LEARNING BY DOING Field course in hydrogeology

BELEM, 16.04.2018 Anja Sundal & Clara Sena

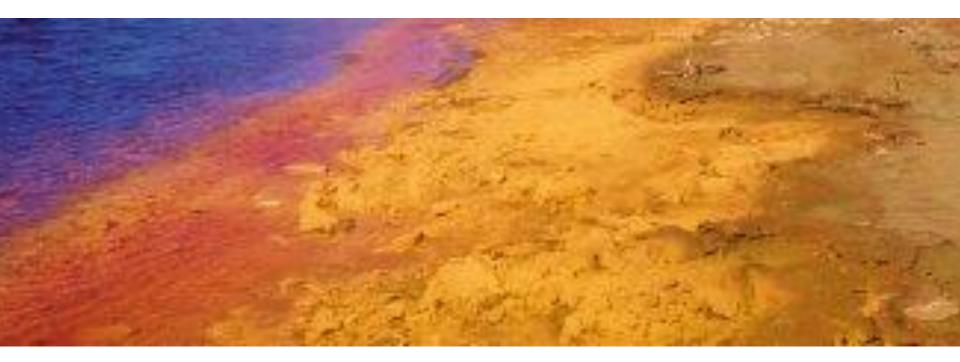
UiO : University of Oslo



Thanks to:

Helen French, Carlos Duque, Helge Hellevang, Gijs Breedweld, Leif, Asbjørn, Brit Lisa Skjelkvåle, Afonso Nogueira, Fabio Domingos & Per Aagaard

Field course in hydrogeology



WHY?

Hydrogeologists must be prepared for field work!!

→ practical skills, independence, project planning

EVIRONMENTAL GEOLOGY PROGRAM, OSLO - NORWAY

HYDROGEOLOGY / GEOCHEMISTRY **«GEO 4360 Field methods in hydrogeology»** 2 weeks in 2nd semester of M.Sc. studies

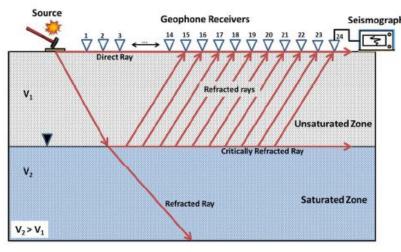
UiO **University of Oslo**

THE NEED FOR HYDROGEOLOGISTS

- Environmental remediation, sustainable development and management of energy and water resources
- Job oportunities: academia, private and public sectors
- Stable market for Hydrogeologists

Field course in hydrogeology

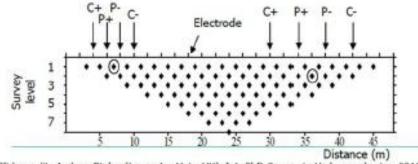
• HISTORY


METHODS (LEARNING GOALS)

- Maps/GPS, field and lab work, project management, literature studies and communicating results
- 2. Drilling of groundwater wells, geotechnical sounding
- Ground- surface- and soilwater sampling:
 field parameters, geochemistry, pollution
- 4. Field tests to estimate hydraulic properties and flux:
 saturated / unsaturated zones + rivers and catchment areas
- 5. Geophysical methods:
 - Electrical resistivity, Seismics, Georadar

Drilling and pumping groundwater wells

Geophysical methods: seismics, ER, georadar


Geophysical methods: seismics, ER, georadar

Well 2

80.0

Unit Electrode Spacing = 1.00 m.

Well 1

‡

Data: map of high and low Resistivity to electrical current inthe ground

Measure: electrical resistivity (ER)

Slide credit: Andrew Binley (Lancaster Univ, UK), Int. PhD Course in Hydrogeophysics, 2010

32.0

12782 27437

20170608_Ydalir2.bin

48.4

Figure 19 : ERT Cross Section taken over the Ydalir Top study area

Stream

Interpretation:

