Field work at Iškoras and input to transpiration modelling

Ane Vollsnes and Astrid Vatne

UiO Department of Biosciences
University of Oslo

Figure 6 Overview of transects along which vegetation and soil moisture were sampled. Aerial photo (right) from August 2011. Map and orthophoto from Kartverket.

Work along transects from the tower

- Distance to frozen ground
- Volumetric soil water content
- Presence of plant groups
- Height of tallest plants
- Coverage of bare soil, open water, lichens, mosses

Precipitation before measurements

Two or three days without rain

But 150 % of normal precipitation in July

Snapshot of volumetric soil water content

- Distance to frozen ground: 20-196 cm
- Under water: 74-196 cm

Tallest plants and depth of melted ground

- Depth of melted ground puts restrictions on plant height
- Snapshot of water content is not a so good predictor this day

Stomatal closure and minimal conductance

- Laksely
- Wetland
- Grass (*Calamagrostis* sp.)

- Stomata close on adaxial side
- On abaxial side: minimal conductance

Stomatal closure and minimal conductance

Duskull 4 abaxial, 0.15 mg/min

Duskull 6 adaxial, 0.15 mg/min

- Eriophorum angustifolium
- Wetland
- Graminoid
- Opposite distribution of stomata (or normal distr.)
- Some on the adaxial side
- Many on the abaxial side
- Eight individuals, four replicates

Stomatal closure and minimal conductance

- On abaxial side, the maximum conductance was high.
- Closing of stomata caused a 90 % reduction of abaxial conductance
- On adaxial side, the maximum was much lower
- Closing of the low number of stomata caused a 60 % reduction of adaxial conductance
- In sum for the two sides: minimum conductance was 14 % of maximum conductance

Minimum conductance

Tansley review

On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls

Author for correspondence: Remko A. Duursma Tel: +61(0)45701806 Email: remkoduursma@gmail.com

Received: 28 February 2018 Accepted: 15 July 2018

V. Environmental and ecological variation in minimum conductance 696

Remko A. Duursma¹ D, Christopher J. Blackman¹, Rosana Lopéz^{1,2} D, Nicolas K. Martin-StPaul³ D, Hervé Cochard² D and Belinda E. Medlyn¹ D

¹Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia; ²Université Clermont-Auvergne, INRA, PIAF, 63000 Clermont-Ferrand, France; ³URFM, INRA, 84000 Avignon, France

Contents

	Summary	693	VI.	Use of minimum conductance in models	698
l.	Introduction	693	VII.	Conclusions	703
II.	minimum conductance 694			703 703	
III.	Cuticular conductance	695		References	703
IV.	Contribution of stomata	696			

Minimum conductance

- Through stomata that cannot close properly (broken?)
- Through cuticle
- What we observe during night and darkness (includes both factors)
- What we observe during low light periods or during severe drought
- What we observe during extreme temperatures

Why?
$$g_{s} = g_{0} + g_{1} \frac{A_{n}}{C_{a}} f(D)$$

- g₀ is often found through regression
- It could differ depending on the reasons for A_n to approach 0: light, temperature, drought, stress.

Fig. 1 Comparison of various estimates of the (presumed) minimum conductance. Error bars are 95% confidence intervals. Gray dots are the original data (but a few data points occur outside the figure range). Different letters denote significant differences (at α =0.05). g_{cuti} , conductance of isolated cuticles; g_{min} , minimum conductance measured with mass loss of detached leaves; g_{dark} , leaf conductance during the night or after dark adaptation; $g_{\text{low PAR}}$, leaf conductance during low light (PAR, photosynthetically active radiation); $g_{\text{low A}}$, leaf conductance during periods of very low photosynthesis. See Section II for data sources and methods.

g₀ and water use efficiency

Fig. 5 Simulations with a coupled leaf gas exchange model (Duursma, 2015), demonstrating the effect of inclusion of the g_0 parameter (Eqn 1) on leaf fluxes. (a) Intrinsic water use efficiency (A_n/g_s) as a function of the photosynthetic photon flux density (PPFD), holding other environmental drivers constant, for three values of g_0 . (b) The same simulations as in (a), but showing the intercellular CO_2 concentration (C_i). (c) Leaf transpiration (E_L) simulations, where the vapor pressure deficit (VPD) and air temperature (T_{air}) were covaried based on an empirical relationship (Duursma *et al.*, 2014), reflecting typical covariation in field conditions. (d) The same simulations as in (c), but showing C_i . Note how C_i increases at high VPD and T_{air} , only when $g_0 > 0$. For all simulations, it is assumed that T_{leaf} is equal to T_{air} , and we ignore the differential permeability of the cuticle to CO_2 and C_2 (Hanson *et al.*, 2016).

g₀ and plant dessication

Fig. 6 Simulations with the Sureau model demonstrating the effect of g_{min} on the desiccation tolerance of plants. The Sureau model simulates water transport in the soil—plant—atmosphere continuum, and includes a detailed representation of capacitance in stem and leaf tissues. (a) Soil relative extractable water (REW; 1 = field capacity, 0 = permanent wilting point) for the two simulations, using a minimum conductance (g_{min}) of 2 or 4 mmol m⁻² s⁻¹ – all other parameters were equal. (b) Water potential in the soil and leaf as the dry-down progresses. (c) Progression of percent loss conductivity (PLC) of the xylem. Dashed line is at a PLC of 88%, indicating possible mortality.

g₀ estimated through regression

 Low model fit gives inflated values for g₀

Fig. 8 Statistical uncertainty in the estimation of g_0 from regression, demonstrated with two parameter databases. (a) We fitted the linearized form of the Medlyn $et\,al$. (2011) model to each of the datasets in the Lin $et\,al$. (2015) leaf gas exchange database, showing that, for poorly fitted relationships (low R^2), inflated estimates of g_0 are obtained. Vertical lines are 95% confidence intervals. The gray line is a fitted loess smoother with 95% confidence interval. Note the wide confidence intervals and frequent negative values. (b) Similar to (a), but using the published compilation by Miner $et\,al$. (2017). The gray line is a fitted loess smoother with 95% confidence interval. (c) Using the fits from (a), a demonstration that the standard error (SE) of g_0 is much higher when the coefficient of variation (CV) of the predictor (i.e. right-hand side of the equation being fitted) is lower.

Suggestion

• Include both g_0 and g_{min}

$$g_{\rm s} = \max \left[\max(g_{\rm min}, g_0), g_1 \frac{A_{\rm n}}{C_{\rm a}} f(D) \right]$$

- Converges to g₀ during periods of low photosynthesis
- Converges to g_{\min} during periods of drought, if g_0 depends on water availability
- Work in progress

Thanks for your attention

Nail polish imprint of stomata on *Rubus arcticus*.

Astrid Vatne
The Iškoras people and data
Finse research station
LATICE
EMERALD
Research Council of Norway