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ABSTRACT

Modern remote sensing techniques can help in the assessment of permafrost hazards in high latitudes
and cold mountains. Hazard development in these areas is affected by process interactions and chain
reactions, the ongoing shift of cryospheric hazard zones due to atmospheric warming, the large spatial
scales involved and the remoteness of many permafrost-related threats. This paper reviews ground-
based, airborne and spaceborne remote sensing methods suitable for permafrost hazard assessment and
management. Awide range of image classification and change detection techniques support permafrost
hazard studies. Digital terrain models (DTMs) derived from optical stereo, synthetic aperture radar
(SAR) or laser scanning data are some of the most important data sets for investigating permafros-
t-related mass movements, thaw and heave processes, and hydrological hazards. Multi-temporal optical
or SAR data are used to derive surface displacements on creeping and unstable frozen slopes.
Combining DTMs with results from spectral image classification, and with multi-temporal data from
change detection and displacement measurements significantly improves the detection of hazard
potential. Copyright # 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

A number of potential environmental and socio-
economic impacts of atmospheric warming in high
latitudes and cold mountains are associated with
permafrost (Haeberli, 1992b; Burger et al., 1999;
Haeberli and Burn, 2002; Nelson et al., 2002; Johnson
et al., 2003; Harris, 2005; Kääb et al., 2005b).
Permafrost-related threats include floods, mass move-
ments, thaw and frost heave. Combinations and chain
reactions of these and other processes may lead to
severe permafrost-related problems or even disasters.
In addition, severe problems may arise from indirect
threats, such as adverse effects on water availability,
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traditional subsistence practices, tourism and related
socio-economic consequences (e.g. Burger et al.,
1999; Nelson et al., 2002; Ford and Smit, 2004), or at a
global scale, problems such as methane emission from
thawing permafrost.
In this contribution, the following terms are used

(JTC1, 2004): threat is a ‘natural phenomenon that
could lead to damage, described in terms of its
geometry, mechanical and other characteristics. The
threat can be an existing one (such as a creeping slope)
or a potential one (such as a rockfall)’. Susceptibility
is the spatial distribution of threats (sometimes referred
to as hazard disposition). Hazard is the ‘probability that
a particular threat occurs within a given period of time’.
Threat therefore describes the process and magnitude of
a dangerous event, susceptibility includes its spatial
distribution and hazard its temporal distribution.
Vulnerability is the ‘degree of loss to a given element,
or to a set of elements within the area affected by a
hazard’, or to a ‘set of conditions and processes resulting
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from physical, social, economic, and environmental
factors’. Risk is a ‘measure of the probability and
severity of an adverse effect to life, health, property, or
the environment’.
Assessment and management of permafrost hazards

require the application of modern integrative earth-
observation techniques for a number of reasons.
Permafrost threats commonly occur in remote regions,
which are difficult or dangerous to access. The vast
areas of interest, potential process interactions and
chain reactions, and the great reach of some of the
threats (e.g. floods) require sensors capable of
covering large areas simultaneously.
Climate change induces disturbance in permafrost

conditions and can alter hazard processes, probabil-
ities and magnitudes so that experience, which is
based on historical events at a given location, is no
longer sufficient for hazard assessment. In addition,
human settlements and activities increasingly extend
towards dangerous zones. As a result, historical data
have to be combined with new observation and
modelling approaches. Due to rapid change in the
cryosphere, hazard assessments should be undertaken
routinely and regularly, and must be combined with
continuous monitoring. Remote sensing is particularly
well suited for both regular and rapid observation.
Recent developments in airborne and spaceborne

remote sensing have opened up new possibilities
for the assessment of natural hazards in general
(Mantovani et al., 1996; Singhroy et al., 1998; Ostir
et al., 2003; Metternicht et al., 2005; Tralli et al.,
2005; Delacourt et al., 2007) and permafrost-related
hazards in particular (Duguay and Pietroniro, 2005;
Kääb, 2005b; Kääb et al., 2005a; Quincey et al.,
2005). Kääb et al. (2005a) and Quincey et al. (2005)
provide overviews of remote sensing methods applied
to glacier hazards and the former also includes hazards
related to mountain permafrost. Several review papers
focus on the remote sensing of landslides, and these
generally refer to the involvement of permafrost in
slide processes (e.g. Metternicht et al., 2005;
Delacourt et al., 2007). Stow et al. (2004) and
Duguay et al. (2005) review remote sensing methods
for lowland permafrost.
The aim of this paper is to provide the first

integrated overview of remote sensing of hazards and
problems relating to both lowland and mountain
permafrost. Important aspects of the remote sensing of
geohazards are examined, spaceborne, airborne and
terrestrial remote sensing methods for geohazard
assessment are summarised, and analyses in the
spectral, geometric and multi-temporal domains of
remotely sensed data are presented. Remote sensing
applications for specific permafrost hazards and
Copyright # 2008 John Wiley & Sons, Ltd.
problems and for early warning and disaster manage-
ment are described. The final section of the paper
examines prospects for the future.
REMOTE SENSING DATA ACQUISITION
METHODS

This section describes remote sensing methods that
potentially can be used for permafrost hazard
management. Their application is discussed in more
detail in the later sections. For an explanation of sensor
acronyms, see Table 1.

Characterisation of Remote Sensing Systems

The applicability of remote sensing to permafrost
problems and hazards is governed by the following
characteristics of a remote sensing system:

The spatial resolution of the sensor determines the
detail that can be extracted from the data. Fine
resolution is generally required to assess permafrost
threats, problems and disasters, because the objects
observed are often small and fine details can be critical
for a sound hazard assessment. Spatial resolution can
be expressed as high (<5m� 5m pixel dimension),
medium (5–100m), low (100–1000m) and very low
(>1000m).

The spatial coverage is the area or width of the
ground track sensed and is roughly related to the
spatial resolution of the sensor because of technical
constraints, such as sensor sensitivity and onboard-
recording and down-link capacities. Medium-
resolution Landsat, IRS and ASTER data, for
example, are useful for initial regional-scale hazard
assessments. High-resolution airborne imagery, laser
scanning, CORONA, Ikonos, QuickBird, PRISM or
SPOT5 data are preferable for detailed local-scale
investigations, but usually cannot be applied over
large areas due to high costs and small spatial
coverage.

The temporal resolution is the revisit time of the
remote sensing system. For assessments of hazards,
the temporal resolution has to be consistent with the
rate of hazard development or the changes to be
observed. The temporal resolution of a system is a
function of the platform type (spacecraft, aircraft,
ground installation), the system’s spatial coverage, the
airborne or terrestrial accessibility of the study area
and how far the sensor can be rotated in cross-track
direction. The AVNIR-2 sensor onboard the ALOS
satellite for example can be pointed up to �448
allowing for repeat imaging as frequently as 24 h on
average. Annual resolution may be sufficient to
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Remote Sensing of Permafrost-related Hazards and Problems 109
monitor the development of thaw lakes, whereas
repeat times of a few days are required for disaster
management in connection with landslide-induced
temporary lakes.

The timing of data acquisition must be under the
control of the user, or meet the user’s needs by chance.
The probability of the latter occurring increases with
temporal resolution. Timing is of particular impor-
tance when remote sensing data are required at a
given repeat cycle such as for early warning purposes,
when seasonal restrictions limit suitable observation
periods, or when rapid response is needed for
search-and-rescue operations and disaster manage-
ment.

The portion of the electromagnetic spectrum
available to the sensor determines the surface
parameters that are recorded and the dependence of
the sensor on weather and illumination conditions. For
example, microwave sensors can gather data in all
weather conditions and at night, and thermal infrared
sensors have a night-time capability, whereas optical
sensors cannot be used during darkness or through
cloud cover. This limitation can be crucial, for
example, in winter in high latitudes, or for areas
and seasons with frequent cloud cover.

The stereo, interferometric or ranging capability of
the remote sensing system enables computation of
three-dimensional target positions and terrain
elevations. This capability is commonly a prerequisite
for analysing landslide hazards in the absence of
pre-existing appropriate topographic data.

