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Innlegg: Ekstremoppvarmingen
av Arktis gir okte CO2-utslipp

Klimaendringene kan bli enda verre pa grunn av ukontrollerbare utslipp av
drivhusgasser fra Arktiske ekosystemer — men kunnskap om dette krever
langsiktige forskningsprosjekter.
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Warming response of peatland CO, sink is
sensitive to seasonality in warming trends

M. Helbig®'=, T. Zivkovi¢?, P. Alekseychik ®3, M. Aurela®?, T. S. El-Madany©®*, E. S. Euskirchen®¢,
L. B. Flanagan’, T. J. Griffis®, P. J. Hanson©?, J, Hattakka#*, C. Helfter©, T. Hirano®",

E. R. Humphreys©, G. Kiely®, R. K. Kolka®™", T. Laurila®©?, P. G. Leahy©", A, Lohila® %,

l. Mammarella®™, M. B. Nilsson®©7¢, A. Panov", F. J. W. Parmentier©%®°, M. Peichl©7, J,. Rinne®12°,
D. T. Roman®', O. Sonnentag?, E.-S Tuittila®%, M. Ueyama®2, T. Vesala®™, P. Vestin®™",

S. Weldon©?24, P. Weslien?® and S. Zaehle®?>

Peatlands have acted as net CO, sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern lati-
tudes, where peatlands are abundant, can disturb their CO, sink function. Here we show that sensitivity of peatland net CO,
exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO, sink responses. We use
multiannual net CO, exchange observations from 20 northern peatlands to show that warmer early summers are linked to
increased net CO, uptake, while warmer late summers lead to decreased net CO, uptake. Thus, net CO, sinks of peatlands in
regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions
than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better
interpret large-scale trends in peatland net CO, uptake over the coming few decades.
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EMERALD is an interdisciplinary and nationally
coordinated research project. Emerald will
improve the representation of high latitude
ecosystems and their climate interactions in The
Norwegian Earth System Model (NorESM) by
integrating empirical data and knowledge in model
development.

The spring green mountain slopes in Briksdalen, in the Western part of Norway. Photo:
Colourbox/Alexander Nikiforowv.
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Strong isoprene emission response to temperature in
tundra vegetation

Roger Seco**<'(®, Thomas Holst®@®, Cleo L. Davie-Martin®*@, Tihomir Simin®®@, Alex Guenther®, Norbert Pirk'@, Janne Rinne?®,

and Riikka Rinnan®®"

Edited by Dominick Spracklen, University of Leeds, Leeds, United Kingdom; received October 7, 2021; accepted July 31, 2022 by Editorial Board
Member Robert E. Dickinson

How ecosystem—-atmosphere exchange of reactive hydrocarbons,
biogenic volatile organic compounds (BVOCSs), responds to climate
change may provide important feedbacks on the regional climate.
We combined direct measurements with model predictions of
ecosystem-scale fluxes of isoprene — the most emitted BVOC
worldwide — from two contrasting tundra sites, to characterize their
temperature response.



Temperature activity factor (y;)

Temperature activity factor (y;)

PNAS

Strong isoprene emission response to temperature in

tundra vegetation

270 275 280 285 290 295 300 305 310 315 270 275 280 285 290 295 300 305 310 315

|

| I

|

I

RESEARCH ARTICLE

|

J

|

gL_li_(}

|

|

|

3 ] |
265 — Finse (measured) Finse (MEGAN)
Egp=1.00 £ 0.09 E=1.00 +0.03
Cry=150.39 + 3.92 Cr=114.21+0.76
2 — Cro= 711.43 £ 200.10 G99 Cr,=493.15+74.35 G99
Top= 303.06 + 0.27 7oy Top=303.17 £ 0.17 e
1.5 —
3.5 a
3 —
Abisko (measured) Abisko (MEGAN)
2 Egp=2.00 £1.90 E,,=1.33£0.07
5 Cry=230.88 £ 14.99 Cr=129.131.36
Cr,=231.96 £42.28 C,=279.86 + 54.83
2 — Top= 322.12 + 189.89 G99 Topt= 307.66 + 1.11 G99
1.5 —
1
0.5 —
0 —

