Gravitational potential stresses and stress field of passive continental margins: Insights from the south-Norway shelf

Christophe Pascal a,b,⁎, Sierd A.P.L. Cloetingh b

a NGU, Geological Survey of Norway, N-7491 Trondheim, Norway
b Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

A R T I C L E I N F O

Article History:
Received 17 June 2008
Received in revised form 11 November 2008
Accepted 12 November 2008
Available online 19 December 2008

Editor: T. Spohn

Keywords:
(geo) tectonics
topography
heat flow
lithosphere structure
seismicity

A B S T R A C T

It is commonly assumed that the stress state at passive margins is mainly dominated by ridge push and that other stress sources have only a limited temporal and/or spatial influence. We show, by means of numerical modelling, that observed variations in lithosphere structure and elevation from a margin towards continental interiors may also produce significant gravitational potential stresses competing with those induced by ridge push forces. We test this hypothesis on an actual case where abundant geological and geophysical datasets are available, the shelf of southern Norway and adjacent southern Norwegian mountains (or Southern Scandes). The modelling results are consistent with the main features of three key-observables: (1) undulations of the truncated geoid (reflecting variations in gravitational potential energy in the lithosphere), (2) significant stress rotations both offshore and onshore and (3) the seismicity pattern of southern Norway. The contribution of the Southern Scandes to the regional stress pattern appears to be far more significant than previously anticipated. In addition, the modelling provides a physical explanation for the enigmatic seismicity of southern Norway. Gravitational potential stresses arising from variations in the lithospheric structure between a passive margin and its continental borderlands, can exert a significant control on the dynamic evolution of the margin in concert with ridge push.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is commonly accepted that the main stress source affecting passive margins is ridge push and that other stress sources (e.g. flexural loading by rapid sedimentation rates, post-glacial rebound) have only local and/or short-term significance (Stein et al., 1989). This statement finds support in the numerous stress directions measured at passive margins that, in general, show maximum horizontal compression perpendicular to mid-oceanic ridges (Heidbach et al., 2008). Ridge push forces are, by nature, forces taking their origin in the excess of gravitational potential energy (hereafter GPE) existing between mid-oceanic ridges and most of the Earth’s lithosphere and, in particular, oceanic basins and continental margins (Dahlen, 1981). GPE is directly linked to the elevation and the density structure through depth of a given lithospheric column (Artyushkov, 1973). Mid-oceanic ridges present higher levels in potential energy with respect to passive margins, because the mantle stands at a higher position in the former case than in the latter. Pronounced differences in structure (i.e. elevation, Moho depth and crust and mantle density) also exist between continental margins and interiors. These differences are expected to result in significant gravitational stresses (Fig. 1).

Their involvement in quantitative studies appears to be a requirement to fully understand the stress state at passive margins.

In the present paper, we compute lithospheric stresses induced by ridge push forces and continental elevation at passive margins. The numerical method used accounts for the thermal and density structure of the lithosphere (Pascal, 2006) and is briefly described in the first section. In the second section, we show results from synthetic models and explore their sensitivity as a function of topography and crustal thickness variations. Finally, we apply the method to the shelf areas of southern Norway and consider various geophysical datasets (i.e. geoid, stress measurements and seismicity) to discuss the modelling results.

2. Methodology

We briefly summarise here the main principles of the numerical method used to compute GPE and gravitational potential stresses (hereafter GPS). An extensive description of the method can be found Pascal (2006). The numerical method involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution and, in addition, requires the studied lithosphere to be isostatically compensated at its base. The density of the crust is fixed a priori whereas mantle lithosphere densities are calculated as a function of temperature and pressure. Local isostatic equilibrium is calculated with respect to an ideal reference asthenosphere column.
The density structure of the reference column is computed according to its average composition and depth-dependent P–T conditions. For each computed geotherm, the condition for local isostasy is tested against the condition that the reference density for mantle lithosphere ranges between 3300 and 3390 kg/m³, in agreement with density values derived from petrologic studies of mantle xenoliths (Boyd and McCallister, 1976; Jordan, 1988; Boyd, 1989; Boyd et al., 1999; Poudjom Djomani et al., 2001; James et al., 2004). The procedure described above allows for excluding numerically geotherms or conversely density structures that, in the case of reasonable mantle density values, would result in out-of-balance isostatic states. An additional condition is added: the base lithosphere depth has to remain in between Moho depth and the peridotite–spinel transition phase at 410 km depth.