The usefulness of data refers to the degree that
remotely sensed data can be applied to hazards and
disasters, for example access to data archives, speed of
on-demand acquisition, speed of delivery, simplicity
of data formats and size, data costs, availability of
hardware and software, and the user’s processing and
analytical knowledge. These factors are still fre-
quently bottlenecks in the application of remote
sensing to permafrost-related hazards and problems.

Spaceborne Methods

Satellites, space shuttles and the International Space
Station have been used as spaceborne platforms for
remote sensing sensors. Spaceborne remote sensing
technologies suitable for permafrost hazard and
disaster management include the following (see
Table 1):

Multispectral and panchromatic spaceborne ima-
ging in the optical section of the electromagnetic
spectrum (visible, VIS; near infrared, NIR; shortwave
infrared, SWIR) are well-established satellite remote
sensing methods for mapping and monitoring ground
Copyright # 2008 John Wiley & Sons, Ltd.
cover and changes related to permafrost and geoha-
zards. Multispectral sensors have a few broad spectral
bands with a typical width in the order of 0.1mm. The
method is often used for detecting threat source areas
and terrain changes, and for mapping hazard zones.

Hyperspectral imaging from space uses tens to
hundreds of narrow spectral bands with a typical width
in the order of 0.01mm. The method has not been used
for permafrost-related hazards and problems to date,
but it could enable spectral discrimination of surface
types and changes that are barely distinguishable
using multispectral remote sensing. Consideration or
correction of atmospheric effects is particularly
important for hyperspectral data. The experimental
medium-resolution sensors Hyperion on the EO-1
spacecraft, and CHRIS on the PROBA spacecraft
potentially could be used for permafrost investi-
gations.

Thermal infrared sensors are carried on some
optical spaceborne instruments, for example Landsat
and ASTER. Thermal infrared data can be trans-
formed into surface temperatures and thus are of
particular interest to permafrost studies.

Microwave backscatter from active sensors, signal
polarisation, signal phase and frequency, or interfer-
ometric-phase coherence using synthetic aperture
radar (SAR) sensors can be analysed in the context
of permafrost threats. SAR data from space platforms,
together with multispectral data, are most frequently
applied to permafrost and related problems, especially
on an operational basis, because they cover large
areas, complement optical data, and are independent
of weather and sunlight.

Scatterometers, which are activemicrowave sensors
measuring the backscatter accurately in different
directions, or passive microwave sensors, which
measure the natural microwave emissions of the
Earth, are useful for global-scale studies of snow cover
or sea ice cover, and hence can contribute to
large-scale studies of permafrost conditions and their
changes. The spatial resolution of passive microwave
sensors is in the order of tens of kilometres, which is
obviously too low for local studies.

Satellite optical stereo enables computation of
digital terrain models (DTMs), a prerequisite for some
studies of landslide threats. The method uses
photogrammetric principles based on two or more
overlapping images. Darkness and cloud cover are the
main limitations.

Interferometric SAR (InSAR) from space can be
used to derive DTMs. DTMs from the Shuttle Radar
Topography Mission (SRTM), an InSAR campaign,
are particularly useful for regional-scale hazard
assessments in remote areas. Repeat InSAR can be
Permafrost and Periglac. Process., 19: 107–136 (2008)
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applied to measure terrain displacements relating to
permafrost with techniques such as differential InSAR
(DInSAR) or permanent scatterer SAR.

Spaceborne light detection and ranging (LIDAR)
using the GLAS instrument on the ICESat satellite
provides terrain elevations for laser footprints 70m in
diameter and along-track spacing of 170m. An
increasing number of studies are proving the potential
of this instrument for use in mountain topography or
boreal forests, even though it was not designed for
rough surfaces.

Airborne Methods

The main platforms used for airborne remote sensing
are airplanes and helicopters, but unmanned air
vehicles have become increasingly important. Air-
borne remote sensing technologies that are applicable
for permafrost hazard and disaster assessments
include the following (see Table 2):

Hard-copy or digital photogrammetry based on
airborne frame imagery or linear array charge-coupled
device sensors are well-established techniques for
generating DTMs, detecting vertical terrain changes,
measuring lateral terrain displacements, and inter-
preting and mapping permafrost environments. The
often vast archive of historic aerial photographs and
their potential for detailed visual interpretation are the
main advantages of this method.

Airborne hyperspectral sensors with tens to
hundreds of narrow bands in the VIS, NIR, and
SWIR spectra enable detailed spectral descriptions of,
for example, lithology, vegetation and lake water, but
have not yet been applied to permafrost hazards. The
method requires advanced geometric and radiometric
pre-processing of data.

Airborne laser profiling and laser scanning (i.e.
airborne LIDAR) are powerful tools for acquiring
high-resolution and high-precision DTMs. Using
repeat DTMs, it is possible to derive vertical terrain
changes and in some cases, horizontal displacements.
Most instruments record more than one return per
laser pulse, and some record the complete return
waveform. Some laser scanning instruments also
record the signal intensity. Airborne laser scanning has
a particularly strong potential for assisting detailed
hazard assessments.

Airborne SAR has rarely been used for permafrost
studies. The microwave spectrum, however, has
considerable potential because of its ability to image
in all weather conditions and at night, and to extract
surface and subsurface characteristics that influence
the backscatter from the ground such as roughness and
moisture. The main application of airborne SAR is the
Copyright # 2008 John Wiley & Sons, Ltd.
generation of DTMs in areas of frequent cloud cover
where laser scanning and aerial photogrammetry are
of limited utility.

Airborne passive microwave sensors and airborne
thermal infrared sensors are occasionally used in
permafrost research for investigating surface tempera-
ture.

Airborne remote sensing offers advantages such as
high spatial resolution and customer control over the
acquisition time. However, methods may be costly and
difficult to apply, for example, in conflict zones or very
remote regions. Satellite sensors on the other hand
provide coverage of large areas without the need for
ground access, data are comparably cheap and
accessible, and a repeat cycle of a few days is
possible for some sensors.

Ground-Based Remote Sensing Techniques

Ground-based remote sensing techniques are suitable
for studies of small areas, high-frequency monitoring
and early warning systems. The following methods
can be used for investigating permafrost-related
threats (see Table 3):
� te
rrestrial photogrammetry

� to
uch-less laser range finders and terrestrial laser

scanning

� te
rrestrial real and synthetic aperture radar

� a
utomatic cameras, webcams, or video cameras
Combinations of Data and Methods

Analyses of data obtained using different sensors have
become increasingly common. This development is
driven by the greater number of sensors and data that
are available and by the ongoing need to provide rapid,
timely and reliable information, in particular for
disaster management.

Of particular promise for hazard assessment and
disaster management is the multi-temporal fusion of
optical and SAR data to take advantage of different
sections of the electromagnetic spectrum (Singhroy
et al., 1998; Ostir et al., 2003; Coulibaly and Gwyn,
2005; Delacourt et al., 2007). SAR data, for example,
can bridge gaps due to cloud cover in data from optical
sensors or complement the spectral content of optical
data. For example, snow moisture conditions that are
barely detectable using optical sensors alone can be
inferred using SAR (Rott, 1994; König et al., 2001).
An overview of data combination strategies is given in
Kääb (2005b).
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b
an
d
V
o
ll
m
er

(2
0
0
0
);

K
ää
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114 A. Kääb
SPECTRAL REMOTE SENSING OF
SURFACE CONDITIONS

The technologically simplest form of image analysis,
although by no means the least important and easiest,
is the manual mapping of features of interest on the
images. Where topography is rugged and the optical
contrast weak, or for highly complex assessments,
manual delineation of features may be superior to semi-
automatic and automatic techniques. However, for rapid,
repeated, or large area applications, automatic image
classification is valuable. Available techniques range
from classifications based on mono-spectral (i.e. grey-
scale), multispectral, hyperspectral, radar backscatter
intensity or polarisation data, to spatio-spectral analyses
utilising not only the spectral information of the image
pixels but also their spatial context (object-oriented
classification). A list of references is provided in Table 4.