T

Surface temperature (K)

[

I

=
270 275 280 285 290 295 300 305 310 315 270 275 280 285 290 295 300 305 310 315

I

g

Surface temperature (K)

I

)

EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES
ENVIRONMENTAL SCIENCES

Check for
updates

The continuous time series provide clear
evidence that tundra vegetation will
substantially boost its isoprene
emissions in response to rising
temperatures and allow for
improvement of models that currently
underestimate the temperature
dependence of highlatitude isoprene
emissions. These insights have
implications for the atmosphere in a high-
latitude region where climate is changing
more than anywhere else on our planet.

Q10 (the factor by which the emission
rate increases with a 10 ° C rise in
temperature)
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From trees to cloud seeds:

Modelling the climate influence of BVOC
LATICE PhD project
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Figure 5. Global distribution of mean annual NEE during 2010-2019

Jiang et al., ESSD, 2022
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So far, the land biosphere has stored
a sizeable fraction of our emissions,
imposing a negative biogeochemical
climate feedback

Can we count on this in the future?
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Friedlingstein et al., 2019
https://doi.org/10.5194/essd-11-1783-2019, CC BY 4.0
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Global warming is well documented from observations

We offer yet another analysis based on two high resolution datasets

GISTEMP v4 Annual Trend
1979-2019

Temperature change (K)
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NASA GISS Surface Temperature Analysis (GISTEMP v4)
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Datasets: NASA MODIS satellite datasets
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Data Products

T T L There are many standard MODIS data products that scientists are using to study gqlobal
change, These products are being used by scientists from a variety of dizciplines, includin

. oceanagraphy, Eiu:-lu:ugl,l, and atmospheric science, This section pravides some detail for eac
Direct Broadcas product individually, introducing you to the products, explaining the science behind them, and
alerting vou to known areas of concern with the data products, Additional information about
thesze products can be obtained by going to the appropriate URL's noted below, Select a data
product below far 2 detailed avearview of the product and links to product specific information,

Level 1

MODIS Raw Radiances
MoDIS Calibrated Radiances
MoDIS Seolocation Fields

MODIS Atmosphere Products
MoDIS Aerosol Product

MODIS Total Precipitable Watar
MODIS Cloud Product

MoDIS Atmospheric Profiles
MODIS Atmosphere Joint Product
MoDIS Atmozphere Gridded Product
MoDIS Cloud Mask

MODIS Land Products .
MODIS Surface Reflectance * temporal resolution : monthly

MODIS Land Surface Temperature and Emissivity EMODI 1}4— K .
MODIS Land Surface Temperature and Emissivity (MOD21 . Spat|a| resolution: 0.05° x 0.05°
MoDIS Land Cover pru:ll:ldUCtSd ( 4 : 5k 5k

MoDIS Vegetation Inder Products [MDWI and EVI

MODIS Thermal Anomalies - Active Fires ( m X m)

MODIS Fraction of Photosynthetically Active Radiation (FPAR) f Leaf Area Inden [LAI

Mi2DIS Evapotranspiration

MODIS Gross Primary Productivity [GPP] S Met Primary Productivity ‘SNF'F'j

MODIS Bidirectional Reflectance Distribution Function (BRDF) # Albedo Parameter

MODIS Yagetation Cantinuaus Fields

MODIS Water Mask

MODIS Burned Area Praduct

Gl over the Caspian Saa
2014

MODIS Cryosphere Products
MODIS Snow Cover
MODIS Sea Ice and Ice Surface Temperature

