2000 and July 

27, 2001 over a part of the Karakoram Mountains of Pakistan. 
Here, a small section over the Baltoro Glacier is used (lat 35.74°N, 
lon 76.43°E). A section of synthetic aperture radar (Radarsat-2) 
intensity images over a section of Kronebreen glacier on Svalbard, 
Norwegian Arctic (lat 78.87°N, lon 12.5°E; Fig 10) was also used 
as a second image pair. The first image is taken on April 06, 2009 
while the second is taken on April 30, 2009 with a ground 
resolution of approximately 3 by 3 m. 

Image matching is then applied using the NCC algorithm 
so that displacement is computed as Euclidean distance between 
the central pixels of the reference and matching templates. First, 
different globally fixed template sizes ranging from 11 to 101 
pixels (with 10 pixels interval) are used. Then, the here-developed 
locally adaptive algorithm is applied as follows. For a given central 
pixel, the SNR is computed for each window size around the pixel 
consecutively.  When the SNR attains a certain peak and starts to 
decrease, the algorithm stops and takes the template as matchable. 
If the SNR could not attain any peak, the template will be 
excluded. The SNR is computed as the ratio between the signal 
variance and noise variance which are computed separately.  

Since optimum SNR does not guarantee reliable 
matching, optimum template size needs to be determined 
iteratively. The iteration computes peak of the normalized cross 
correlation coefficient and the matching position for each template 
size.   The algorithm defines optimum template sizes based on the 
maximization of the peak of the NCC coefficient peak, which is 
another way of minimization of uncertainty of the matching, and 
accompanied fixation of the matching point. The optimization is 
based on the principle that the reliability of a match for a template 
with optimum size should be greater than not only that of other 
templates but also that of the same (concentric) templates with 
other sizes. The same search window size is used for all cases so 
that the comparison is conducted under the same condition and no 
manual filtering was conducted in order to mimic full automation.   

Subjective evaluation approaches such as visualization of 
the velocity fields and looking for outliers and illogical 
displacement vectors can be used at first glance to evaluate the 
matching. Such approaches can identify most of the mismatches 
caused by ambiguity as they often result in observable gross errors. 
However, misrepresentation errors (i.e. errors due to velocity 
gradient within the template) can hardly be detected visually. 
Therefore, the global correlation coefficient between the old and 
new images before matching is computed. After matching the 
images and reconstructing the new image to the geometry of the 
old image, the new global correlation coefficient is computed. The 
correlation is expected to increase after the reconstruction. The 
method of matching that improved the correlation the most is 
considered the best matching approach.  

4. RESULTS AND DISCUSSIONS 

Fig. 3 presents displacement vectors of the Baltoro Glacier as 
computed using the locally adaptive algorithm.  This figure shows 
both the strengths and the weaknesses of the algorithm. On the one 
hand, the fact that the algorithm could exclude most of the 
monotonous (dark and bright) regions from the matching and that 
the stable areas are mainly correctly identified as stable shows that 
the algorithm performs well even in such low spatial resolution 
images of poor quality (i.e. low contrast). On the other hand, one 
can observe erroneous vectors especially at the transition between 
shadows and bright regions. These transitions create edge-like 
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borders which make them pass the candidate selection step.  The 
flowing glacier stream is however very clearly identified without 
any manual filtering.  

Fig. 4 shows that the locally adaptive algorithm results in 
highest correlation between the old and the reconstructed images 
implying better accuracy of the image matching. For these images 
the initial correlation itself is already high due to the large 
percentage of stable ground and the presence of white monotonous 
snowy surfaces in the scene. Matching with globally fixed small 
template sizes (11 pixels) lowered the correlation coefficient of the 
reconstruction even below the initial due to the high level of noise 
(sensor and temporal) and the low spatial resolution. 
Consequently, small template sizes do not correctly match even the 
stable ground. At large template sizes the reconstruction accuracy 
is significantly lowered again. Large template sizes translate into 
large ground areas in such low resolution images, leading to 
comparably high velocity gradients in the templates.  This shows 
that in such low resolution images, large template sizes 
significantly distort the image rather than reconstruct it.  