In the microwave spectrum, analysis of the back-
scatter, the coherence of the SAR interferometric
phase and the signal polarisation enable delineation
and characterisation of terrain and its dynamics
(Engeset and Weydahl, 1998; Floricioiu and Rott,
2001; Weydahl, 2001; Komarov et al., 2002; Sjogren
et al., 2003; Yoshikawa and Hinzman, 2003).

Permafrost, which is strictly speaking a thermal
phenomenon, cannot yet be directly remotely sensed.
However, indicators, processes or boundary con-
ditions of permafrost and permafrost-related threats
can be detected remotely including for example thaw
lakes, ice-wedge polygons, rock glaciers, active-layer
detachments, thaw slumps, vegetation types and snow
cover distribution (Table 4). Similarly, objects and
processes that can be connected to permafrost-related
threats can be investigated through spectral remote
sensing analysis including for example glacier lakes
(Huggel et al., 2002; Wessels et al., 2002; Kääb et al.,
2003), steep glaciers (Salzmann et al., 2004; Fischer
et al., 2006), and river bank or coastal erosion (Brown
et al., 2003; Mars and Houseknecht, 2007).

Remote sensing of climate variables, climate indi-
cators and their changes is important, given potential
future impacts of climate change on the cryosphere.
Remote sensing techniques for monitoring surface tem-
peratures, atmospheric conditions, snow cover, vegeta-
tion and sea ice (Peddle and Franklin, 1993; Duguay
et al., 2005) can thus provide early evidence of
developing permafrost hazards and hazard zones
(Nelson et al., 2002). Similarly, other changes in
boundary conditions, which might lead to permafrost
threats, can be investigated through spectral-domain
remote sensing, for example forest fires or burnt forest
as potential triggers of detachment failures and/or thaw
slumps (Lewkowicz and Harris, 2005a).
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Table 4 Permafrost-related problems and threats and their assessment by remote sensing.

Processes Remote sensing Selected case studies and
remote sensing
applications

Permafrost-related floods
1) Breaching of moraine lake dams

Ground ice content in moraine
dams plays an important role in
the stability of moraine dams
through its influence on hydraulic
permeability, angle of repose and
resistance to erosion (e.g. during
a lake outburst or piping)

Monitoring of elevation
changes due to thaw
settlement
Monitoring of displacements
due to deforming ground ice

Watanabe et al. (1995); Clague
and Evans (2000); Haeberli
et al. (2001); Huggel et al.
(2002); Quincey et al. (2005);
McKillop and Clague (2007)

2) Failure or overtopping of temporary
dams
Permafrost-related sources of
temporary dams: active-layer
detachments, thaw slumps,
landslides, periglacial debris flows,
periglacial rock avalanches, rock
glacier advance and instabilities

Detection of damming and
dammed lakes depending on
spatial resolution, temporal
resolution and timing of
remote sensing system;
time-series particularly
useful
Monitoring of thickness
changes and kinematics
of long-lasting dams

Ufimtsev et al. (1998); Huggel
et al. (2002); Kääb et al. (2003);
Strom and Korup (2006)

3) Growth and breaching of
thermokarst lakes

Spectral detection of related
lakes; time-series particularly
useful

Kääb and Haeberli (2001);
Wessels et al. (2002); Frohn
et al. (2005); Hinkel et al.
(2005, 2007); Smith et al.
(2005); Grippa et al. (2007);
Mars and Houseknecht (2007);
Quincey et al. (2007)

Progressive lake growth through
thermal convection. Growth may
destroy installations at the lake
shore. Outburst causes similar to
(1) and progressive melt of
ice/permafrost dam

4) Displacement waves in lakes Assessment requires
integrative
remote sensing and
modelling
approaches of source
processes

No direct airborne and
spaceborne remote sensing
application. Cf. Tinti et al.
(1999); Walder et al. (2003)

Displacement waves impact on
people, natural and artificial
lake dams, and installations.
Waves may trigger lake outbursts
of types (1) and (2).
Permafrost-related causes of
waves: lake impacts of rock
avalanches, landslides, debris flows

5) Enhanced runoff from permafrost Not directly
investigated by
remote sensing

No published remote sensing
applications. Cf. Haeberli
et al. (1990); Zimmermann
and Haeberli (1992)

Permafrost is typically impermeable
to surface water, resulting in runoff
concentration at the permafrost table.
Temporary water storage in or
underneath permafrost is particularly
difficult to investigate but suggested
for rare cases (causes: taliks; ice-melt
in permafrost; temporary water
blockage in or under the permafrost).
The enhanced runoff is a potential
trigger of debris flows

(Continues)
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Table 4 (Continued)

Processes Remote sensing Selected case studies and
remote sensing
applications

Permafrost-related floods (continued)
6) Adverse effects of permafrost creep Monitoring of

permafrost deformation
by repeat high-resolution
optical remote sensing,
SAR interferometry and
laser scanning

Hoelzle et al. (1998); Burger
et al. (1999); Kaufmann and
Ladstädter (2003); Kenyi and
Kaufmann (2003); Strozzi et al.
(2004); Kääb (2005b); Roer et al.
(2005); Wangensteen et al. (2006);
Kääb et al. (2007)

Permafrost creep (e.g. rock
glaciers) can inundate land and
destabilise or destroy constructions
situated on or in it

Permafrost-related mass movements
7) Periglacial debris flows Only detectable using

remote sensing when
accompanied by changes
in surface geometry. Cf. (1)

Haeberli et al. (1990);
Haeberli (1992a, 1992b);
Zimmermann and Haeberli (1992);
Hoelzle et al. (1998); Chiarle
et al. (2007); Kneisel et al. (2007)

Thaw changes mechanical and
hydrological properties of frozen
ground and temporally increases its
water content. As a consequence
the susceptibility to periglacial debris
flows may increase. Temporary runoff
concentration (5) and ground saturation
by water is, thereby, involved as trigger

8) Rockfall from rock glacier front Remote sensing see (6) Bauer et al. (2003); Kääb and
Reichmuth (2005)Continuous transport of surface debris

over the rock glacier front may lead to
local rockfall threatening people and
mountain infrastructure

9) Destabilisation of frozen debris slopes Slow movements
detectable using
high-resolution
remote sensing.
Methods of (6) and
monitoring of crevasse
formation

Dramis et al. (1995);
Kaufmann and Ladstädter
(2002); Roer et al. (2005);
Kääb et al. (2007)

In rare cases entire sections of rock
glaciers or frozen debris slopes may
destabilise. Can lead to (6), (7) and (8).

10) Rockfall and rock avalanches from
frozen rock faces

Detection of changes in
snow and surface ice cover
by optical sensors; monitoring
of increasing rockfall activity
from repeat optical data
(e.g. automatic cameras,
or laser scanning);
deformation of rock flank
from laser scanning and
ground-based SAR

Wegmann et al. (1998);
Haeberli et al. (2005);
Rosser et al. (2005);
Fischer et al. (2006);
Noetzli et al. (2006);
Rabatel et al. (2007)

The thermal regime and ground ice in
frozen rock faces have complex thermal,
mechanical, hydraulic and hydrological
effects on rock stability and can cause
mass movements. Processes are also
related to (insulating) snow and surface
ice and their changes

11) Active-layer detachment
Changes in the thermal, hydrological
and mechanical ground conditions can
lead to detachment of the active layer.
May lead to (2), (3), (4), (12)

Detection from (repeat)
high-resolution optical
and microwave data;
elevation changes and
volumes from repeat
DTMs (optical, SAR,
laser scanning)

Duguay and Lewkowicz
(1995); Lewkowicz and
Duguay (1999); Lewkowicz
and Harris (2005a, 2005b)
See also (12) and (13)

(Continues)
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Table 4 (Continued)

Processes Remote sensing Selected case studies and
remote sensing
applications

Permafrost-related mass movements (continued)
12) Retrogressive thaw slumps

Similar to (11) or a consequence of it.
Progressive degradation of ground ice
and erosion of ground

See (11) Duguay and Lewkowicz
(1995); Lewkowicz and
Duguay (1999); Burn (2000);
Lantuit and Pollard (2005);
Lyle and Hutchinson (2006);
Wei et al. (2006)
See also (11) and (13)