Well 1

Model resistivity with topography Iteration 5 RMS error = 3.2

583

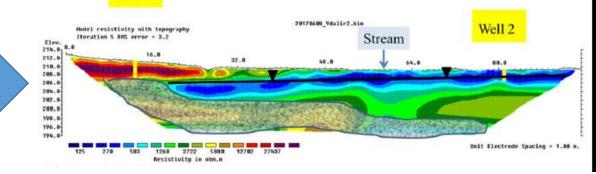
16.0

Elev. 214.0,0.0

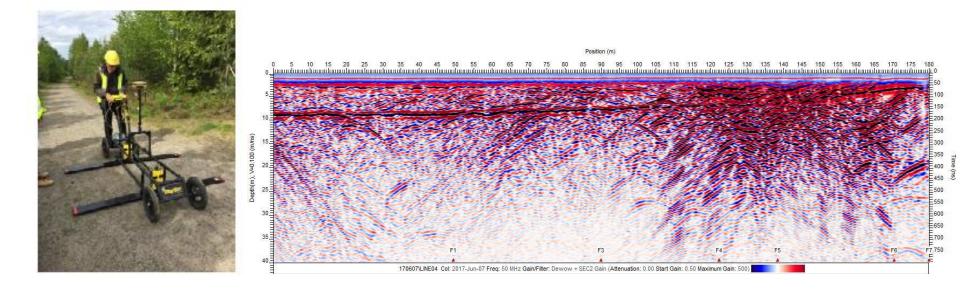
212.0

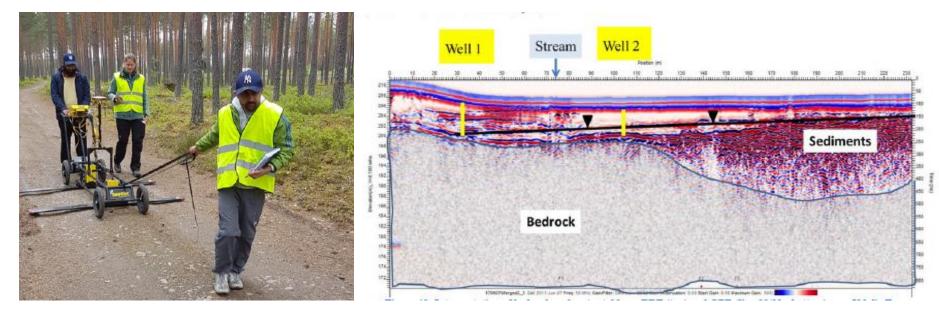
218.0 208.0 206.0 204.0 202.0 200.0 198.0 196.0

• Groundwater table


1260 2722 5880

Resistivity in ohn.n


Bedrock


278

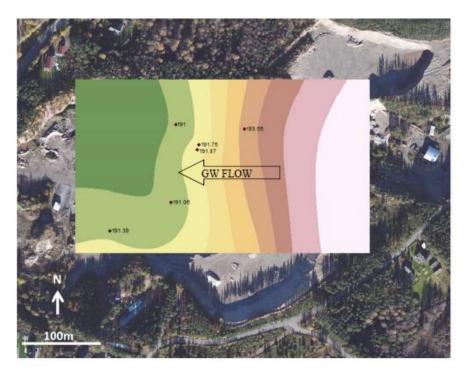
• Unsaturated zone

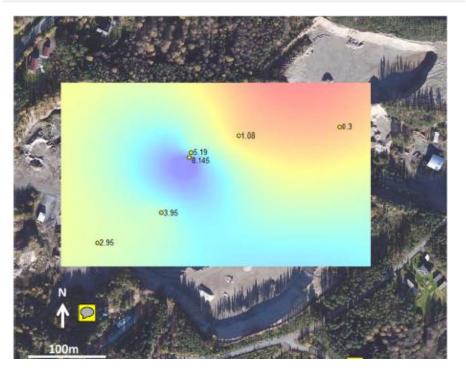
Geophysical methods: seismics, ER, georadar

Water sampling and chemistry: groundwater, lakes and rivers

Estimation of hydraulic properties:

- capillary sampling
- infiltration tests
- slug tests
- salt dilution
- flow meters
- slug tests
- pumping tests