Once the thermal structure, the thickness and the density structure of the lithosphere are determined, it is possible to compute GPE and subsequent GPSst for this lithospheric column. Gravitational potential energy and stresses are the result of contrasting density distributions between the studied lithosphere column and the reference column (e.g. Artyushkov, 1973; Fleitout and Froidevaux, 1982; Coblentz et al., 1994). The difference in GPE, ΔGPE, is linked to the respective density distributions inside the two columns through:

$$\Delta \text{GPE} = \int_{h_{\text{bl}}}^{h} (\sigma_{zz}(z)-\sigma_{zz}^{R}(z))\,dz$$

where h is elevation with the convention that negative values correspond to surface above sea-level, h_{bl} base lithosphere depth and $\sigma_{zz}(z)$ and $\sigma_{zz}^{R}(z)$ are lithostatic pressures for the lithospheric and reference columns respectively.

Potential stresses are written as a function of the elastic thickness of the lithosphere, T_e, and

$$\text{GPSst} = \frac{\Delta \text{GPE}}{T_e}$$

meaning that only those parts of the lithosphere that do not yield at characteristic geological time scales support the applied stresses. T_e values are derived from the calculated lithospheric thermal and subsequent rheological structures, using the analytical formulae introduced by (McNutt et al. (1988) and Burov and Diament (1995).

3. Synthetic models: impact of varying surface topography and crustal thickness on the stress state at passive margins

Using the method described in the previous section, we computed GPE values for different configurations in terms of surface elevation and Moho depth for passive margins and adjacent continents. For the purpose of this study, we kept constant crustal density (i.e. $\rho_c=2800$ kg/m³) and surface heat flow ($q_s=60$ mW/m²) and assumed isostatic equilibrium and no tectonic perturbations of any kind. By nature, a passive margin is a transitional zone between deep oceanic basins and continental interiors, segmented in distinct areas presenting contrasting bathymetries and Moho depths. Therefore, it is, in general, inadequate to resume the crustal structure of a given passive margin by averaged bathymetry, Moho depth and crustal density values, and each margin, and eventually, each segment of the margin, needs to be treated separately. Nevertheless, our systematic exploration of the parameter space allows us to compute the a priori range of GPE values relevant for passive margins and more importantly, allows
us to estimate the range of ΔGPE that might exist between passive margins and adjacent continents.

The results of the modelling suggest that GPE values for passive margins can vary from -7×10^{12} to 0 N/m depending on crustal thickness and elevation (Fig. 2a). Because the GPE state of our selected reference column does not differ significantly from the one associated to most mid-oceanic ridges (Pascal, 2006), the GPE values computed here can be directly taken as estimates of the net ridge push force. It should be noted that combinations of very shallow bathymetry with shallow Moho or deep bathymetry with thick crust are not very likely to occur in nature once isostatic equilibrium has been reached and, at least, for our selected ρ_c and q_s values. This suggests that realistic GPE values for passive margins should be in the middle of the plot in Fig. 2a (i.e. $-2 \times 10^{12} \pm 1 \times 10^{12} \text{ N/m}$), in good agreement with the range of values proposed by e.g. Bott (1991). Note that the values devised here are first-order approximations that are expected to apply in most cases, where the geometrical configuration of the passive margin with respect to mid-oceanic ridges is relatively simple, but complex geometries would require more rigorous 3D calculations as pointed out by Ghosh et al. (2006).

The predicted range of GPE values for the adjacent continents is slightly broader than that modelled for passive margins (compare Fig. 2a with 2b) and eventually exceeds a level of $1 \times 10^{12} \text{ N/m}$. GPE values increase with elevation but also decrease with Moho depth. It is interesting to note that the increase in GPE due to topography can be significantly disturbed. Note that stresses eventually originating from continental elevation are not always easy to detect using stress orientation data. This is because in most cases continent topography by passive margins stands parallel to the mid-oceanic ridges and, consequently, topographic and ridge-push stresses are parallel. In the following, we study an actual case where continental topography is anticipated to produce a detectable stress signal.