13) Permafrost-related landslides
Similar to (11) and (12) or a
consequence of it

See (11); movements
from matching of
repeat images, SAR
interferometry; loss
of interferometric-phase
coherence

Foriero et al. (1998);
Kääb (2002, 2005b);
Zhen et al. (2003);
Couture and Riopel (2006);
Lyle and Hutchinson (2006);
Alasset et al. (2007);
Delacourt et al. (2007);
Singhroy et al. (2007)
See also (6), (11) and (12)

Other permafrost-related threats
14) Thaw settlement, subsidence and frost heave

Changes in permafrost surface elevation
due to changes in ground ice content
from ice-lens accumulation or thermokarst
processes; often connected to an increase or
decrease of active-layer thickness; affects
construction and infrastructure; may lead to
(1), (3), (5), (7), (9)–(13). Thaw and frost
heave processes may be natural or
anthropogenic in origin (e.g. changes in
snow-cover regime under structures,
basement heating, forest fires)

Monitoring of vertical
changes from repeat
high-precision DTMs
(laser scanning) or DInSAR
Detection of trigger processes
(e.g. vegetation changes due
to forest fire, storm, and pests)

Rignot and Way (1994);
French et al. (1996);
Swanson (1996);
Kääb et al. (1997);
Moorman and Vachon
(1998); Wang and Li (1999);
Zhijun and Shusun (1999);
Nelson et al. (2001);
Komarov et al. (2002);
Sjogren et al. (2003)

15) Erosion of river banks and sea coasts Spectral detection from repeat
high-resolution optical and
microwave data; detection
from differences between repeat
DTMs (airborne and terrestrial
photogrammetry, airborne SAR,
airborne and terrestrial laser
scanning)

Stockdon et al. (2002);
Brown et al. (2003);
Johnson et al. (2003);
Rosser et al. (2005);
Mars and Houseknecht
(2007); Wangensteen
et al. (2007)

Combined thermal and mechanical
erosion; may lead to (11)–(14)

DTMs¼Digital terrain models; SAR¼ synthetic aperture radar; DInSAR¼ differential interferometric synthetic
aperture radar.

Remote Sensing of Permafrost-related Hazards and Problems 117
Many permafrost-related threats involve terrain
changes over time, requiring multi-temporal method-
ologies for their assessment. Related strategies include
(Schowengerdt, 1997; Kääb, 2005b):
� m
Co
ulti-temporal data overlay and comparison,
where the results frommono-temporal image classi-
fications are compared or superimposed (Kääb and
pyright # 2008 John Wiley & Sons, Ltd.
Haeberli, 2001; Yoshikawa and Hinzman, 2003;
Smith et al., 2005) (Figure 1);
� a
nimation, where repeat images or derived classi-
fications are shown sequentially;
� m
ulti-temporal false colour composites (FCCs),
where the individual channels of a colour image
(in most cases red, green, blue) stem from
different acquisition times (Figure 2). FCCs can
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Figure 1 Outlines of a thermokarst lake in selected years for 1967–94. Note the asymmetrical lake growth towards the massive ground ice
in the south. The displacement of the northern lake shore is a consequence of lake-level lowering. The lake had to be drained because of an
impending outburst. The topography of the lake bottom and the surrounding surface, represented by 2.5 m contour lines, was
photogrammetrically determined after lake drainage in late 1995 (Haeberli et al., 2001; Kääb and Haeberli, 2001).

Co
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be composed from optical or microwave images
(Ostir et al., 2003; Kääb, 2005b);
� im
age algebra, also called band math, or algebraic
expressions, where a change image is computed
from two or more multi-temporal images through
algebraic band operations such as spectral band
ratios (R)

Ri12 ¼
DNi1

DNi2

or normalised differences (normalised difference
index, NDI)

NDIi12 ¼
DNi1 � DNi2

DNi1 þ DNi2

where DNi1 and DNi2 are the digital numbers at
times 1 and 2, respectively, of an image pixel in
spectral band i at the same geolocation (Huggel
et al., 2002; Kääb, 2005a, 2005b).
� m
ulti-temporal principal component transform-
ation (PCT), where the first principal component
computed from a multi-temporal image data set
indicates the largest radiometric changes between
pyright # 2008 John Wiley & Sons, Ltd.
the images (Schowengerdt, 1997). Multi-temporal
PCT is useful for sets of numerous repeat data
where FCCs or simple image algebra fail, such
as in the case of frequent data acquired by low-
or medium-resolution optical or microwave sensors
like MODIS, Advanced Very High Resolution
Radiometer (AVHRR), MERIS, SSM/I, or the long
Landsat time-series.
� m
ulti-temporal classifications, where repeat data
sets are included in a supervised or unsupervised
classification scheme, and the change classes and
non-change classes (e.g. class ‘forest-to-thaw lake’)
are derived automatically or through training the classi-
fication algorithm using changed terrain elements.

These techniques can be used with both optical and
SAR data. Accurate geographic co-registration of the
repeat data is obviously mandatory for any change
detection procedure.

GENERATION OF DTMS

DTMs represent a key data set in most investigations
of permafrost hazards. Furthermore, DTMs are needed
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Figure 2 Deposits of the 20 September 2002 rock/ice avalanche at Karmadon, North Ossetian Caucasus. Change detection was undertaken
using a multi-temporal red-green-blue (RGB) composite. Red: ASTER band 3 of 22 July 2001 (upper right image); green and blue: ASTER
band 3 of 13 October 2002 (lower right image). Avalanche track and deposits, as well as lakes dammed by these deposits become visible in
the false colour composite (left). The dashed outline marks the avalanche path running from south to north, the deposits in front of a gorge at
the upper edge of the image, and the lakes, which were dammed by the avalanche deposits (Kääb et al., 2003; Haeberli et al., 2005; Huggel
et al., 2005). Red-coloured changes on north-facing slopes are due to different shadow/illumination conditions between the acquisition dates.
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in several remote sensing data processing steps such as
illumination correction and orthorectification.

Satellite Stereo

An efficient method of generating DTMs for virtually
every terrestrial location on Earth is satellite along-
track stereo from sensors such as ALOS PRISM,
ASTER, SPOT-5, Ikonos and Quickbird. Along-track
stereo sensors have one or more cameras with an
oblique viewing angle in the direction of the sensors
orbit azimuth in addition to the common nadir-looking
camera (Figure 3). For polar and mountain environ-
ments, where surface conditions can change rapidly,
along-track stereo acquired within minutes during one
overflight is preferable to cross-track. Cross-track
Copyright # 2008 John Wiley & Sons, Ltd.
stereo instruments rotate the stereo camera perpen-
dicular to the flight direction towards an area that was
imaged from a neighbouring track, in some cases
weeks or months earlier. The SPOT satellite is the
satellite system most frequently used for cross-track
stereo. Satellite stereo DTMs are produced using
digital photogrammetric methods with a vertical
accuracy approximating the pixel size of the applied
sensor (e.g. 15m for ASTER; Figure 3) and with
typical horizontal grid spacings equivalent to 2–4
pixels (Kääb, 2002, 2005a; Toutin, 2002; Berthier
et al., 2004; Cuartero et al., 2005).
Large errors in DTMs derived from optical satellite

stereo can occur due to steep mountain flanks facing
away from the oblique stereo sensor (Figure 4).
Northern slopes, for instance, are strongly distorted or
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Figure 3 Geometry of two satellite along-track stereo systems for digital terrain model generation. Left: ASTER’s nadir channel (3N) and
backward-looking channel (3B) form a stereo scene with 15 m spatial resolution. Right: The ALOS PRISM sensor has a forward channel in
addition to nadir and backward channels. All three form a triplet scene with nominal 2.5 m resolution (see also Figure 4).
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even hidden in the backward-looking stereo channel of
the descending ASTER. This problem is largely
overcome by the ALOS PRISM instrument that has
forward, nadir and backward-looking channels (the
so-called triplet mode; Figure 3). Large DTM errors
also occur for particularly rough topography with
sharp peaks, that are too small to be definitively
matched between the stereo partners. Insufficient
optical (radiometric) contrast, for example on snow,
and similar features such as trees may lead to
erroneous matching of stereo parallaxes and corre-
Figure 4 Digital terrain models (DTMs) of mountainous terrain
backward-looking channels (left) and the PRISM forward, nadir an
Shuttle Radar Topography Mission DTM is shown in the right panel. D
backward channel, are much reduced by adding a forward channel to th
Narama.