MODIS Ocean Products

MODIS Sea Surdace Temperature

MODIS Remote Sensing Reflectance

MoDIS Chlorophyll-a Concentratian

MODIS Diffuse Attenuation at 490 nm

MODIS Particulate Organic Carbon

MODIS Particulate Inorganic Carbon

MoDIS Marmalized Fluarezcence Line Height (FLHR

MODIS Instantaneous Photosynthetically Awvailable Radiation
MoDIS Daily Mean Photozynthetically &wvailable Radiation
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Datasets: ECMWF ERA5-Land scheme
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« temporal resolution : monthly
* spatial resolution: 0.1° x 0.1° (10km x 10km)

Diagram of the algorithm used in the production of ERA5-Land. The land surface model is integrated in
24 h cycles, using short-forecast meteorological forcing fields from ERAS. Data are available from 1981.
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Air temperature vs surface temperature

 In order to assess the difference in global and regional rate of change
between air temperature and surface temperature, we used the “ERAS5- L
T2M” dataset for temperature 2-m above ground for this purpose

« To obtain global and regional 2-m air temperature rate of change, the
dataset was processed in the same procedure performed for ERA5-SKT

« The results revealed that the trends of ERA5-L T2M and SKT temperatures
are very similar in global and regional scales, even with very close p-values

* Thus, the temperature trends shown in this work using MODIS LST and
ERAL-L SKT can also reasonably represent the temperature trends of air
temperature
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Regions

Based on the land regions defined in the RECCAP project
(Canadell et al., 2011; Ciais et al., 2021)

Arctic

N. America

Europe

Russia

Asia

Africa

S. America

Oceania

Antarctica

Fig. 1. Classification of nine regions of the world used in this study. North America, Europe, and Russia refer to their regions

excluding the parts in the Arctic.

Arctic circle
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Global temperature 2001-2020

MODIS LST & ERA5-Land SKT
Broadly similar

Fig. 2. Global land surface temperatures in 2001-2020. (a) From MODIS LST. (b) From ERA5-Land SKT.
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Global temperature 2001-2020

MODIS LST & ERA5-Land SKT
Some differences

- ~

6.0 d

4.5
3.0
1.5
0.0
=1.5
=30
—4.5
-6.0

Fig. 2. Global land surface temperatures in 2001-2020. (c) Difference between the 20-yr mean MODIS LST and mean ERA5-Land
SKT, shown as the former subtracted by the latter. (d) Panel (c) shown in absolute values. MODIS data were resampled in the grid of
ERAS5-Land before performing the comparisons in (c) and (d).
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Temperature rate of change 2001-2020

N. S.
Global| Arcticl/America| Europe| Russia Asial  Africa| America| Oceania
2001-
2020 |MODIS 0,26 0,72 0,13 0,62 0,65 0,16 0,05 0,25 0,34
2001-
2020 |[ERA5-L 0,34 0,86 0,20 0,63 0,68 0,20 0,31 0,32 0,34

Global and regional yearly mean land temperature rate of change (° C/decade).
Values with p-value <0.05 in the regression for rate of change are shown in red
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Temperature rate of change 2001-2020
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Fig. 5. Land surface temperature rate of change (°C/decade) in 2001-2020 from MODIS LST and ERA5-Land SKT. (a) From MODIS.
(b) From ERAS5-Land. (c) Pixels with statistically significant trends from MODIS. (d) Pixels with statistically significant trends from

ERAS5-Land. Note that in (a) and (e), South America, Africa, South Asia, and northern Australia contain blank areas due to the

requirement in this study that a pixel must have 20-yr complete, non-cloud-masked data for performing the regression for
temperature rate of change. Regional temperature rates of change that are statistically significant are labeled in (a) and (b).
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Temperature rate of change 2001-2020
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Fig. 5. Land surface temperature rate of change (°C/decade) in 2001-2020 from MODIS LST and ERA5-Land SKT. (a) From MODIS.