4. Application to a natural laboratory: the “south-Norway shelf”

We selected the shelf of southern Norway (i.e. southernmost Norwegian Margin and northern North Sea, hereafter referred to as south–Norway shelf) and adjacent areas as case study. Our choice was motivated by the presence of relatively high topography on land near the shelf (i.e. the Southern Scandes with peaks up to 2.5 km high, Fig. 3) and the wealth of offshore data whose quantity has been boosted by forty years of oil exploration. We used three input data sets (i.e. topography, Moho depth and heat flow, Fig. 4). Topography was extracted from the Etope2 DEM and Moho depth is from Kinck et al. (1993). Both grids were high-pass filtered with a cutting wavelength at 300 km so that the remaining long-wavelength features were in agreement with local isostatic compensation and negligible lateral heat transport. Heat flow was taken from Pollack et al. (1993). Although this latter dataset is relatively coarse, the heat flow values give a first order picture of the regional heat flow distribution in reasonable agreement with unpublished data from the Geological Survey of Norway. Finally, in absence of firm constraints from seismic data in particular onshore, we used the empirical law established by Zoback and Mooney (2003) to derive densities of the crust according to its thickness (Fig. 4d).

The first modelling result is a map of the depth to the base lithosphere (i.e. 1300 °C isotherm) in the area under consideration here (Fig. 5a). Comparison with independent determinations from surface wave studies (Calcagnile, 1982) reveals that: (1) the modelled depth values are in agreement with those determined from seismic experiments and (2) a similar trend of eastward lithosphere thickening is predicted both by our modelling and the seismic model. Note that this trend has also been inferred from previous numerical modelling work (Pascal et al., 2004) and confirmed by recent passive seismic studies (Balling et al., 2006). In detail, the seismic study from Calcagnile (1982) predicts a much smoother pattern for the base of the lithosphere (Fig. 5b). This is, probably, because this latter study, conducted at the scale of Fennoscandia, had not enough resolution to resolve shorter wavelength features.

The computed GPE is shown in Fig. 6 together with the geoid truncated at degree and order 12 (i.e. at wavelengths associated to signals from lithospheric sources, Bowin, 1991). The main features of the truncated geoid reflect GPE variations in the lithosphere (e.g. Jones et al., 1996; Turcotte and Schubert, 2002) and can be used as a modelling constraint. At the first order, the modelled GPE distribution mimics well observed geoid undulations. The simulated GPE maximum of the Southern Scandes finds its actual counterpart in the pronounced positive geoid anomaly associated with the mountain range. In detail, some of the short-wavelength (i.e. less than ~100 km) geoid undulations are not well reflected in the modelled GPE distribution. These local mismatches are mainly due to the filtered and simplified crustal structure used in the modelling. For example, the deep More Basin, located at 4°E 64°N, produces a significant low in the geoid because the density of the sediments it hosts is significantly lower than basement densities. It is, however, important to note that the masses creating the short-wavelength signals are compensated by...
flexural isostasy and cannot be reasonably addressed by the method used here. In turn, our discussion focuses on the long-wavelength signals (i.e. 100s of kms). A closer look at the predicted GPE pattern reveals that the excess in potential energy of the Southern Scandes (i.e. 0.4 to 0.6×10\(^{12}\) N/m) with respect to the surrounding basins (i.e. the Norwegian Margin to the north and the North Sea to the west with average GPE values from −1.2 to −0.8×10\(^{12}\) N/m) results in a net compressive force on the basins in between −1.8 to −1.2×10\(^{12}\) N/m.

We computed GPSt values according to Eq. (2). The \(T_e \) distribution (Fig. 7) needed for the GPSt calculation was derived from the modelled lithospheric thermal structure and the assumed rheology (Table 1). \(T_e \) values range in between ~20 and 35 km in the continent and remain in good agreement with previous estimates based on post-glacial rebound modelling (Fjeldskaar, 1997) and spectral methods (Rohrmann et al., 2002; Pérez-Gussinyé and Watts, 2005) onshore and basin modelling offshore (ter Voorde et al., 2000). As expected predicted \(T_e \) values increase towards oceanic lithosphere (i.e. NW corner of the modelled domain, Fig. 7) but reach values up 50 km which appear to be overestimated for ~54 Ma old oceanic lithosphere (Watts et al., 1980). Nevertheless, this has no consequence on the results outside this specific domain which is not the prime target of the study.

