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This study evaluates the performance of two fundamentally different approaches to achieve sub-pixel
precision of normalised cross-correlation when measuring surface displacements on mass movements from
repeat optical images. In the first approach, image intensities are interpolated to a desired sub-pixel resolution
using a bi-cubic interpolation scheme prior to the actual displacement matching. In the second approach, the
image pairs are correlated at the original image resolution and the peaks of the correlation coefficient surface
are then located at the desired sub-pixel resolution using three techniques, namely bi-cubic interpolation,
parabola fitting and Gaussian fitting. Both principal approaches are applied to three typical mass movement
types: rockglacier creep, glacier flow and land sliding. In addition, the influence of pixel resolution on the
accuracies of displacement measurement using image matching is evaluated using repeat images resampled
to different spatial resolutions. Our results show that bi-cubic interpolation of image intensity performs best
followed by bi-cubic interpolation of the correlation surface. Both Gaussian and parabolic peak locating turn
out less accurate. By increasing the spatial resolution (i.e. reducing the ground pixel size) of the matched
images by 2 to 16 times using intensity interpolation, 40% to 80% reduction in mean error in reference to the
same resolution original image could be achieved. The study also quantifies how the mean error, the random
error, the proportion of mismatches and the proportion of undetected movements increase with increasing
pixel size (i.e. decreasing spatial resolution) for all of the three mass movement examples investigated.
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1. Introduction

Present climatic change shifts geomorphodynamic equilibriums
and intensifies related mass movement processes such as landslides
and permafrost creep (Haeberli & Beniston, 1998; Rebetez et al.,
1997). Extension and intensification of human activities in areas
affected by such mass movements increase the probability of
connected adverse impacts like natural hazards or building stability
problems. A growing number of remote sensing opportunities exist to
monitor such mass movements. The increasing number of available
collections of multi-temporal space-borne, air-borne and terrestrial
images, and the improvements in remote sensing and image
processing in general significantly enhance the potential for applying
matching techniques to detect and quantify Earth surface mass
movements from repeat remotely sensed data. These needs and
developments call for continued efforts to improve terrain displace-
ment matchingmethods based on repeat images for a large number of
applications in Earth sciences.
Image matching is a group of techniques of finding corresponding
features or image patches in two or more images taken of the same
scene from different viewing positions, at different times and/or
using different sensors. Image matching is used for a large variety of
applications such as image (co-)registration, stereo parallax matching
for generation of digital elevation models, particle image velocimetry
(PIV), or displacement measurements (Brown, 1992; Westerweel,
1993; Zitová & Flusser, 2003).

The group of area-based matching techniques is the most widely
used method due to its relative simplicity (Zitová & Flusser, 2003).
Cross-correlation, particularly in its normalised form which accounts
for brightness and contrast in image sequences, is the most widely
used similarity measure of this method due to its reliability and
simplicity (Lewis, 1995). The normalised cross-correlation (NCC)
algorithmhas been used to investigate Earthmassmovements such as
glacier flow, rockglacier (used here as one word after Barsch (1996))
creep and land sliding in many empirical studies (e.g. Haug et al.,
2010; Kaufmann & Ladstädter, 2003; Kääb, 2005; Kääb & Vollmer,
2000; Quincey et al., 2005; Scambos et al., 1992; Scherler et al., 2008;
Skvarca et al., 2003; Taylor et al., 2008; Wangensteen et al., 2006).

Although NCC has been documented to be simple and reliable, a
number of drawbacks have been reported as well (Lewis, 1995;
Scambos et al., 1992; Zhao et al., 2006). Firstly, NCC is sensitive to
noise in the images. Secondly, NCC is sensitive to significant scale,
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Table 1
Movement process types, spatial resolution of the original images and resolution
pyramids used in this study, and examples of satellite sensors simulated by this image
resolution resampling.

Mass
movement
type

Resampling
factor

Ground
pixel size
(m)

Examples of optical satellite
systems simulated

Rockglacier and
landslide

Original 0.2
2 0.4 IKONOS, WorldView-1
4 0.8 IKONOS, QuickBird
8 1.6 QuickBird
16 3.2 SPOT 5 panchromatic,

ALOS(PRISM)
32 6.4 SPOT 5 panchromatic

Glacier Original 0.5
2 1 IKONOS
4 2 IKONOS, QuickBird, SPOT 5

panchromatic, ALOS (PRISM)
8 4 SPOT 5 panchromatic
16 8 SPOT panchromatic
32 16 ASTER, Landsat 7 panchromatic
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rotation or shearing differences between the images to be correlated.
Thirdly, for themeasurement to be reliable the displacement has to be
greater than the mean error of the image (co-)registration. Fourthly,
the precision of NCC is, in principle, limited to one pixel, and thus
varies with the pixel size of the image data used.

Pixel-level accuracymight be satisfactory depending on the spatial
resolution of the imagery available and the type of process being
investigated. Improving NCC precision, however, improves displace-
ment accuracy two fold: by reducing the image co-registration error
and by improving thematching accuracy directly. To achieve sub-pixel
precision in NCC, two approaches can be used. The first option is to
resample the image intensity to a higher spatial resolution through
interpolation. This approach has been applied in stereo matching (e.g.
Szeliski & Scharstein, 2002) and in displacement measurement of
Earth surfacemovements (e.g. Crippen&Blom, 1991; Yamaguchi et al.,
2003). The second option is to interpolate the cross-correlation surface
after the matching process to a higher spatial resolution in order to
locate the correlation peakwith sub-pixel precision. This approach has
been applied in image registration (e.g. Althof et al., 1997; Scambos
et al., 1992), in mechanics to measure the velocity of particles (e.g.
Westerweel, 1993; Willert & Gharib, 1991), in motion tracking to
measure displacements of landslide (e.g. Delacourt et al., 2004;
Yamaguchi et al., 2003) and glaciers (e.g. Scambos et al., 1992).
There are also area-based spatial domainmethods that are intrinsically
capable of sub-pixel precision such as the least squares matching,
which is more often used in stereoscopic DEM generation and image
registration. Least square matching is known for its capability to deal
with scaling and rotation and has occasionally been used in the
displacement measurement of mass movements (e.g. Kaufmann &
Ladstädter, 2003; Whillans & Tseng, 1995). Other techniques that are
used in mass movement analysis for achieving sub-pixel precision are
the Fourier-based phase matching and gradient-based matching
(e.g. Haug et al., 2010; Leprince et al., 2007; Taylor et al., 2008). Pre-
processing steps such as noise filtering and post-processing steps
such as filtering of displacement vectors by averaging are also able to
improve the precision and accuracies of displacement estimates (Kääb
& Vollmer, 2000; Zitová & Flusser, 2003).