Copyright # 2008 John Wiley & Sons, Ltd.
sponding DTM errors. DTM errors are often accom-
panied by low correlation values from the stereo-
parallax matching procedure and can thus be identified
using the matching correlation channel of the DTM.

Another simple and efficient method for evaluating
DTMs and detecting errors is to produce multiple
orthoimages using the same DTM, but with source
images from different positions, such as the stereo
pairs from along-track stereo. Vertical DTM errors
translate into horizontal distortions, which change
with different incidence angles and can thus be easily
in the Tien Shan, produced from the ALOS PRISM nadir and
d backward channels (middle). For comparison, a section of the
TM errors on north slopes (white arrow), which face away from the
e system. Generation of the PRISMDTMs was done together with C.
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visualised by animated overlay or other change
detection techniques (Kääb, 2005a, 2005b).

DTMs made from satellite stereo show character-
istics that are different from the characteristics of
DTMs derived using SAR interferometry. Merging
DTMs from satellite stereo with DTMs from satellite
InSAR combines the advantages of both sensor
types. An essential processing step before merging
or comparing multi-source DTMs is accurate co-
registration of the data sets.

Radar Interferometry: SRTM

Sensors in the microwave spectrum are able to
overcome the limitations of weather and sunlight
dependency of optical sensors. InSAR can be used to
generate DTMs (Renouard et al., 1995; Crosetto, 2002).
DTMs from spaceborne repeat-pass interferometry such
as provided by Envisat, ERS 1/2 and RADARSAT have
a vertical accuracy of metres and a spatial resolution of
tens of metres. Improved accuracy is expected from the
new high-resolution SAR sensors ALOS PALSAR,
TerraSAR-X and RADARSAT 2.

A particularly interesting data set originated from
the single-pass SRTM conducted in February 2000,
which produced DTMs with about 30m (1 arc-second,
SRTM1) and 90m (3 arc-seconds, SRTM3) grid size,
and with a vertical accuracy ranging from a fewmetres
to decametres (Figure 4; Kääb, 2005a; Berthier et al.,
2006). The SRTM covered the continents between
608N and 548S so it cannot be used for high-latitude
permafrost hazard management. Due to radar shadow,
foreshortening, layover and insufficient interfero-
metric coherence, the SRTM DTM has significant
voids in some areas such as high mountains. In such
cases, fusion of spaceborne photogrammetric DTMs
and the SRTM DTM can be a promising approach.

The spatial resolution of airborne SAR DTMs is
metres or less, and their vertical accuracy for
mountainous terrain is decimetres to metres, depend-
ing on the wavelength used. Current systems (Aero-
Sensing airborne SAR (AeS-1), Geographic SAR
(GeoSAR), Topographic SAR (TOPSAR)) use X- to
P-band SAR (3 cm to 80 cm wavelength) (Vachon
et al., 1996; Nolan and Prokein, 2003; Stebler et al.,
2005). Most airborne InSAR sensors apply single-pass
interferometry. However, multiple overflights with
different azimuths may be required to overcome
limitations from radar shadow or layover effects.

Aerial Photogrammetry

Aerial photogrammetry applies techniques similar to
the spaceborne optical methods, although with higher
Copyright # 2008 John Wiley & Sons, Ltd.
accuracy due to the better spatial image resolution
generally available. Digital photogrammetry based on
digitised hard-copy images or digital imagery enables
automatic DTM and orthoimage generation (Hauber
et al., 2000; Kääb and Vollmer, 2000). Depending on
the image scale and pixel size, DTMs have a vertical
accuracy of centimetres to metres and a spatial
resolution of metres to decametres (Kääb and Vollmer,
2000).
Aerial photogrammetry is a particularly important

tool in view of the existing large archives of analogue
airphotos, which for many areas are the earliest and
longest remotely sensed time-series and thus are
invaluable for quantifying temporal change. Most
aerial photographs are produced from negative film.
However, digital frame or linear array cameras are
increasingly being used (Hauber et al., 2000; Otto
et al., 2007). The possibility of generating DTMs and
orthophotos from digital imaging in near real-time
offers an important advantage in disaster management
and response.

Airborne LIDAR

DTM accuracy that is similar or better than that
provided by airborne photogrammetry can be obtained
from airborne laser scanning (or, LIDAR) (Baltsavias
et al., 2001; Stockdon et al., 2002; Geist et al., 2003;
Janeras et al., 2004; Glenn et al., 2006; van Asselen
and Seijmonsbergen, 2006). LIDAR provides good
results over snow, where photogrammetric methods
have problems due to the lack of radiometric contrast.
LIDAR DTMs have a spatial resolution of metres and
the added details of the terrain can permit more
sophisticated and accurate geomorphic interpretation
and analysis of terrain dynamics. Recording
multiple return-pulse maxima or even full return-
pulse waveform enables, for example, allows analysis
of surface roughness and discrimination between
terrain elevation and vegetation top elevation. Air-
borne laser scanners are increasingly able to record the
signal intensity (Lutz et al., 2003) and are equipped
with electro-optical imaging devices that enable
combined analyses of image and elevation data.
TERRAIN ELEVATION CHANGE AND
DISPLACEMENT

Two types of terrain displacement can be measured
using remote sensing methods: (1) displacement of
surface particles and (2) elevation change at a specific
location (Figure 5). Particle displacements are
typically three-dimensional, but can be vertical only,
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Figure 5 Gruben rock glacier, Swiss Alps. Overlay of the horizontal surface velocities (vectors) and the colour-coded changes in elevation,
both for 1970 to 1995, derived from aerial photographs (Kääb et al., 1997). To the northeast, a patchy distribution of horizontal velocities and
high rates of thaw settlement indicate dead-ice occurrences that are not in thermal equilibrium. To the southwest, a coherent flow field and
almost constant thickness point to creeping permafrost in thermal equilibrium. Themeasurements were done in relation to hazard assessment
associated with the larger thermokarst lake (see Figure 1).
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for example for thaw settlement. Elevation changes
are point measurements independent of the displace-
ment of surface particles.

Terrain Elevation Change

Terrain elevation change over time can be determined
from vertical differences between repeat DTMs. The
changes are indicators of processes such as thaw
settlement and subsidence, frost heave and mass
movements, thus their detection can be an important
step in permafrost hazard assessment and disaster
mapping (Figures 5 and 6; Kääb et al., 2005a; Lantuit
and Pollard, 2005; Delacourt et al., 2007). The
accuracy of the calculated vertical changes is a
function of the accuracy of the repeat DTMs that are
used (Etzelmüller, 2000; Kääb, 2005b). Pre- and
post-processing procedures help to improve this
accuracy:
Copyright # 2008 John Wiley & Sons, Ltd.
Pre-processing (i.e. procedures done before
DTM subtraction).
Accurate co-registration of multiple DTMs is

necessary to obtain elevation changes free of
systematic errors. If the repeat DTMs are produced
using the same method (e.g. optical stereo), the
co-registration can be assured by orienting the original
data (such as repeat satellite or aerial imagery) as one
combined, multi-temporal data set with shared ground
control points and all the images connected by
multi-temporal tie points (Kääb and Vollmer, 2000;
Kääb, 2005b).