As a final step in the modelling process, we imported the computed GPSt values in a finite-element model in order to quantify how the calculated stresses are distributed in a continuous medium. We used the commercial finite-element code ANSYS and proceeded in a similar manner as Bada et al. (2001), Andeweg (2002) and Jarosiński et al. (2006). The 2D model is purely elastic with constant Young’s modulus and Poisson’s ratio values (Table 1). Because the imported GPSt values are computed as a function of \(T_e \), information on rheological variations in the modelled domain is already provided to the finite-element mesh when importing stress values and there is no need for further adjustments of its elastic parameters. This procedure remains physically consistent as long as we focus on modelling stresses. Fig. 8a depicts the predicted stress directions resulting from the previously calculated GPE and \(T_e \) values (Figs. 6 and 7). The excess in GPE associated to the Southern Scandes results in moderate extensional stresses at the location of the mountain range and a radial compression with respect to it. The modelled counterclockwise stress rotation from the Norwegian Margin to the North Sea is remarkably well supported by stress measurements (Fig. 3). In addition, recent stress measurements in southern Trøndelag mid-Norway (Fig. 3) demonstrate that the horizontal maximum compressive stress trends NE–SW and rotates NW–SE to the north in perfect agreement with our modelling results (Fig. 8a). Inversion of focal mechanisms of earthquakes from the western edge of the Southern Scandes suggest normal stress regimes (Hicks et al., 2000 and Fig. 8) and add again support to the validity of our approach.

Fig. 8b depicts modelled Von Mises Equivalent Stresses (hereafter VMES) together with seismicity (Dehls et al., 2000). The VMES is a scalar calculated from the stress tensor and can be used as a priori indicator for plastic yielding (e.g. Jaeger and Cook, 1969), brittle failure being more expected where high VMES values prevail. The use of such an indicator that ignores the contribution of hydrostatic stresses is here justified by our thin plate approach. The most seismically active areas in the modelled domain are the Jurassic Viking Graben in the

Fig. 3. Topography of southern Norway and adjacent areas and measured stress directions. Note the pronounced stress rotations in the northern North Sea and in Trøndelag. Stress data are from the World Stress Map (Hedbø et al., 2008). Stress orientations in Trøndelag are from Roberts and Myrvang (2004), double arrows represent compression.
North Sea, the western and southern coasts of southern Norway and to some extent the Permian Oslo Graben (Hicks et al., 2000). The most remarkable result consists in predicting low VMES values by the centre of southern Norway, which is actually seismically quiet. VMES increase dramatically towards the western and southern coastlines, that are amongst the most seismically active regions onshore northern Europe (e.g. Bungum et al., 1991; Cloetingh et al., 2007). Obviously, the VMES pattern is strongly controlled by the interplay between the Atlantic ridge push and gravitational stresses related to the Southern Scandes. The results in Fig. 8a show an area of moderate extension at the centre of the mountain range, bordered by areas where the extensional stresses and ridge push cancel out mutually (i.e. corresponding to the low VMES areas in Fig. 8b). In contrast, the two stress sources appear to act in concert to enhance stress anisotropy, stress rotations and tendency for brittle failure by the coastline. Although we have some reservations about the robustness of our results in that specific area (because of artefacts related to model boundaries), our modelling appears also successful in predicting low VMES values close to the continent–ocean boundary in the NW. However, our modelling fails to give an explanation for the high
seismicity of the Viking and Oslo Grabens. This is not surprising because these rift structures are too narrow to be accounted for by the method used here, where small-scale features are filtered out from the input data in order to satisfy the background modelling hypotheses. More striking is the modelling of relatively high VMES values offshore Trøndelag that are not reflected in the seismicity. This is most probably related to a local overestimation in absolute GPE values, as suggested by the comparison between geoid undulations and modelled GPE (Fig. 6), but does not affect our predictions on the stress directions, that are, furthermore, confirmed by stress measurements (Roberts and Myrvang, 2004).