The present study focuses exclusively on mass movement analysis
by NCC due to thewide-spread use of this technique, and its simplicity
and reliability. Thus, we do not consider the above methods that are
intrinsically capable of sub-pixel precision. Further, we concentrate
on the intensity interpolation and the correlation interpolation
approaches because both are generic and independent of image
resolution. There is no study available that rigorously compares the
relative performance of the two approaches when measuring the
displacement of mass movements from repeat images.

Mass movement, in the context of our study, refers to the down-
slope movement of Earth materials including rocks, glacier ice and
debris triggered by agents such as gravity, water, and tectonic activity
(Ritter, 2006). Many Earth surface mass movements such as landslide,
glacier flow, and rockglacier creep are characterized by displacement
rates of the same order of magnitude as the spatial resolution of the
space-borne or air-borne imagery typically available for their
measurement. Such masses usually move with rates in the order of
several centimetres to some hundred meters per year. Sub-pixel
precision of image matching algorithms, here NCC, therefore has a
large potential to improve the signal-to-noise ratio of the measure-
ments. In other words, improving the precision (i.e. level of detail of
the measurement) of displacement estimation contributes to the
improvement of accuracy (i.e. the certainty of the estimation).

UsingNCC as an example, this study compares the accuracies of two
fundamentally different approaches to reaching sub-pixel precision in
mass movement measurement from repeat remotely sensed images,
namely intensity interpolation and correlation interpolation. The
study specifically aims at (i) quantifying the effects of pixel size (i.e.
ground area represented by a pixel) on the accuracy of displacement
matching, (ii) quantifying and comparing the performances of dif-
ferent sub-pixel precision algorithms, and (iii) identifying the gains
and limit of the sub-pixel precision algorithms.

2. Methods

2.1. Image data and resolution pyramid

For this study, three different types of mass movements were
selected based on their frequency in high mountain areas: land
sliding, glacier flow, and rockglacier creep. Three temporal pairs of
airphotos each covering ground areas of 0.35 km2, 3 km2 and
0.25 km2 respectively were used. These images were orthorectified
prior to displacement matching. Details are given in Section 3.

Better understanding of the influence of spatial resolution on the
accuracy of image matching requires images of the same area taken at
the same time, under the same flight and ground conditions, but using
sensors with different spatial resolutions. Such conditions are not
easily met. Instead, different optical systems were simulated by
down-sampling the original high-resolution aerial orthoimages to five
levels of lower spatial resolution (Table 1). One resolution pyramid
with six levels each was finally obtained for each of the two repeat
images of each of the three mass movements as shown in Fig. 1. The
resolution pyramids are thus not the same as the Gaussian or
Laplacian image pyramids often used in multi-scale image analysis or
in image visualisation. The down-sampling factors here are chosen for
convenience. The down-sampling was performed using the MATLAB
module ‘imresize’ with the most efficient and reliable algorithm for
this purpose, namely bi-cubic convolution. The algorithm assigns the
weighted average of pixel values in the nearest 4-by-4 neighbourhood
(Keys, 1981). Although this resampling process is slightly different
from the pure signal averaging happening in the instantaneous field of
view of a sensor detector cell, we decided to choose bi-cubic
convolution because most images used for matching will in practice
have undergone such interpolation during image correction and pre-
processing steps, such as orthorectification (Toutin, 2004).

Additionally, one resolution pyramid was created from one of
the original glacier images after applying a two-dimensional trans-
lation of 15 pixels (9 pixels in the x-direction and 12 pixels in the
y-direction). This translation becomes a non-integer pixel displace-
ment in the lower resolution resampled images. Since this pair was
made from just one original image and the displacement applied was
only translation, the pair serves as a control data set as it is free of
noise from temporal surface changes, changes in imaging condition,
registration errors and geometric distortions.



Fig. 1. Setup of the image resolution pyramid, w being the ground pixel size (GPS) of the
original image.
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2.2. Normalised cross-correlation

The normalised cross-correlation (NCC) algorithm is a similarity
measure that is used in image matching to measure the similarity
between matching entities in one image and their corresponding
entities in the other image. The algorithmwas developed based on the
concept of distance measure but second normalised to account for the
differences in brightness and contrast (Lewis, 1995; Vosselman et al.,
2004). An image I1 over an area is taken at time T1 and another image
I2 over the same area at time T2 (Fig. 2). The term f(x, y) stands for the
intensity values of a squared area that is a subset of I1, t(x−u, y−v) for
the intensity values in a squared area in I2 of the same size as f(x, y),
where u and v are integer pixel offsets in x- and y-direction
respectively. f(x, y) is further called reference template and t(x−u,
y−v) is called search template. The size of the template is chosen to be
large enough to maximize the signal-to-noise ratio and small enough
to minimize velocity gradients (Kanade & Okutomi, 1991). The search
area size is chosen to be large enough to include the farthest moving
template and small enough to limit the computational cost of the
matching. To find the corresponding square to f(x, y) in I2, the
normalised cross-correlation coefficient (ρ) between f(x, y) and
corresponding window in I2, t(x−u, y−v), is computed. The NCC
coefficient ρ is computed as given in Eq. (1) and is assigned to the
central pixel of the template (Lewis, 1995; Vosselman et al., 2004).
The computation continues by moving t in every iteration by 1 pixel
until the entire search window is covered. After finishing the
computation, the pixel (x0, y0) in the search windowwith the highest
Fig. 2. Scheme of the image pairs together with the reference tem
correlation coefficient is considered as the likely best match for the
central pixel of the reference template. The Euclidean distance
between the coordinates of the reference point [x, y] and the
matching point [x0, y0] is considered as the horizontal displacement
magnitude, d(x, y).

ρ x; yð Þ =
∑x;y f x; yð Þ � f

� �
t x� u; y� vð Þ � t
� �

∑x;y f x; yð Þ � f
� �2∑x;y t x� u; y� vð Þ � t

� �2� �1=2 : ð1Þ

f is themean of the intensities in the reference template f(x, y) and
t is the mean of the intensities in the search template t(x−u, y−v).
The values of ρ range between −1 (when the matching entities are
inverses of each other) and 1 (when the matching entities are exactly
the same). ρ=0 is an indication of no relationship between the
matching entities. Even if there is no truly corresponding entity in the
search image, there will always be some peak correlation coefficient.
Therefore, it is necessary to decide a threshold for ρ below which the
match is rejected.