If the original sensor model and orientation are
unavailable, or if the DTMs have different sources,
matching can significantly reduce systematic errors
in vertical DTM differences. Through correlation
techniques, the vertical and horizontal shifts of the
‘slave DTM’ can be measured with respect to the
‘master-DTM’ so that the vertical differences between
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Figure 6 Elevation changes between 1970 and 1994 on a moraine dam in the Gruben area, Swiss Alps. The dam is situated at the lower
boundary of discontinuous permafrost. Related ground ice bodies are believed to play a role in the stability of the dam (Haeberli et al., 2001).
The large breach in the middle of the figure stems from lake outbursts in 1968 and 1970. The measured elevation changes reveal dead-ice
degradation of �20 to �30 cm a�1 vertically to the south of the lake. Aerial photograph courtesy of swisstopo.
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the DTMs being co-registered are minimal for the
stable terrain sections. An optimal horizontal and
vertical shift, rotation, scale, or higher order trans-
formation between the DTMs can be computed and
the ‘slave DTM’ transformed accordingly (Pilgrim,
1996; Li et al., 2001; Kääb, 2005b). DTM correlation
focuses on stable terrain with sufficient relief (i.e.
topographic contrast). Products derived from the
DTMs, such as orthoimages (Berthier et al., 2004),
profiles, slope or curvature maps, can also be matched.

Post-processing of elevation differences.
Once the raw differences between repeat DTMs are

computed, it is necessary to filter them because the
noise in the differences is larger than in the original
DTMs (Kääb, 2005b). The task is to define a noise
model suited to the process under investigation.
Filters can be used for the spatial domain (e.g.
median, medium, Gauss) or for the spectral domain
(e.g. Fourier or wavelet) (Kääb et al., 1997; Kääb,
2005b).

A well-established method for detecting terrain
elevation changes is subtraction of repeat aero-
photogrammetric DTMs. A large number of appli-
cations exists, including measuring volumes of
deposited materials (Clague and Evans, 2000), ground
ice aggradation or degradation (Kääb et al., 1997),
thermokarst development and slope instability (Kääb
Copyright # 2008 John Wiley & Sons, Ltd.
and Vollmer, 2000; Kääb, 2005b; Lantuit and Pollard,
2005). Repeat laser scanning will increasingly be used
in such studies (Geist et al., 2003; Chen et al., 2006).
Elevation changes from repeat satellite stereo can

only be measured for a limited number of processes
due to the relatively low accuracy of such DTMs.
Nevertheless, the accuracy is sufficient to detect and
quantify large changes in terrain, such as from
avalanches, large landslides and thaw slumps
(Berthier et al., 2004; Kääb, 2005b; Lantuit and
Pollard, 2005).
DInSAR can be used to detect vertical terrain

changes. However, strictly speaking this technique
tracks three-dimensional terrain surface shifts rather
than elevation changes at fixed positions, and is
therefore described below.

Lateral Terrain Displacement

Lateral terrain movements can be a primary hazard
(e.g. landslides) or may set in motion other processes
that develop into hazards (e.g. river damming by a
thaw slump). The measurement of terrain displace-
ment, that is the movement of surface particles, from
repeat image data can thus support hazard assessment
(Kääb et al., 1997; Hoelzle et al., 1998; Kääb, 2002;
Casson et al., 2003; Delacourt et al., 2004).
If digital image correlation techniques are used,

measurements are possible at the scale of the pixel size
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of the sensor. Sub-pixel accuracy can be achieved but
is limited by changes in terrain and illumination
conditions between repeated data acquisition. Image
matching techniques can be applied to terrestrial
photos, aerial photos, optical satellite images, airborne
and spaceborne SAR images, or high-resolution
DTMs. Depending on the data and the technique
employed, the horizontal, vertical or both components
of surface displacement are measured (Kaufmann and
Ladstädter, 2002; Berthier et al., 2005; Kääb, 2005b).
The rate of terrain movement that can be detected,

depends on the image pixel size, the temporal baseline
and terrain preservation between the data acquisition
dates. Slow rock mass displacements or permafrost
creep with displacement rates of centimetres to
metres per year can be detected and measured using
aerial photographs and high-resolution satellite
images (Ikonos, QuickBird, ALOS PRISM, SPOT-5)
(Figures 5 and 7; Kääb, 2002; Delacourt et al., 2004).

DInSAR enables measurements of terrain displace-
ments of a few millimetres (Figure 8). Application of
the method depends on interferometric coherence,
topography and SAR imaging geometry; information
is missing in layover and shadowed areas (Nagler
et al., 2002; Eldhuset et al., 2003; Strozzi et al., 2004).
Coherence is lost, for example, where the terrain is
eroded or the surface wetness changes significantly
(Weydahl, 2001; Sjogren et al., 2003). DInSAR
provides only the line-of-sight displacement directly,
that is the projection of the actual terrain displacement
vector on the line between the terrain point and the
sensor. In theory, the horizontal and vertical displace-
ment components can be separated by combining
line-of-sight displacements measured from ascending
and descending orbits (Joughin et al., 1999). Appli-
cation of this approach depends on the azimuth angle
between ascending and descending orbits and the
topography, whichmay limit terrain visibility from both
orbits. Otherwise the vertical and horizontal com-
ponents must be estimated or modelled from the type of
terrain movement under investigation (Wang and Li,
1999; Strozzi et al., 2001). Typical DInSAR appli-
cations in permafrost hazard assessments are detection
of rock mass movements, landslide movement and
permafrost creep (Figure 8; Moorman and Vachon,
1998; Rott and Siegel, 1999; Nagler et al., 2002; Strozzi
et al., 2004; Tait et al., 2005; Singhroy et al., 2007).
DInSAR can be applied to dominant and permanent

microwave backscatterers such as buildings or distinct
rock formations using a large number of SAR scenes,
reducing atmospheric error effects and enabling
detection of small movements due to landslides or
settlement processes (Dehls et al., 2002; Colesanti
et al., 2003; Hilley et al., 2004).
Copyright # 2008 John Wiley & Sons, Ltd.
SAR interferometry techniques rely on phase
coherence between repeat data. Loss of interfero-
metric phase-coherence, however, does not necessary
mean that the method has failed. It may rather point to
processes such as destruction of vegetation on a
landslide, or ground ice melt (Moorman and Vachon,
1998; Weydahl, 2001; Sjogren et al., 2003).

DInSAR and optical image matching methods for
permafrost hazard assessments are highly comp-
lementary; as a very general rule, DInSAR may work
where image matching fails, and vice versa.
REMOTE SENSING APPLICATIONS AND
LIMITATIONS

A combination of the above-listed methods is often
used to remotely sense permafrost-related hazards,
problems and disasters. A detailed list of hazard and
problem types, remote sensing possibilities and
references to case studies are given in Table 4. Here,
the capabilities and limitations of remote sensing for
these applications are discussed.

Permafrost-related Floods

In cold mountain regions, ground thermal conditions
in moraines are often important to the stability of
moraine-dammed lakes. For example, permafrost or
near-permafrost conditions cause the long-term
preservation of dead-ice bodies, which leave behind
cavities when they melt (Richardson and Reynolds,
2000). Repeat DTMs can reveal thaw settlement
resulting from melt of ground ice (Figure 6). Due to
the large spatial variability and the small magnitude of
such vertical changes, remote sensing methods of high
spatial resolution and high vertical accuracy are
required, typically aerial and terrestrial photogram-
metry and airborne and terrestrial laser scanning.

Matching of repeat high-resolution images or
LIDAR-derived DTMs may also enable detection of
lateral displacements on moraine dams due to ground
ice deformation or melt. In theory, SAR interfero-
metry can also be used, but in practice the deformation
features are usually too small compared to the spatial
sensor resolution to allow reliable identification. New
high-resolution SAR sensors such as TerraSAR-X and
others under development may improve the situation.

A number of remote sensing methods support sus-
ceptibility assessments relating to moraine-dammed
lakes. These include identification of moraine dams,
measurement of their geometry for stability and
volume assessments, monitoring of lake areas and
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Figure 7 Instability of a rock glacier snout (Turtmanntal, Swiss Alps). Upper panel: velocity vectors measured from airphotos of 1987 and
1993; lower panels: orthophotos of the terminus section of the rock glacier. Images of 1975, 1987 and 1993 are courtesy of swisstopo; the
2001 image is a linear array charge-coupled device (pushbroom) image taken by the High Resolution Stereo Camera Airborne (HRSC-A)
camera, courtesy of Department of Geography, University of Bonn. The rock glacier instability led to enhanced rockfall and required
construction of a protection dam (not shown). Data processing by I. Roer (Roer et al., 2005; Kääb et al., 2007).
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generation of DTMs for modelling potential perma-
frost occurrences.