(b) From ERAS5-Land. (c) Pixels with statistically significant trends from MODIS. (d) Pixels with statistically significant trends from
ERAS5-Land. Note that in (a) and (e), South America, Africa, South Asia, and northern Australia contain blank areas due to the
requirement in this study that a pixel must have 20-yr complete, non-cloud-masked data for performing the regression for
temperature rate of change. Regional temperature rates of change that are statistically significant are labeled in (a) and (b).
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Temperature rate of change 1981-2020

All pixels
ERA5-Land SKT
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60°N |-
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Fig. 7. Land surface temperature rate of change (°C/decade) in 1981-2020 from ERA5-Land SKT. (a) All pixels. (b) Pixels that have
statistically significant rates only.
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Temperature rate of change 1981-2020

Significant pixels
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Fig. 7. Land surface temperature rate of change (°C/decade) in 1981-2020 from ERA5-Land SKT. (a) All pixels. (b) Pixels that have
statistically significant rates only.
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Temperature rate of change: acceleration
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Temperature rate of change: acceleration

Significant cases

1.0 I 1 1 I I I 1 1 I I
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Global Arctic N. America Europe Russia Asia Africa S. America Oceania Antarctica

Fig. S1. Global and regional temperature rate of change analyzed by ERA5-Land 1981-2000, ERA5-Land 1981-2020, ERA5-Land
2001-2020, and MODIS 2001-2020. Only the rates that are statistically significant are shown.
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Warming response of peatland CO, sink is
sensitive to seasonality in warming trends

1951-1970 -> 2001-2020
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Strong isoprene emission response to temperature in
tundra vegetation
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Temperature rate of change: Arctic

Significant pixels

MODIS 2001-2000 - ERA5-L 2001-2000
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Fig. 9. Areas with significant temperature rate of change, permafrost, and land cover in the circumpolar region. (a) From MODIS LST.
(b) From ERA5-Land SKT. (c) Map of circumpolar permafrost areas made by UNEP/GRID-Arendal using data from International
Permafrost Association (1998). (d) Map of land cover types made by UNEP/GRID-Arendal using data from GEO3 Global
Environment Outlook (2002).
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Arctic temperature rate of change 1981-2020
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Fig. 3 (left). Monthly land temperature averaged in the Arctic in 2001-2020 from MODIS LST and ERA5-Land SKT and temperature
rate of change by month. (a) From MODIS for March to August(b) From ERA5-Land for March to August. (c) From MODIS for
September to February. (d) From ERA5-Land for September to February. (e) Arctic temperature rate of change by month from
MODIS and ERA-Land temperatures, where error bars indicate =2 standard error for 95% confidence interval from the regression
for the rate of change of each month. Global mean temperature change rates by month are also shown for comparison.

Fig. 4 (right). Temperature trends in the Arctic obtained by two 30-yr periods and one 40-yr period in ERA5-Land. Error bars indicate
=+ 2 standard error for 95% confidence interval from the regression for the rate of change of each month.
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Temperature rate of change: Arctic
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Fig. 9. Areas with significant temperature rate of change, permafrost, and land cover in the circumpolar region. (a) From MODIS LST.
(b) From ERA5-Land SKT. (c) Map of circumpolar permafrost areas made by UNEP/GRID-Arendal using data from International
Permafrost Association (1998). (d) Map of land cover types made by UNEP/GRID-Arendal using data from GEO3 Global
Environment Outlook (2002).
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Conclusions

= Temperature trends obtained from the relatively short 20-yr
period 2000-2020 (MODIS&ERAS5-L) are conforming to the
general distribution in the 40-yr period 1980-2020 (ERA5-L)

= Continents and large regions warming at substantially different
rates, with the Arctic, Europe, and Russia being the fastest
warming regions around the globe

= Warming in the Arctic and in most of the continents is
accelerating during the 40-yr period 1981-2020 (ERA5-L)

» The fastest warming land on Earth during 2001-2020
coincides with the tundra biota in circumpolar regions
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Spatial correlation coefficients between mean DTR and mean NDVI

c NOWVI

» By visual comparison, annual mean DTR and annual mean NDVI have quite similar distribution patterns. The higher the DTR, the
lower the NDVI, and vice versa.

» Excluding the white pixels, correlation coefficient between global DTR and global NDVI (both using 2001-2020 average) is -0.61,
indicating they are quite strongly negatively correlated.
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