2.3. Matching and displacement measurement at different pixel sizes

First, the original high-resolution orthoimages (before resam-
pling) were matched using the NCC algorithm at pixel-precision to
determine the matching positions and compute the horizontal
displacement magnitude and direction. Mismatches that were
characterized by low peak correlation coefficients, very large
displacements in relation to their neighbouring templates, or
displacements showing distinct upslope movement were removed
manually. Since manual removal of the mismatches is heuristic and
influences the final analysis, the proportion of mismatches is counted
and reported separately as an indicator of performance. Additionally,
displacements less than the mean orthorectification error were
removed as they are not reliably distinct from the error. The
orthorectification error (offset between the images) was computed
by matching stable grounds. The computation revealed that a
maximum of 1 pixel offset exists in each dimension at the resolution
of the original orthoimages. In orthoimages, positional errors increase
radially from the projection centre proportional to the magnitude of
the vertical errors in the digital elevation model used for the
orthoprojection. All our three mass movements are located near the
centres of the original air photos and the stable grounds are located
towards the edges. Therefore, the here-estimated offset error is
assumed to exceed the actual positional errors on the mass move-
ments. The matching results on the original full-resolution images
plate, central pixel, search template and the search window.

image of Fig.�2
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were considered as reference for all other measurements throughout
the resolution pyramid pairs.

Matching and displacement measurement were in a next step
performed on all resolution levels of the resolution pyramid pairs for
all locations used also above for the original images. The absolute sizes
and positions of the reference templates and the search windows
were kept constant in ground coordinates throughout the resolution
pyramid by adjusting the number of pixels according to the
resolution. This procedure was in order to avoid variations in signal
content as a result of inclusion or exclusion of ground features. In
other words, the ground area covered by the templates remained the
same when the respective image resolution changed. The size of the
template was kept at around 26 m and 65 m for the originally 0.2 m
and 0.5 m resolution images, respectively. The size of the search
window was kept at around 102 m and 265 m for the originally 0.2 m
and 0.5 m resolution images, respectively, so that it certainly included
the expected maximum surface displacement.

The performance of the matching at different resolutions was
evaluated by comparing the obtained matching position to those
obtained from the image pairs at original full resolutions. Often, the
accuracy of displacement measurements using cross-correlation is
evaluated by comparing the estimated displacement magnitude (di)
to the actual displacement magnitude (d0). In this study, this is found
to be misleading as the displacement direction is equally important to
assess the matching accuracy. Therefore, instead of using the
difference in displacement magnitude as an indicator of accuracy,
we use the shift in matching position (Fig. 3). The matching positions
obtained during the correlation of the original images [x0, x0] are
considered as references. All the matching positions at the different
coarser or back-interpolated (see next section) resolutions [xi, yi] are
compared to these reference positions. The magnitude of this
deviation (dev) is here used as measure for the performance of the
image and algorithm used (Eq. 2).

dev =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x0ð Þ2 + yi−y0ð Þ22

q
: ð2Þ

The image and algorithm performance was evaluated based on
three types of errors known in image matching, namely mismatches
(spurious matches), mean bias (here mean deviation) and the root
mean square (RMS) error (Huang et al., 1997; Lourenco & Krothapalli,
1995). Additionally, the proportion of undetected movements was
also added as a measure of the influence of pixel size on the success of
displacement measurements. The mismatches and the undetected
moving entities were counted globally while the magnitudes of the
mean deviation and the RMS were computed locally (Eqs. 3 and 4).
Here, n stands for the total number of validly matched entities and i
stands for the individual validly matched entity.
Fig. 3. Scheme of the matching position devia
The mean deviation dev
� �

is given as:

dev =
∑n

i = 1devi
n

: ð3Þ

And the RMS (σdev) is given as:

σdev =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i = 1 devi−dev
� �2

n−1

2

vuut
: ð4Þ

2.4. The sub-pixel precision approaches

2.4.1. Intensity interpolation
The issue of sub-pixel estimation appears because the images

available are often not at the optimal resolution for precise
quantification of movement. Signals in image pixels are created by
integrating spatially continuous signals over the area covered by the
pixel. If the continuous signal existed, one could choose the interval at
which the integration is done, i.e. the pixel resolution, as long as the
signals are detectable. However, since such integration of continuous
signals is done by the imaging sensor during the image acquisition,
the continuous signal is no longer available for later analysis. One
alternative is thus to reconstruct the continuous signal from the
spatially discrete images. Full reconstruction is only ideally possible,
though. Therefore, the image itself is interpolated to the desired pixel
resolution using certain interpolation schemes, preferably ones that
can effectively reduce aliasing.

In this study, the coarse resolution images within the above-
computed resolution pyramids were back-interpolated to different
finer resolutions using the MATLAB-based ‘imresize’ module with the
bi-cubic interpolation scheme (Fig. 4 left). The bi-cubic algorithm is an
appropriate choice for accuracy and efficiency in comparison with
other algorithms (Keys, 1981; Meijering & Unser, 2003). After such
back-interpolation, the NCC algorithm with Eq. (1) was applied using
the same templates and search windows as used in the original
reference image pairs. The interpolation is done on the fly for each
reference template and search window, and not for the entire image
before the matching process to cope with MATLAB's memory
restrictions. Even in this approach when the resampling factor is
doubled, the computation time increases about four times.

2.4.2. Similarity interpolation
The similarity measure used in this study, i.e. the NCC coefficient,

produces pixel-level peak locations. However, that location might not
be the exact position of the matching entity. To find the sub-pixel
position from the discrete NCC coefficients, one can either interpolate
tions and the difference in displacement.

image of Fig.�3


Fig. 4. Schematic setup of intensity and correlation interpolation of the coarsest resolution images to different sub-pixel details (left) with the different possible alternatives of
assessing sub-pixel performance (right). H stands for GPS of the coarsest resolution images.
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the cross-correlation surface to a higher resolution using two-
dimensional interpolation algorithms or fit a two-dimensional
analytical function to the correlation surface around the peak.

2.4.2.1. Correlation interpolation using bi-cubic convolution. The
correlation surface around the peak is resampled to the desired
higher resolution. A two-dimensional cubic convolution of the
correlation coefficients is then applied to the resampled grid using
the MATLAB module ‘interp2’. The bi-cubic convolution takes the
weighted average of the nearest 16 (4-by-4) pixels. The peak is then
relocated at the new resolution.