Deposits from permafrost-related slope failures can
dam rivers, causing outbursts and floods when these
dams fail. High temporal and spatial sensor resolution
and automatic systematic analyses based on repeat
satellite data would be necessary to initially detect
such river damming on an operational level. Such
remote sensing systems are not yet fully operational
but are expected in the near future (see the section on
disaster management below). SAR data have a
particularly large potential for such tasks because
Copyright # 2008 John Wiley & Sons, Ltd.
microwave sensors are independent of sunlight and
weather. In the case of a dam that lasts long enough to
allow acquisition of repeat data, techniques similar to
the ones for moraine dams can be applied to monitor
its development and that of the associated lake
(Figure 2).
The progressive growth of thermokarst or thaw

lakes may lead to their breaching and subsequent
flooding of downstream areas. These lakes are
typically easily detectable and grow slowly so that
their distribution and development can be reliably
monitored using operational airborne and spaceborne
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Figure 8 Upper panel: Synthetic aperture radar (SAR) interfero-
gram of the Gruben area, Swiss Alps, using ERS data (Strozzi et al.,
2004). The displacements of three rock glaciers (white arrows) are
easily detectable. Rectangle (a) marks the area shown in Figure 5.
Rectangle (b) marks the area shown in the lower panel. Lower panel:
aerial photograph of a rock glacier tongue. The rock glacier creep
transports debris onto a steep slope and thus causes rockfall and
debris flows. SAR processing by T. Strozzi. Aerial photograph
courtesy of swisstopo.
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optical and SAR sensors (Figures 1 and 5). It is rarely
possible, however, to predict the time of breach and
the breach process mechanism using remote sensing.
There are cases reported where runoff concen-

tration at the permafrost table has triggered debris
flows and other mass movements. Such sub-surface
Copyright # 2008 John Wiley & Sons, Ltd.
processes are not generally suitable for direct
investigation by remote sensing.

Permafrost-related Mass Movements

Permafrost creep, exemplified by the creep of rock
glaciers, may have adverse effects such as inundation of
land, destabilisation of constructions and rockfall from
the rock glacier front (Table 4). Permafrost creep can
transport debris into locations from which debris flows
or landslides originate. Feature matching based on
repeat terrestrial, airborne and high-resolution space-
borne data, matching of repeat LIDAR-derived DTMs
and SAR interferometry has proven very useful for
detecting and quantifying lateral displacements on
creeping permafrost (Figures 5,7 and 8). The global
availability of repeat spaceborne SAR data and repeat
spaceborne optical data with a spatial resolution of 1m
or better enables velocity measurements to be
performed for a large number of problematic rock
glaciers. In order to be detectable from repeat
optical data at a statistically significant level, the total
lateral displacement should be larger than the spatial
resolution of the sensor used. Changes in excess ice
content and local instabilities on rock glaciers can be
measured from differencing high-accuracy DTMs
generated from aerial stereo-photogrammetry or
terrestrial and airborne laser scanning (Figure 5).

The steep topography of rock walls severely limits
the applicability of most remote sensing methods for
monitoring frozen rock walls and related rockfall and
rock-avalanche threats. Often, parts or entire rock
faces are hidden in images due to adjacent topography,
or are highly distorted due to the steep surface slope.
The most promising remote sensing techniques for
monitoring rock faces include: aerial photogrammetry
and automatic terrestrial imaging for monitoring
changes such as ice and snow cover, as well as rock
avalanches; terrestrial and airborne laser-scanning for
deriving repeat high-resolution DTMs and geometry
changes; ground-based radar interferometry for
deformation measurement. Spaceborne sensors are
less useful for examining steep rock faces with the
exception of images taken with large off-nadir angles
pointing towards the rock face under study (e.g. using
the backward or forward channels of a stereo sensor).
Space imagery is useful for inventorying rock
avalanche events and for assessing related parameters
such as distance, overall slope and possibly volume.

Active-layer detachments, thaw slumps and perma-
frost-related landslides are often detectable by
disturbed vegetation in repeat optical images, provid-
ing the surface area affected is much larger than the
spatial sensor resolution. DTMs from repeat terrestrial
Permafrost and Periglac. Process., 19: 107–136 (2008)
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or aerial photogrammetry and terrestrial or airborne
LIDAR have proven highly suitable for quantifying
elevation changes and advected volumes of mass
movements. Where surface features are preserved
during the movement process, surface velocities may
be measured using repeat terrestrial and airborne
images or detailed DTMs (Figure 7). In areas with
little vegetation, the deformation of permafrost-related
landslides with intact surfaces can potentially be
measured using SAR interferometry. If the surface is
disturbed, the landslide area may become traceable as
a zone of distinct loss of interferometric-phase
coherence. Installation of artificial SAR targets
(corner reflectors) may enable monitoring of the
movement, although only at individual points. On
landslides that cover a large area and cause thickness
changes of many metres to tens of metres, high-
resolution spaceborne optical stereo data can also be
used for assessing elevation changes and horizontal
displacements, and in rare cases, even spaceborne
LIDAR.

Remote sensing is able to assist modelling of terrain
susceptibility to permafrost-related mass movements,
for example by providing DTMs, geomorphometric
parameters, surface characteristics and their changes
with time.

Other Permafrost-related Threats
and Problems

Surface elevation changes due to thaw settlement,
subsidence and frost heave can only be detected with
high-precision DTMs such as ones derived using
terrestrial and airborne photogrammetry or laser
scanning (Figure 5). Several studies suggest that it
is also possible to detect vertical changes of this type
over large areas using differential SAR interferometry.
A number of remote sensing sensors and methods (e.g.
repeat optical or SAR spaceborne data) are well suited
for detecting and monitoring surface changes, which
eventually can trigger thaw settlement and ground
instability (e.g. snow-cover variations and changes in
vegetation due to forest fires, storms or pests).

Erosion of frozen river banks, lake shores and sea
coasts can be detected from almost any repeat optical
or microwave data due to the good spectral contrast
between land and water providing the lateral change
on the ground is significantly greater than the spatial
resolution of the sensor (Figure 1). Automatic change
detection procedures can be particularly useful for
monitoring large areas. Differencing of repeat high-
resolution DTMs enables quantification of eroded
volumes. Airborne laser scanning is increasingly
being used for such studies.
Copyright # 2008 John Wiley & Sons, Ltd.
EARLY WARNING AND DISASTER
RESPONSE

Remote sensing in relation to permafrost can be
applied at all stages of the risk cycle: before, during, or
after the occurrence of a problem or disaster
(Figure 9). Directly after an event, for example,
remotely sensed images can support the delimitation
of affected areas and undamaged access routes for
emergency personnel, as well as detection of damage
severity in order to prioritise targets for search-
and-rescue operations. Rapid understanding of the full
nature and extent of an event is crucial for many
emergency and relief actions, for example in order to
assess possible subsequent hazardous events that
could threaten civil protection personnel. The main
applications of remote sensing in the rehabilitation
and reconstruction phases of the risk cycle are detailed
damage assessment maps, to be used for repair,
insurance purposes and reconstruction planning.
Most research-related remote sensing applications

to permafrost-related hazards are found within
assessments of susceptibility, hazard and risk (see
Table 4). Applications to other stages of the risk cycle
are often performed at the operational and applied
level, for example by civil protection authorities and
engineering companies. Land-use planning, and
planning and construction of prevention or protection
structures are often supported by remotely sensed data
such as detailed DTMs and orthoimages. Remote
sensing also helps improve preparedness, for example
in planning evacuation and access routes.
Airborne and spaceborne remote sensing in general

are not suitable for direct forecasting of disasters and
monitoring of events due to relatively low temporal
resolution. However, ground-based remote sensing
methods can be very useful for early warning purposes
after a hazardous site has been identified, perhaps
using airborne and spaceborne remote sensing. Laser
and radar range finders or automatic cameras can
track natural or artificial targets on unstable terrain
and trigger warnings when certain thresholds are
exceeded.
Autonomous on-board decision systems on satel-