The displacement vectors of the Kronebreen glacier have 
a lot of gaps (Fig. 5). The algorithm manages to exclude much of 
the low signal areas such as water surfaces at the lower right part 
of the image. Besides, the stable ground is also clearly identified 
by the absence of vectors. SAR intensity images are well known to 
be very noisy due to radar speckle. Unless the template size is very 
large and temporal baseline is very small, reliable displacement 
estimates are unlikely to be achieved. If severe deformation is 
involved, even large templates do not produce reliable estimates. 
Usually, intensive manual filtering is required to arrive at reliable 
displacement vectors. The algorithm here however produces very 
few observable mismatches reducing such manual tasks and its 
heuristic impact on the reliability. 

Fig. 6 shows that at very small template sizes the 
matching is so noisy that the reconstruction itself becomes random. 
When globally fixed template sizes are used the quality of the 
reconstruction improves with the template size. It keeps on 
increasing up to the 101 pixels maximum pixel size used showing 
that even large template sizes could not optimally remove the 
influences of noise. The adaptive algorithm thus produces better 
reconstruction than all the globally fixed template sizes used. 
However, the number of discarded templates for lacking an 
acceptable level of SNR is high as expected in this image pair. 

The histogram of the template sizes (not shown here) 
also shows that this image pairs have highest mean template size 
(35 pixels) due to the high noise level; compared to that of the 
Landsat Image of Baltoro glacier (26 pixels). The relatively smaller 
template size (in pixels) of the Landsat image over Baltoro glacier 
is ascribed to its low spatial resolution which indicates large 
ground template size and necessitates minimization of the 
projective distortion.   

The principles followed in the algorithm discussed here 
are comprehensive of single principles developed in previous 
studies. Most popularly, intensity and disparity variations are used 
to model uncertainty of disparity estimation for different template 
sizes taking the size which produces the lowest uncertainty as the 
optimum size [7, 9, 12, 13]. In the present algorithm, intensity 
variation (SNR) is used to identify candidate templates and to limit 
the iteration. Maximization of the NCC coefficient is used as a 
measure of the (un)certainty of the matching. Iteration was used to 
arrive at the peak of the certainty.  

Fig. 3  Displacement vectors on the Baltoro Glacier as computed 
from the bi-temporal Landsat panchromatic images using the 
locally adaptive algorithm 

Fig. 4 Global correlation coefficients between the original 
reference image and the target image before (dashed line), after 
reconstructing using the globally fixed template sizes (dotted line) 
and the locally adaptive algorithm (smooth line) for the Landsat 
image section over the Baltoro glacier 

Fig. 5  Displacement vectors of the Kronebreen glacier as 
computed from the bi-temporal SAR images using the locally 
adaptive algorithm. 

The algorithm is one step forward towards full 
automation of deformation measurement in Earth surface mass 
movements, which is increasingly becoming important due to the 
increasing need for fast and reliable monitoring system of such 
processes. The necessity is partly increased by the climate change 
driven hazardous Earth surface mass movements in high mountains  
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Fig. 6. Global correlation coefficients between the original 
reference image and the target image before (dashed line), after 
reconstructing using the globally fixed template sizes (dotted line) 
and the locally adaptive algorithm (smooth line) for the SAR image 
pair over Kronebreen, Svalbard.  

and cold regions, sometimes with disastrous consequences. 
Besides, human activities are expanding to such areas enhancing 
further the need for reliable and fast monitoring of slope stability.  

The drawback of the algorithm is that it is 
computationally expensive as iteration is involved in both the 
identification of matchable templates and finding their sizes. The 
process can take up to hours depending on the computer 
performance, the search window size and the number of templates 
to be processed.  

6. CONCLUSIONS AND OUTLOOK 

This paper presented a new algorithm for locally adaptive template 
sizes in Normalized Cross-Correlation (NCC)-based image 
matching for displacement measurement of Earth surface mass 
movements. Implementation of the algorithm shows that it 
performs better than globally fixed template sizes.  The algorithm 
removes the mismatches due to ambiguity in small templates and 
reduces the errors due to projective distortion in large templates. 
How effectively it removes both sources of error depends on the 
noise content and deformation of the images. Errors due to 
projective distortion remain only where noise or lack of good 
signal variance necessitate the use of large template sizes.  The 
algorithm discards most of the templates which lack sufficient SNR 
and occluded templates (i.e. templates whose matches do not 
exist). 

The algorithm pushes displacement measurement from 
repeat images one step forward towards full automation. One can 
also use the two parts of the algorithm separately if one is 
interested in only either identifying matchable template or locally 
optimizing the template sizes assuming that the images contain 
high level of SNR. Further research is needed to deal with the 
drawbacks of the algorithm. 
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