2.4.2.2. Curve fitting. As an alternative to peak interpolation, one can
also create a continuous function that optimally fits the correlation
coefficient data and compute the precise location of the peak from the
maximum of the function. The challenge is that no single function can
usually perfectly describe the cross-correlation surface. However, the
fact that the correlation surface around its peak often approaches a
bell shape can be exploited. Therefore, two-dimensional polynomial
functions can approximate the surface. A number of models have been
tested in empirical and theoretical researches, particularly in particle
image velocimetry (PIV), though with varying successes (Nobach &
Honkanen, 2005; Westerweel, 1993; Willert & Gharib, 1991).
Parabola and Gaussian fitting are tested here for mass movement
analysis, as these have shown successes in other areas, especially in
PIV.

In parabola fitting, the shape of the correlation surface is assumed
to fit two orthogonal parabolic curves. The location of the ‘actual’ peak
is computed by independently fitting one dimensional quadratic
function and computing the location of the peak (Nobach &
Honkanen, 2005; Shimizu & Okutomi, 2002; Westerweel, 1993).
Let's assume that we have computed the pixel level (integer) position
of the peak as [x0, y0]. This pixel has two neighbours in each of the
two orthogonal directions: (x0−1) and (x0+1) in the x-direction and
(y0−1) and (y0+1) in the y-direction. To find the sub-pixel peak
position in each direction (x0+Δx, y0+Δy), we define a parabolic
curve that connects the three points of that direction and compute
the position where the curve attains its maximum. Eqs. (5) and
(6) compute the non-integer location of the peak in the x- and
y-directions which will then be added to the pixel (integer).

ΔX =
ρ X0−1;Y0ð Þ−ρ X0 + 1;Y0ð Þ

2ρ X0−1;Y0ð Þ−4ρ X0; Y0ð Þ + 2ρ X0 + 1; Y0ð Þ ð5Þ

ΔY =
ρ X0;Y0−1ð Þ−ρ X0;Y0 + 1ð Þ

2ρ X0;Y0−1ð Þ−4ρ X0;Y0ð Þ + 2ρ X0;Y0 + 1ð Þ : ð6Þ

Likewise, in Gaussian fitting, the bell shape of the correlation
surface is assumed to fit a 2D Gaussian function (Nobach & Honkanen,
2005; Westerweel, 1993; Willert & Gharib, 1991). It is assumed that
the two dimensions are separable and orthogonal. Thus, the sub-pixel
peak location is calculated separately for the two directions by fitting
a second-order polynomial to the logarithm of the maximum sample
and the direct neighbours as in Eqs. (7) and (8).

ΔX =
ln ρ X0−1;Y0ð Þð Þ− ln ρ X0 + 1;Y0ð Þð Þ

2 ln ρ X0 + 1; Y0ð Þð Þ−4 ln ρ X0;Y0ð Þð Þ + 2 ln ρ X0−1;Y0ð Þð Þ ð7Þ

ΔY =
ln ρ X0;Y0−1ð Þð Þ− ln ρ X0; Y0 + 1ð Þð Þ

2 ln ρ X0;Y0 + 1ð Þð Þ−4 ln ρ X0;Y0ð Þð Þ + 2 ln ρ X0; Y0−1ð Þð Þ ð8Þ

2.5. Evaluation of different levels of sub-pixel detail

Section 2.4 evaluates which sub-pixel approach performs best in
improving the precision and accuracy of NCC-based image matching.
It is also important to know how far sub-pixel interpolation of coarse
resolution image intensities or the correlation surface is able to
substitute pixel-level matching of images of the corresponding but
original resolution, as well as the sub-pixel detail at which the
interpolation to achieve sub-pixel precision can no longer sufficiently
substitute image of that resolution. The sub-pixel precision matching
is thus computed at different levels of the resolution pyramid and its
performance is evaluated in reference to the pixel-level matching of
images with the same but original resolution. This procedure becomes
clearer with an example: suppose we want to know the performance
of sub-pixel precision matching at the level of half a pixel. This can be
achieved by taking an image of, for instance, 8 m resolution,
computing the sub-pixel precision matching to 4 m and comparing
the latter sub-pixel performance to the performance of pixel-level
matching of an image with 4 m original resolution. Alternatively, one
can take a 4 m resolution image, compute its sub-pixel resolution
matching to 2 m and compare the performance of the latter in relation
to a 2 m resolution original image. In our study, this procedure is
iterated for the entire pre-processed resolution pyramid and all
resolution steps included in it, not just the level-factor 2 exemplified
here (Fig. 4 right).

Eq. (3) was used to evaluate the deviation between the sub-pixel
matching and the pixel-level matching at corresponding image
resolutions. This time, the reference matching position [x0, y0] is the
matching position obtained for the same template by using a pixel-
level matching of an image pair of a resolution equal to the resolution
to which the sub-pixel algorithm is conducted. If the sub-pixel
matching between two coarse images exactly substitutes pixel-level
matching of images with corresponding fine resolution, there will be
no deviation between the two matching positions.

In addition to the performance evaluation parameter dev as
explained above, the proportion by which each error term of the
pixel-level precision was reduced by a sub-pixel algorithm was used
as an alternative indicator for the accuracy improvement. For

image of Fig.�4
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example, if an algorithm i was used, its performance in reducing the
mean deviation from the pixel-level algorithm mean deviation is
given as in Eq. (9).

peri =
devi−devP

� �
⁎100

devP
ð9Þ

Here, peri is the percentage reduced mean bias when sub-pixel
algorithm i is used, devi is the mean bias of that algorithm, and devp is
the mean deviation of the pixel-level NCC algorithm.

3. Test sites

As an example for glacier flow, we use the glacier Ghiacciaio del
Belvedere. It is located below the Monte Rosa peak, above Macugnaga
and the Anzasca valley of the Italian Alps (approx. 7°54′39″ E, 45°54′
39″ N). This glacier has recently become known for its surge-type
movement (Haeberli et al., 2000; Kääb et al., 2004). It is a very
dynamic glacier with a history of flooding and hazardous incidences.
Since the glacier was at the time of photography very dynamic with
high surface speeds, the images chosen for the present study were
taken on 6 September and 11 October 2001 with a temporal baseline
of around one month and an orthoimage pixel resolution of 0.5 m.
More details on the images and the glacier can be found in Kääb et al.
(2005).

