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Figure 6 Overview of transects along which vegetation and soil moisture were sampled. Aerial photo (right) from August
2011. Map and orthophoto from Kartverket.



Work along transects from the tower
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Distance to frozen ground

Volumetric soil water content
* Presence of plant groups

Height of tallest plants

* Coverage of bare soil, open
water, lichens, mosses
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Snapshot of volumetric soil water content
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Tallest plants and depth of melted ground
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* Depth of melted ground puts restrictions on plant height
* Snapshot of water content is not a so good predictor this day



Stomatal closure and minimal conductance
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e Grass (Calamagrostis sp.)
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e Stomata close on adaxial side

, * On abaxial side: minimal conductance
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Stomatal closure and minimal conductance

Duskull 4 abaxial, 0.15 mg/min
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Stomatal closure and minimal conductance

180 * On abaxial side, the maximum
conductance was high.
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* Closing of stomata caused a 90 %
reduction of abaxial conductance
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* On adaxial side, the maximum was much
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Minimum conductance
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Minimum conductance

* Through stomata that cannot close properly
(broken?)

* Through cuticle

* What we observe during night and darkness
(includes both factors)

* What we observe during low light periods or
during severe drought

* What we observe during extreme temperatures
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* g, is often found through regression

* It could differ depending on the reasons for A_ to
approach O: light, temperature, drought, stress.
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Fig. 1 Comparison of various estimates of the (presumed) minimum
conductance. Error bars are 95% confidence intervals. Gray dots are the
original data (but a few data points occur outside the figure range). Different
letters denote significant differences (at o= 0.05). g, conductance of
isolated cuticles; gmin, minimum conductance measured with mass loss of
detached leaves; g..«, leaf conductance during the night or after dark
adaptation; giow par, leaf conductance during low light (PAR,
photosynthetically active radiation); gow a, leaf conductance during periods
of very low photosynthesis. See Section Il for data sources and methods.



g, and water use efficiency
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Fig. 5 Simulations with a coupled leaf gas exchange model (Duursma, 2015), demonstrating the effect of inclusion of the g, parameter (Eqn 1) on leaf fluxes.
(a) Intrinsic water use efficiency (A,,/g) as a function of the photosynthetic photon flux density (PPFD), holding other environmental drivers constant, for three
values of go. (b) The same simulations as in (a), but showing the intercellular CO, concentration (C)). (c) Leaf transpiration (E,) simulations, where the vapor
pressure deficit (VPD) and air temperature (T;) were covaried based on an empirical relationship (Duursma et al., 2014), reflecting typical covariation in field
conditions. (d) The same simulations asin (c), but showing C;. Note how Cjincreases at high VPD and T, only when g5 > 0. For all simulations, itis assumed that
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Tieaf is equal to T, and we ignore the differential permeability of the cuticle to CO, and H,O (Hanson et al., 2016).



g, and plant dessication
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Fig. 6 Simulations with the Sureau model demonstrating the effect of g...i» on the desiccation tolerance of plants. The Sureau model simulates watertransport in
the soil-plant-atmosphere continuum, and includes a detailed representation of capacitance in stem and leaf tissues. (a) Soil relative extractable water (REW;
1=field capacity, 0 = permanent wilting point) for the two simulations, usinga minimum conductance (g,.,;,) of 2 or4 mmol m~2 s~ " —all other parameters were
equal. (b) Water potential in the soil and leaf as the dry-down progresses. (c) Progression of percentloss conductivity (PLC) of the xylem. Dashed lineisata PLC
of 88%, indicating possible mortality.



g, estimated through regression

* Low model fit gives
inflated values for g,
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Fig. 8 Statistical uncertainty in the estimation of go from regression, demonstrated with two parameter databases. (a) We fitted the linearized form of the
Medlyn et al. (2011) model to each of the datasets in the Lin et al. (2015) leaf gas exchange database, showing that, for poorly fitted relationships (low R?),
inflated estimates of g, are obtained. Vertical linesare 95 % confidence intervals. The gray line is a fitted loess smoother with 95% confidence interval. Note the
wide confidence intervals and frequent negative values. (b) Similarto (a), butusing the published compilation by Mineret al. (2017). The graylineis a fitted loess
smoother with 95% confidence interval. (c) Using the fits from (a), a demonstration that the standard error (SE) of gq is much higher when the coefficient of
variation (CV) of the predictor (i.e. right-hand side of the equation being fitted) is lower.



Suggestion

* Include both g,and g,_._

An
g — INnax max(gminrgﬂ)rgl S (D)

C,
* Converges to g, during periods of low photosynthesis

* Converges to g,.., during periods of drought, if g, depends on water
availability

* Work in progress
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Nail polish imprint of stomata on Rubus arcticus.