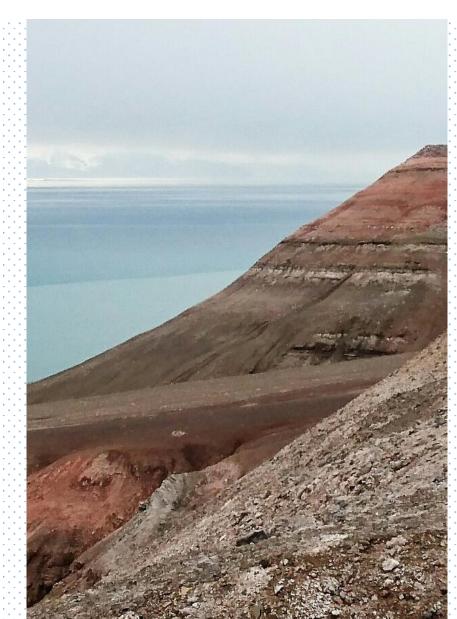


THE END:

The students prepare a regional interpretation of results and deliver a field report.

GROUNDWATER TABLE

Chemistry (pH)


Field course in hydrogeology

SINCE 1987 !!!

- 6 study areas in Norway
- Many international students

• Focus: water supply and/or pollutant transport

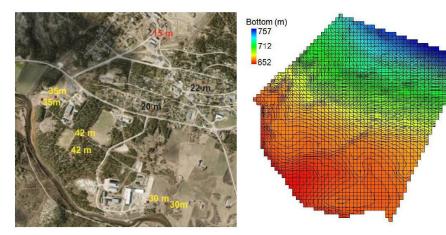
FOLLDAL [2014, 2015, 2016]

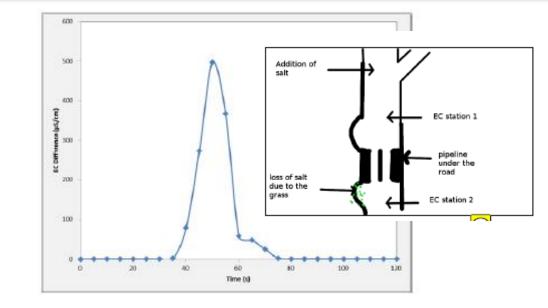
ELVERUM [2017 + 2018]

GARDERMOEN [2010, 2011, 2012, 2013]

FOLLDAL [2014, 2015, 2016]

- Focus: water quality, acid mine drainage \rightarrow CHEM. MASS FLUX
- Results: 3 MSc and input to several scientific reports




Figure 4.18: (a) Scatter points location and aquifer depth values. (b) Contour map of the bottom elevation, interpolated by the natural neighbor's method.

ELVERUM [2017 + 2018]

Water supply for energy and drinking water in glaciofluvial sediments

Lavvannskart

Vasadragsat: 002.H5				Febparametere		
Kommune: Fylke: Vassdrag:	Elveran Hednark GLOMMAVASSDRAGET		Arral (A) EREMAN 301(8 ₄₁₁) Elvelengde (E ₁) Elvegndiett (E ₂)	12.0 km² 1.5 % 4.6 km 1.3 m/km		
Waardwingelindoku se orerkender				Elvegradient ₁₀₀₁ (G ₁₀₀₁)	1.0 m/km 4.8 km	
Middelyumilaring (61-90) Alminentig lavvantieing S-persentil (hele int) S-persentil (1/5-30/9) S-persentil (1/10-30/4) Bise flow Bist		8.6 Fes ⁴ km ² y 10x ² km ² y 10x ² km ² y 10x ² km ² y 10x ² km ² y 999(0 Fes ² km ² y		H non H 18 H 28 H 30 H 30 H 30 H 30 H 30	212 moh. 219 moh. 220 moh. 221 moh. 221 moh. 231 moh. 231 moh.	
Klien				H m H m	245 moh. 261 moh.	
Kimaregion Annother		666	Ost	Hou	289 rich.	
Summemother		364	1110	H _{min} Bu	327 moh.	
Vistoriedbar		302	1010	Durket mark	18%	
Astemperatur			x	Mar	19.0 %	
Sommertemperatur		11.5		Sie	3.4 %	
Vintertemperatur		40	°C	Slog	73.5%	
Temperatur Juli		14.1	°C	Staufiell	0.0 %	
Temperate A	against	133	TC	Urbury	0.8 %	
					11 Vertilen of ed	

Det er genereit stor usikkerhet i beregninger av lavvannsindekser. Resultatene ber verifiseres mot egne observasjoner eller sammenlignbare målestasjoner.