Rockglaciers consist of permanently frozen debris that slowly
deforms down-slope under gravity. The rockglacier chosen as test site
for this study is located in the Muragl valley of the Upper Engadine
area of the Swiss Alps (approx. 9°55′30″ E, 46°30′15″ N). It has been
under investigation for decades using technologies such as photo-
grammetry, geodesy and geophysics to understand the mechanics of
the rockglacier (Kääb, 2002; Kääb & Vollmer, 2000). The previous
studies showed maximum creep speeds of up to 0.5 ma−1. The
orthoimages used in the present study were based on aerial images
taken on 7 September 1981 and 23 August 1994 with 13 years of
temporal baseline and 0.2 m of spatial resolution.

The Aletsch rockslide, used here as an example for a slow landslide,
is located near the tongue of the Aletsch Glacier, Canton of Valais,
Swiss Alps (approx. 8°01′28″ E, 46°24′11″N). The driving force behind
the rockslide is the continuous retreat of the Aletsch Glacier since
approximately 1850 causing debuttressing of the adjacent slopes
(Kääb, 2002; Kääb et al., 2005). A study that investigated the velocity
of the rockslide between 1976 and 1995 showed that the rock masses
have moved up to 2 m on average over 19 years (Kääb, 2002). The
orthoimage pair used in the present study is based on air photos taken
on 6 September 1976 and 5 September 2006 with 30 years temporal
baseline and 0.2 m spatial resolution.

4. Results

4.1. Displacement vectors of the three different mass movements

Table 2 summarises displacement statistics for the three mass
movements investigated. The results were produced from the
Table 2
Summary statistics for the displacement magnitudes and average horizontal speed of the mas
the original full-resolution orthoimages.

Mass movement Temporal baseline Mean
displacement
(m)

Aletsch rockslide 30 years 1.5
Muragl rock glacier 13 years 2.4
Ghiacciaio del Belvedere glacier 1 month 12.22
Control (translation-only) 7.50
analyses of the original orthoimages after filtering all the mismatches.
One can see that the glacier moves fast as compared to the rockglacier
and the even slower moving rockslide. Figs. 5–7 present the
displacement vectors of the three mass movements systematically
sampled at 128 pixels in both dimensions. Image matching showed
that also the stable ground in the scene show non-zero displacements
due to the presence of systematic image (co-)registration errors.
However, after filtering of the vectors based on the estimated overall
image registration error of one pixel, after thresholdinig of the
correlation coefficients (0.65 for the rockglacier, 0.6 for the glacier and
0.45 for the landslide) and after excluding upslope movements, only
the remaining vectors presented in the figures are considered to be
valid and useful as reference.

4.2. Pixel resolution and matching accuracy

As expected, Fig. 8 (A) shows for all the three mass movement
types that, as the pixel size increases, the mean deviation dev

� �
also

increases. There is no observable difference among the three mass
movements on this type of error. The control matching shows that the
mean deviation increases linearly with the factor by which the pixel
size increases. In fact, the mean deviation is about half a pixel at every
resolution, and similar for the real mass movement images. However,
at larger pixel sizes the deviations for the real mass movements tend
to be lower than a linear increase between pixel size and mean
deviation, as opposed to that of the control image set whichmaintains
the linear relationship.

The random error (RMS) shows a similar pattern except that it is
very low at small pixel sizes (Fig. 8 B). The trend in RMS for the
landslide appears to be higher than for the other two sites, with that
for the glacier being the lowest. The control does not have any random
error until the pixel size is increased by the factor of 8.

The proportion of mismatches (Fig. 8C) dramatically increases
with increasing pixel size. There appear to be fewer mismatches for
the glacier compared to the other mass movement types for the same
metric pixel resolution. In the case of the control set, there was no
mismatch observed until the pixel size was increased by the factor
of 8.

The proportion of undetected moving templates also increases
with pixel size (Fig. 8D). There seems to be no difference between
the rockglacier and the landslide, but for the glacier the proportion is
lower at comparable resolutions. Movements are undetected when
the pixel size is greater than the displacement. That can practically
be observed in the case of the control which has a uniform
translation of 7.5 m over the whole image. All of the movements
were detected as long as the pixel resolution was kept less than 8 m.
However, as soon as the pixel resolution became 16 m, about 50% of
the moving entities were not detected. In the case of the three mass
movements, undetected movements were first observed after the
pixel size was doubled. This is due to the existence of slow
movements in all scenes that could be missed in resolution pyramid
levels with comparably fine resolution. At a pixel resolution of
6.4 m approximately 35% of the original landslide and rockglacier
movements and 65% of the original glacier movements could be
detected.
s movements and the translation-only control image as estimated from the matching of

Maximum
displacement
(m)

Standard deviation
of displacement
(m)

Maximum speed
(ma−1)

4.2 0.45 0.14
5.8 1.20 0.45

18.83 5.0 226
7.50 0 7.50



Fig. 5. Displacement vectors on the Ghiacciaio del Belvedere (Sept.– Oct. 2001) as
estimated by matching the original orthoimages and systematically sampled at
128 pixels interval in each dimension. The image displayed is from Oct. 2001.
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4.3. Accuracies of the sub-pixel precision algorithms

In this section we present the results of the test described in
Section 2.4. Figs. 9 and 10 depict the mean deviation dev of the
matching positions against the sub-pixel precisions of each of the
algorithms for the control set and the three mass movements
respectively. The magnitudes of Fig. 10 are created by averaging the
values obtained for the three mass movement types as the trend is
similar for all the three. Both figures show that interpolation of the
image intensity before matching results in the best matching
accuracy. In the control set, the bi-cubic interpolation of intensity
and correlation perform alike up to the precision of 0.25 pixel below
which they clearly separate. The bi-cubic interpolation of the
correlation surface follows the intensity interpolation. The curve
fitting using the parabola and Gaussian models performs better than
Fig. 6. Displacement vectors on the Muragl rockglacier (1981–1994) as estimated by
matching the original orthoimages and systematically sampled at 128 pixels interval in
each dimension. The image displayed is from 1992.
bi-cubic interpolations to only one half of the original pixel size. For
the real mass movements, there is very little accuracy gain by
interpolating to lower than 0.1 pixels. The control result shows that
when the movement is only translation, the magnitude of the
deviation is very low. Besides, it seems that for the control set
interpolation to more detail level than 0.1 pixels improves the
accuracy even further.

4.4. Relative performance of the algorithms at different sub-pixel details

This section presents how much each level of sub-pixel detail
substitutes original images of the same resolution. The setup of this
test is described in Section 2.5. Fig. 11 shows the mean deviation
between the matching position of the interpolated image pairs and
the matching of the reference image pairs, against the factor of
resolution difference between the original reference and the coarse
image. Results are presented for the control set and the three mass
movement types.