lites could automatically select imaging targets as
well as times and sensor settings, and thereby increase
the efficiency of on-board systems, and reduce the
reaction time and effort for hazard and disaster
management (Davies et al., 2006a; Ip et al., 2006).
Integrating remote sensing for the management of

permafrost-related problems serves three major
applied and scientific needs: it provides (a) overviews
of problems and damage extent, (b) frequent moni-
toring and (c) disaster documentation (Figure 9). The
Permafrost and Periglac. Process., 19: 107–136 (2008)
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Figure 9 The risk cycle and application fields of remote sensing for management of permafrost-related hazards and disasters.
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first and second requirements are directed towards
search-and-rescue operations and civil protection, and
primarily require rapid and repeated data acquisition.
The short repeat cycle for some satellite sensors makes
spaceborne methods suitable for disaster management
(Kääb et al., 2003). Due to the limitations of optical
remote sensing during periods of cloud cover and
darkness, the application of repeat weather-
independent and sun-independent SAR data can be
especially important (Kerle and Oppenheimer, 2002).
A number of initiatives are presently underway to

create satellite constellations designed for disaster
management, for example, DMC (Tobias et al., 2000;
Kerle and Oppenheimer, 2002; Curiel et al., 2005;
Davies et al., 2006b). Most of the planned and
operational constellations rely on groups of small or
micro-satellites, somewith combined optical and SAR
sensors, to address the crucial requirements of disaster
management from space: short-reaction time, the
potential for high revisit frequencies, and day-
and-night and all-weather capability.
Remotely sensed documentation of a disaster, even

if the data are not analysed immediately, can be an
Copyright # 2008 John Wiley & Sons, Ltd.
important source of information for thoroughly in-
vestigating the event and the processes involved at
a later date. This can allow scientific and applied
conclusions of broader interest to be drawn (Huggel
et al., 2005).

The International Charter ‘Space and Major
Disasters’ offers potentially important remote sensing
support for managing large permafrost-related dis-
asters. Under this contract, space agencies and
commercial satellite companies provide, under certain
circumstances, rapid and free emergency imaging.
Sensors include Envisat, ERS, IRS, RADARSAT,
Landsat, SPOT, ALOS and DMC. Selected national
and international civil protection, rescue and security
authorities can activate the charter (www.disas-
terscharter.org). The ASTER sensor on the Terra
spacecraft can also be activated for supporting disaster
management (Kääb et al., 2003).

The Global Earth Observation System of Systems
aims at a global infrastructure that generates
comprehensive, near-real-time environmental data,
information and analyses, based on existing and new
remote sensing sensors and systems. An important
Permafrost and Periglac. Process., 19: 107–136 (2008)
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target application of this network system is disaster
management.
CONCLUSIONS AND PROSPECTS

Current developments in air and space technologies
suggest that there remains considerable potential for
these technologies to assist hazard experts and
responsible authorities in managing the challenges
they face in cold environments. Remote sensing,
therefore, is becoming an increasingly important and
integrative component of permafrost hazard assess-
ment and management.

Airborne and spaceborne remote sensing offers
support for assessing the hazard susceptibility, rather
than trigger conditions and short-term forecasting of
events. An exception to this general rule may be
high-frequency spaceborne emergency imaging
when used for monitoring meteorological events or
observing changes in surface conditions that could
trigger permafrost-related problems. Early warning of
impending disasters is one of the ultimate goals of
earth observation from space and air, and of the related
technological development. To reach this goal,
improvements will be needed in: the reaction time
and temporal resolution of remote sensing systems,
autonomous or computer-aided decisions about
acquisition targets, the integration of high-resolution
optical and SAR data, and data and information
availability.

Assessment of permafrost hazards requires knowl-
edge about the potential processes, their magnitude
and their probability. Space- and airborne remote
sensing can assist in detecting threats, but estimating
event magnitude and frequency requires models and
empirical data. A major application of remote sensing
in permafrost hazard assessments is to provide data for
numerical models in support of hazard assessments,
such as DTMs and surface displacements for landslide
modelling, or spectral surface characteristics for
energy-balance modelling.

The spatial resolution and accuracy of most space-
borne methods make them applicable for regional-
scale permafrost hazard assessments at the level of
hazard indication maps (scales 1:25 000–1:50 000).
For more detailed hazard assessments, airborne
methods, high-resolution spaceborne methods, or
terrestrial surveys are necessary.

Modern space technologies enable virtually every-
one to access space imagery and use visualisation
tools, independent of political and geographical
restrictions. This fundamental ‘democratisation’ pro-
cess in relation to many types of natural threats
Copyright # 2008 John Wiley & Sons, Ltd.
presents new opportunities, dangers and responsibil-
ities for the public, governments and the experts
involved. On the one hand, remote sensing is an
invaluable tool for the detection and management of
permafrost hazards, problems and disasters. On the
other, it is increasingly possible to generate con-
clusions based on easily accessible space and aerial
images without the necessary expert knowledge. Such
information may develop into false warnings and
significantly complicate the work of governments and
planners.
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Farbrot H, Etzelmuller B. 2006. Surface displacements
and surface age estimates for creeping slope landforms
in Northern and Eastern Iceland using digital photo-
grammetry. Geomorphology 80(1–2): 59–79.

Wangensteen B, Eiken T, Odegard RS, Sollid JL. 2007.
Measuring coastal cliff retreat in the Kongsfjorden
area, Svalbard, using terrestrial photogrammetry. Polar
Research 26(1): 14–21.

Watanabe T, Kameyama S, Sato T. 1995. Imja glacier
dead-ice melt rates and changes in a supra-glacial lake,
1989–1994, Khumbu Himal, Nepal: Danger of lake
drainage. Mountain Research and Development 15(4):
293–300.
Copyright # 2008 John Wiley & Sons, Ltd.
Wegmann M, Gudmundsson GH, Haeberli W. 1998.
Permafrost changes in rock walls and the retreat of
alpine glaciers: a thermal modelling approach. Perma-
frost and Periglacial Processes 9(1): 23–33.

Wei M, Niu FJ, Satoshi A, An DW. 2006. Slope instabil-
ity phenomena in permafrost regions of Qinghai-Tibet
Plateau, China. Landslides 3(3): 260–264.

Wessels R, Kargel JS, Kieffer HH. 2002. ASTER
measurement of supraglacial lakes in the Mount Ever-
est region of the Himalaya. Annals of Glaciology 34:
399–408.

Weydahl DJ. 2001. Analysis of ERS tandem SAR coher-
ence from glaciers, valleys, and fjord ice on Svalbard.
IEEE Transactions on Geoscience and Remote Sensing
39(9): 2029–2039.

Whitworth MCZ, Giles DP, Murphy W. 2005. Airborne
remote sensing for landslide hazard assessment: a
case study on the Jurassic escarpment slopes of
Worcestershire, UK. Quarterly Journal of Engineering
Geology and Hydrogeology 38: 285–300.

Yoshikawa K, Hinzman LD. 2003. Shrinking thermokarst
ponds and groundwater dynamics in discontinuous
permafrost near Council, Alaska. Permafrost and Peri-
glacial Processes 14(2): 151–160. DOI: 10.1002/
ppp.451

Zhen L, Huadong G. 2000. Permafrost mapping in the
Tibet plateau using polarimetric SAR. IEEE Geo-
science and Remote Sensing Symposium. vol. 5,
2024– 2026.

Zhen L, Xinwu L, Xin R, Qin D. 2003. Frozen ground
deformation monitoring using SAR interferometry.
IEEE Geoscience and Remote Sensing Symposium.
vol. 4, 2933–2935.

Zhijun W, Shusun L. 1999. Detection of winter
frost heaving of the active layer of Arctic per-
mafrost using SAR differential interferograms. IEEE
Geoscience and Remote Sensing Symposium. vol. 4,
1946–1948.

Zimmermann M, Haeberli W. 1992. Climatic change and
debris flow activity in high-mountain areas - a case
study in the Swiss Alps. Catena Supplement 22:
59–72.
Permafrost and Periglac. Process., 19: 107–136 (2008)

DOI: 10.1002/ppp