Nedbarteitgrenser, feltparametere og vannfaringsindekser er automatig daneent o Van inneholde fell. Resultatere må kvaliteitetknet. 1.0 to + 1 med has breprosent eller stor innsjøprosent vil tanværsavrenning tersenom ha store bidrag its disse legringsmagastrene.

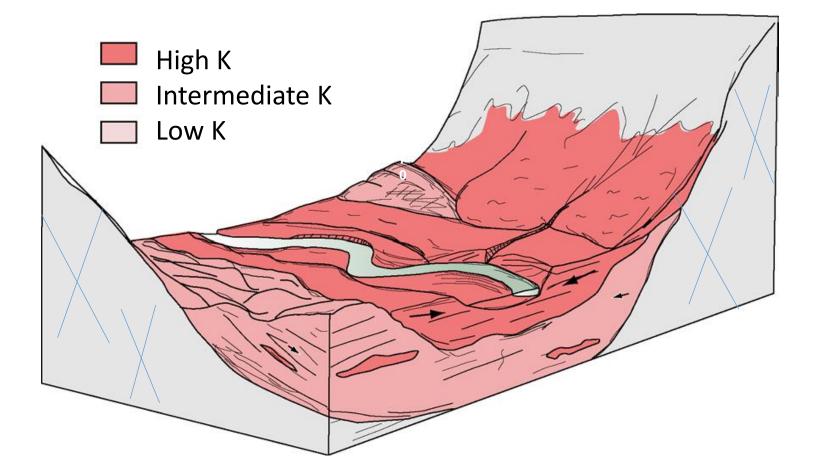
GARDERMOEN AIRPORT [2010, 2011, 2012, 2013]

- Oil, fuel, pipeline leaks
- Aviation and deicing
- Flame retardants (PFOS)
- Roads and salting
- Energy wells
- Construction work:
- \rightarrow water level lowering, clay destabilization

WATER RESOURCES IN NORWAY

- Mostly lakes for drinking water, agriculture and industrial use
- Abundant and good quality, cheap

Maridalsvannet: filtering and UV treatment



Norwegian landscapes – shaped by ice, filled with water

WATER RESOURCES IN NORWAY

Groundwater in fractures and in glacial deposits: Mostly private and small scale consumption (20.000)

Groundwater plays a vital role in protected biotopes, providing nutrious water, constant temperatures and stable water supply (flux)

Groundwater is also an energy resource for heating/cooling

HYDROGEOLOGY

The science of water resources and groundwater – Important to learn also about geography and demography

> Glomma is the largest river in Norway. Catchment: 42 *thousand* km² AMAZONAS: 6,9 *million* km²

Preparing and learning (from the best) to work in Pará ③ with Afonso Nogueira, Fabio Domingos and Clovis Maurity

Salinas

- Sand dunes
- Lagoons
- Estuaries
- Water works
- Urban areas

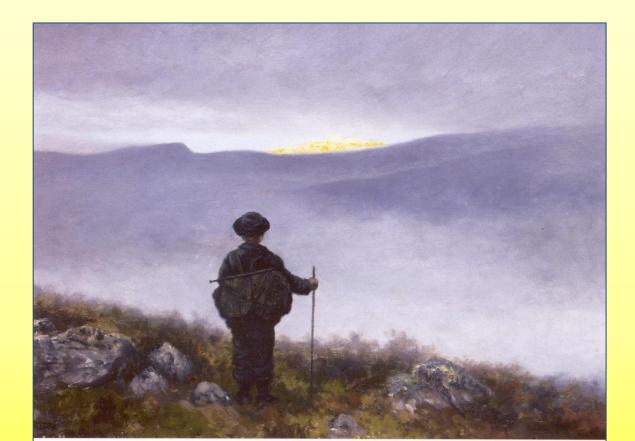
Field course in hydrogeology

•WHY

• WHAT

• HISTORY

•IMPACT


SOCIETY

- Data (groundwater flow, resources and water quality)
- Professional input to local authorities, government, and the private sector
- Collaboration with local communities
- Education (Master students, PhD students)

 \rightarrow A contribution towards better environmental awareness

OUTLOOK

- International cooperation, regional versus global challenges
- Public outreach: making science available and understandable

OBRIGADA PELA VOSSA ATENÇÃO !