Fig. 11(A) shows that when the difference between the images is
only the here-applied translation, sub-pixel interpolation of the image
intensities up to 1/8th of the original pixel size prior to matching can
perfectly substitute images of comparable original resolution. This
exact substitution can be achieved by using bi-cubic interpolation of
the correlation surface only up to 1/4th of the original pixel size. For
example, a 16 m resolution image interpolated to 2 m using bi-cubic
interpolation before matching performs exactly as a 2 m resolution
image pair as long as there is no other source of difference between
the image pairs than rigid translation. But when the level of detail
goes beyond 1/8th, there appears to be a deviation between the two.
The magnitude of these numbers depends, of course, on the
translation magnitude applied in the control set. However, the test
shows the better performance of bi-cubic intensity interpolation over
the other sub-pixel algorithms tested.

For all the real massmovement types, as the difference in pixel size
between the coarse resolution and the reference resolution increases,
the deviation dev

� �
of the sub-pixel matching position from the

matching position of the same, but original image resolution, in-
creases regardless of the algorithm (Fig. 11B, C and D). Thismeans, not
Fig. 7. Displacement vectors on the Aletsch rockslides (1976–2006) as estimated by
matching the original orthoimages and systematically sampled at 128 pixels interval in
each dimension. The image displayed is from 2006. Aletsch Glacier is to the lower right.
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Fig. 8. Mean deviation (A), RMS (B), percentage mismatches (C) and percentage undetected moving templates (D) for the three mass movement types and the translation-only
control set for varying pixel resolutions.
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surprisingly, that the sub-pixel algorithm resembles images of
comparable resolution less and less as the sub-pixel detail increases.
At every resolution, the mean deviation is the lowest when intensity
interpolation was used before matching followed by the bi-cubic
interpolation of the correlation surface. The parabola- and Gaussian-
based peak localisations perform poorer and alike. This confirms the
above results based on the control set.

Remarkably, at a certain level of sub-pixel detail, the deviation
between the sub-pixel algorithm and same resolution original image
becomes high enough that further interpolation has no meaningful
advantage. For the real mass movements used in this study, such level
of detail is about 1/16th although the control set gives less deviation
even at greater level of detail.

Similar performance is observed for the RMS although the
differences are not as clear as for the mean deviation. Noticeably,
the RMS of the pixel-precision matching of the control set is lower
than that of the similarity interpolation whichever algorithm is
chosen. For the real mass movements the lowest RMS is recorded for
intensity interpolation followed by similarity interpolation using the
bi-cubic, parabolic and Gaussian algorithms.
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6

M
ea

n 
de

vi
at

io
n 

(p
ix

el
)

Sub-pixel precision (fraction of a pixel)

Bi-cubic (correlation)

Bi-cubic (intensity)

Parabolic

Gaussian

Fig. 9. Comparison of the different sub-pixel precision approaches for the translation-
only control image set.
No clear difference is observed among the algorithms in the
proportion of mismatches. One of the advantages of sub-pixel
algorithms is locating the exact position within the pixel and thus
the detection of all movements as long as the resolution at which the
interpolation is conducted is less than the displacement. This implies
that when using low-resolution images, slow moving terminus and
margins of the masses are hardly detected. For example, Fig. 13 shows
non-zero displacement vectors computed by matching images of
3.2 m GPS without sub-pixel interpolation (black vectors) and after
sub-pixel interpolation of the images to 0.4 m GPS using bi-cubic
interpolation (white vectors). As can be seen from the regions
indicated by the four thick black arrows, slow motions, as typically
found for e.g. towards the margins and terminus of a rockglacier, are
detected only using sub-pixel interpolation. Success of displacement
measurement from repeat images therefore varies spatially depend-
ing on the GPS of the images and the displacement magnitude of the
moving masses.

The decrease in errors due to the sub-pixel algorithms was also
quantified as a measure of accuracy gain (peri) or as a measure of how
Fig. 10. Comparison of the different sub-pixel precision approaches for the real mass
movements averaged from the three mass movement types investigated.
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Fig. 11. Mean deviation (normalised to pixel size) of the control set (A), rockglacier (B), landslide (C) and glacier (D) for the different sub-pixel precision algorithms.
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much the sub-pixel precision emulates images of the resolution it
models. Fig. 12(A) shows that in the case of the control set, intensity
interpolation using the bi-cubic convolution can completely (100%)
remove the mean deviation between the pixel precision matching
Fig. 12. Percentage accuracy gain in relation to same resolution original image of the con
algorithms.
position and the high-resolution reference matching position when
interpolated up to 1/8th of a pixel. This means for identical but
translated images, for instance, when an image of 8 m resolution is
used one can use intensity interpolation and compute displacements
trol set (A), rockglacier (B), landslide (C) and glacier (D) for the different sub-pixel
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Fig. 13. Spatial variation of the success of image matching at different ground pixel sizes
(GPS). Black vectors are computed by matching images of 3.2 m GPS while white
vectors are computed by interpolating the images to 0.4 m GPS and matching them
afterwards. Notice the slow moving regions indicated by the four thick black arrows.
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at 1 m precision and achieve the same accuracy as an original 1 m
image. It is important to note that this does not mean that the
matching is free of errors. It rather means that the error is the same as
the error one would receive if one used original 1 m resolution
images. Similar achievements can be obtained using similarity
interpolation using bi-cubic interpolation up to only 1/4th of a pixel.
Other algorithms could not achieve this 100% removal of the errors;
they seem to contain systematic errors.

The algorithms did of course not perform so well for the real mass
movements due to the fact that the matched images are not identical.
The trends are however the same as the ones found for the control
image. Fig. 12(B to D) shows that up to 80% error removal can be
achieved. Intensity interpolation performed best in all cases removing
in average between 40% and 80% of the mean deviation when
interpolated to 1/16th and one half of a pixel, respectively. There is no
point of interpolating beyond 1/16th of a pixel as the improvements
gained are quite limited. According to our three test cases, for instance
when using images of 16 m resolution such as approximately ASTER,
one can use intensity interpolation and improve the accuracy of
matching by 40% in reference to that obtained from matching 1 m
original resolution images, or by 80% in reference to 8 m resolution
imagery.

5. Discussion

5.1. Image resolution issues

The effect of the spatial image resolution on the matching
accuracy, as presented in Section 4.2, shows that, not surprisingly,
all forms of errors increased with increasing pixel size. The mean
deviation increased with increasing pixel size simply due to the
systematic aggregation of the pixels. The reason why it deviates from
linearity for the real mass movements at large pixel sizes can be
ascribed to noise due to temporal surface changes, changes in imaging
conditions, rotation and deformation which the control set is free of.
The control is free of registration errors of the image pairs as well.
Additionally and importantly, the fact that the template size is kept
constant may have reduced the signal-to-noise ratio due to fewer
numbers of pixels per template at large pixel sizes. Real mass
movements are more sensitive to this due to the already lower signal-
to-noise ratio compared to the control set.

The random error (RMS) increases with pixel size due to a number
of reasons. Firstly, for a fixed template size, the number of pixels
decreases with increasing pixel size leading to lower information
content (lower signal-to-noise ratio). Secondly, the low-resolution
images used in this study were created by down-sampling the high-
resolution images. Resampling introduces noise which increases with
the resampling factor. The introduced noise and the noise that already
exists in the original image from various sources lead to a higher RMS
and even mismatches. If there are too few pixels in an entity, the
entitymay get chance-basedmatches in the target image as ambiguity
and noise-related correlation dominates (Kanade & Okutomi, 1991;
Westerweel, 1993). In reality, when low-resolution images are used,
the random errormight not be as high as the ones in this study. Firstly,
the template sizes will be adjusted according to the image resolution.
Secondly, noise in real images might be lower than that of the
comparable resolution images created through down-sampling from
high-resolution images.

As both the RMS and the mismatches are results of noise of various
sources, image pairs such as the landslide and rockglacier which
contain more noise due to the large temporal baselines have more of
those errors (Fig. 8B and C). These large periods imply changes of the
ground surfaces leading to poorer correlation. Themode of movement
of these masses which is far from the pure translation of a rigid body
including deformation and rotation also contributes to random errors.
Especially the landslide moves in a fragmented pattern lacking good
spatial coherence that is needed for good template correlation. The
glacier observed over 1 month moves more coherently than the other
mass movements and thus shows a relatively lower matching RMS.
On the other hand, the control set, which contained only pure
translation between otherwise identical images, did not have any
random error or mismatch until the pixel size was increased by the
factor of 8 and 16 respectively due to reduced signal-to-noise ratio.

The proportion of undetected moving entities increases as the
number of entities with displacements less than the pixel size
increases (Fig. 8D and Fig. 13). It is obvious that if one continues to
increase the pixel size, there will be a point at which no moving
template will be detected and the terrain would be reported stable. As
can be observed in Fig. 8D, for the specific mass movements
investigated here, if only pixel-level precision matching is to be
used, the resolution of the images should not be coarser than about
3 m so that the majority of the displacements (less than 3 m) would
be detected.

As stated in Section 2, the bi-cubic method of resampling was used
for the creation of the resolution pyramid. This does not perform
significantly differently from signal averaging that happens within
imaging sensors. A test run on the rockglacier image to compare the
averaging method and the bi-cubic method showed no observable
difference in performance between the twomethods except when the
factor of down-sampling is high. The difference in performance in the
latter case originates from the difference in the number of nearby
pixels that contribute to the computation of the value of the
resampled pixel in the two methods. While weighted average of the
16 nearest pixels is used for the bi-cubic, arithmetric average of the
aggregated pixels is used in the averaging method.

5.2. Performance of the sub-pixel algorithms and levels of detail

Comparison of the sub-pixel precision approaches shows that
intensity interpolation outperforms all the other algorithms of
similarity interpolation. There can be two explanations to this. Firstly,
in correlation interpolation the positions of the correlation values on
which the interpolation is based, and which are computed based on
coarse resolution images, influence the position of the recomputed
correlation peak. Secondly, the number of pixels in an entity is higher
when intensity interpolation is applied leading to the suppression of
noise. Fewer numbers of pixels in an entity makes the entity more
susceptible to chance-based, i.e. erroneous matching results. This is
able to explain the increased difference between the performances of
the bi-cubic interpolation of the intensity and the correlation surface
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of the control images at very detailed levels of sub-pixel precision
while they are very close at less detail level where the signal-to-noise
ratio is still high.

The bi-cubic interpolation scheme that was used for the intensity
interpolation is known to replicate the reference data better than
most other interpolation schemes (Keys, 1981), and it is known to
approximate the sinc interpolation that is ideal in image interpolation
(Dodgson, 1992). This has led to the fact that the images re-
interpolated from coarser resolutions were found to have high
correlation with the aerial images of corresponding original resolu-
tion. For example, when the down-sampled rockglacier image of
resolutions 0.4 m, 0.8 m, 1.6 m, 3.2 m and 6.4 m were re-interpolated
to a resolution of 0.2 m (1/2 to 1/32 of a pixel respectively) their
global correlation coefficients with the reference image of 0.2 m
resolution were 0.98, 0.96, 0.93, 0.90 and 0.86 respectively. Although
the images deteriorate due to resampling noise, they still remainwell-
correlated with the reference image due to the good performance of
the interpolation algorithm. Correlation is, in fact, one of the quality
measures of image interpolation (Lehmann et al., 1999). Fig. 14
shows a sub-image over rockglacier in the original 0.2 m spatial
resolution (A), a 1.6 m spatial resolution image resampled to 0.2 m,
i.e. 1/8th, (B) and the 1.6 m spatial resolution itself (C). One can
observe the clear image quality of the original 0.2 m spatial resolution
(A) as compared to the resampled one (B) which appears to be noisy.
The coarse 1.6 m spatial resolution (C) appears blurry showing the
lack of detail.

The same interpolation algorithm, bi-cubic, performed also best in
the similarity interpolation approach although not as good as in the
intensity interpolation. The better performance in comparison to the
Gaussian and parabola fitting is partially ascribed to the reasons
previously explained. In addition, the parabola fitting is reported in
many occasions to have a systematic bias known as “pixel locking”,
which forces the estimated sub-pixel locations to approach integer
values (Nobach & Honkanen, 2005; Prasad et al., 1992). The presence
of a systematic bias is testified by the fact that both parabola and
Gaussian fitting could not remove 100% of the errors of pixel-level
precision in the case of the control set unlike the other two algorithms
(Fig. 12). Although reports from PIV state that Gaussian peak finding
does not have that kind of bias and performs better (Westerweel,
1993; Willert & Gharib, 1991), it performed no better than parabola
fitting in the present study. We believe the underlying reason is the
fact that the cross-correlation surfaces of the mass movements cannot
be perfectly modelled by either parabolic or Gaussian functions. The
image resolutions used in the present study are not high enough to be
compared to that of particle images used in mechanics which are high
enough to be approximated by, for example, Gaussian. Noise that is
present in the images due to temporal surface changes and other
sources contribute to the deviation of the correlation shape from both
Gaussian and parabolic ones.
Fig. 14. A part of the Muragl rockglacier image with original 0.2 m spatial reso
Finally, two important points regarding the size of the matching
entities: first, in this study the absolute metric size of the matching
entities was kept constant across image resolutions. This means that
the number of pixels in each entity varies with the pixel resolution,
leading to a variable signal-to-noise ratio. This had to be done for the
sake of comparison. In reality, the size of matching entities will vary
with the resolution of the image pair to keep a good signal-to-noise
ratio. Second, the size of the matching entities was kept constant for
the entire scene as is done in most area-based image matching
practices.

5.3. Velocity fields

The results of the present study for the Muragl rockglacier
correspond very well with those of previous studies (Kääb, 2002;
Kääb&Vollmer, 2000). Both the displacement vectors and their spatial
variation agreewith those studies, although comparison is not the aim
here. The maximum velocity recorded here (0.45 ma−1) is only
slightly lower than the one recorded by Kääb (2002), i.e. 0.5 ma−1, as
the latter covered a wider geographical area. This shows the
consistency of the NCC as a reliable tool for such applications. Since
the Muragl rockglacier creep reflects spatio-temporally variable
thermal regimes and ground compositions, also the surface velocities
vary. The presented results show mean horizontal velocities over
13 years (1981 to 1994).

Although a number of investigations have been conducted on the
dynamics of the great Aletsch Glacier, there are only few regarding the
landslides that are occurring in response to the glacier retreat.
Investigations made for the period between 1976 and 1995 reported
up to 2 m (10.5 cm a−1) mean horizontal displacement magnitude
(Kääb, 2002, 2005). The 4 m (13 cm a−1) maximum horizontal dis-
placement magnitude reported in the present study is for the period
1976 to 2006, and shows only a slight increase in average horizontal
velocity.

The displacement and velocity statistics obtained for the Ghiacciaio
del Belvedere glacier agree well with the results presented in Kääb
et al. (2005). Both studies used the same images. However, since the
main focus of the present study was not to investigate the mass
movements per se, the full extent of the imagewas not used. Therefore,
the velocities were somewhat overestimated in comparison with the
other study as, coincidentally, a part of slowmoving areaswere left out
of the present study. The high velocity of this glacier is recorded also by
Haeberli et al. (2002) and Kääb et al. (2004).

The difference in velocity among the three types of masses can be
ascribed to the sediment characteristics, terrain type, thermal regime,
topography, etc. These velocity differences led to the use of images of
different temporal resolutions. Large temporal baselines lead to
changes in surface conditions decreasing the potential correlation
between the two images. Slow moving masses such as rockglaciers
lution (A) and resampled to 0.2 m (B) from a 1.6 m resolution image (C).
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and landslides can be investigated using longer temporal baselines.
Although the surfaces might not change drastically compared with a
glacier, growth of vegetation and erosion of the surface can lead to
decorrelation between the two images. This was a challenge in the
landslide case. The rockglacier surface was found to be largely stable
over the 13 year observation period. This stability owes to the lack of
vegetation growth on the rockglacier surface and the somewhat rigid
movement due to the geotechnical coherence by ground ice
saturation. On the contrary, the landslide moves in a way that is far
from rigid-body translation as the rock masses deform and fragment
when moving. This leads to poorer correlation, increased random
error and even mismatches in cases.

6. Conclusions and outlook

This study has clarified a number of questions around the relation
of accuracy and pixel or sub-pixel resolution when matching terrain
displacements such as glacier flow, land sliding and permafrost creep
from repeat optical images by using pixel-precision correlation
measures, here namely the normalised cross-correlation (NCC). The
study contributes to better exploiting the large archives of repeat
remotely sensed images that exist over actual or potential Earth
surface mass movements, as well as to better meeting the increasing
needs to quantify and monitor mass movements, in particular when
they are accompanied by adverse effects.

The study has in particular evaluated the performance of two
different approaches to sub-pixel precision in NCC for displacement
measurement based on repeat images. It has also investigated the
influence of pixel resolution on image matching and displacement
estimation. The findings reveal thatwith increasing pixel size, all types
of matching errors increase. The mean deviation between a displace-
ment and its referencemeasurement has a linear relationshipwith the
factor by which the pixel size increases. Random errors and mis-
matches tend to be higher for larger temporal baselines andwhere the
mode of the movement deviates much from rigid-body translation.

When sub-pixel accuracy is aimed for, interpolating image
intensities to a higher resolution using bi-cubic interpolation prior
to the actual image correlation performs better than both interpola-
tion of the correlation surface using the same algorithm and peak
localisation using curve fitting. Correlation peak localisation using the
Gaussian and polynomial algorithms are inferior in such applications.

Therefore, we conclude that more precise and accurate displace-
ment measurements are obtained by interpolating the available
images to a higher resolution using bi-cubic interpolation prior to
matching. In such approaches, one can gain over 40% reduction in
mean error (in reference to the same resolution original image) by
interpolating the images to up to 1/16th of a pixel. Interpolating to a
more detailed sub-pixel resolution than 1/16th of a pixel does not add
much. Or in other words, whenmatching low-resolution images using
normalised cross-correlation with intensity-interpolation based sub-
pixel precision, 40% or better accuracy increment can be achieved
compared to pixel-precision matching in reference to images with the
same original resolution as the interpolated image. When actual low-
resolution images are used together with varying sizes of matching
entities, as opposed to the approach used in this study, even better
precision and accuracy might be obtained as the noise due to
resampling will not be present, and template and search window
sizes will be adjusted with the pixel size.

Although the relative performances of the algorithms is expected
to be valid at least for other spatial domain matching approaches and
for other applications, the magnitudes given here are strictly valid
only for the similarity measure and test sites used in this paper.
Validation outside the conditions described in this study requires
further research focussing on the development of a rigorous
theoretical concept. Future investigations can, for example, aim at
comparing the relatively best performing algorithm of this finding to
other area-based approaches that intrinsically result in sub-pixel
precision, namely least squares matching and Fourier-based phase
matching. Besides, the performance of the approach in comparison
with feature-based approaches needs to be evaluated as well. There
are also other accuracy improving approaches such as pre-processing
(e.g. noise filtering) and post-processing (e.g. filtering of displace-
ment vectors by averaging). Further research is needed to know if
they even improve the accuracy further after sub-pixel precision.
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