5. Discussion and concluding remarks

The modelling results presented here are mainly sensitive to variations in topography, Moho depth and crustal density. Heat flow influences notably GPE calculations only if it reaches typical low “cratonic” levels (i.e. ~40 mW/m²) and leads to thick lithospheres
Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface temperature</td>
<td>T_s</td>
<td>0 °C</td>
</tr>
<tr>
<td>Characteristic thickness</td>
<td>D</td>
<td>5 and 10 km</td>
</tr>
<tr>
<td>Max. crustal heat production</td>
<td>A_p, S_p</td>
<td>Computed</td>
</tr>
<tr>
<td>Heat flow ratio</td>
<td>R</td>
<td>Computed</td>
</tr>
<tr>
<td>Min. crustal heat production</td>
<td>A_{min}</td>
<td>0.3 μW/m²</td>
</tr>
<tr>
<td>Crust thermal conductivity</td>
<td>k_c</td>
<td>2 W/Km</td>
</tr>
<tr>
<td>Water density</td>
<td>ρ_w</td>
<td>1030 kg/m³</td>
</tr>
<tr>
<td>Continental crustal density</td>
<td>ρ_c</td>
<td>Variable</td>
</tr>
<tr>
<td>Oceanic crustal density</td>
<td>ρ_o</td>
<td>2850 kg/m³</td>
</tr>
<tr>
<td>Base lithosphere temperature</td>
<td>T_b</td>
<td>1300 °C</td>
</tr>
<tr>
<td>Mantle lithosphere heat production</td>
<td>A_M</td>
<td>0.01 μW/m²</td>
</tr>
<tr>
<td>Mantle lithosphere thermal conductivity</td>
<td>k_M</td>
<td>4 W/m/K</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>α</td>
<td>Temp.-dependent K⁻¹</td>
</tr>
<tr>
<td>Mantle lithosphere compressibility</td>
<td>β_M</td>
<td>764 GPa⁻¹</td>
</tr>
<tr>
<td>Mantle lithosphere ref. density</td>
<td>ρ_{Mref}</td>
<td>3390 (computed)</td>
</tr>
<tr>
<td>Buoyant height of sea-level</td>
<td>h_b</td>
<td>2500 m</td>
</tr>
<tr>
<td>Asthenosphere potential temperature</td>
<td>T_a</td>
<td>1300 °C</td>
</tr>
<tr>
<td>Mantle adiabat</td>
<td>F</td>
<td>0.5 °C/km</td>
</tr>
<tr>
<td>Asthenosphere compressibility</td>
<td>β_A</td>
<td>6.651 GPa⁻¹</td>
</tr>
<tr>
<td>Asthenosphere ref. density</td>
<td>ρ_{Aref}</td>
<td>3390 kg/m³</td>
</tr>
<tr>
<td>Acceleration of gravity</td>
<td>g</td>
<td>10 m/s²</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G</td>
<td>6.67×10⁻¹¹ Nm²/kg²</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>μ</td>
<td>0.6</td>
</tr>
<tr>
<td>Pore pressure ratio</td>
<td>λ</td>
<td>0.35</td>
</tr>
<tr>
<td>Strain rate</td>
<td>ε'</td>
<td>10⁻¹⁸ s⁻¹</td>
</tr>
</tbody>
</table>

*Viscous creep is also modelled using dry granite (Carter and Tiern, 1987) and dry olivine-dominated (Goetze and Evans, 1979) rheologies for the crust and the mantle respectively.

(Pascal, 2006), which is definitively not the case in the area studied here (Calcagnile, 1982; Plomerová et al., 2001). The Moho has been well imaged by previous seismic experiments (Kinck et al., 1993 and references therein) and is not considered here to be a major source of errors. Furthermore, recent receiver function studies support the first order features of the Moho map of southern Norway (Svenningsen et al., 2007). However, because the old seismic experiments have been unable to furnish a clear image of the crust onshore, it is difficult to give a clear assessment on the validity of the input crustal density model we used here. The inferred variation in crustal densities (i.e. density increase from the sedimentary basins towards shield interiors, Fig. 4d) seems at first order a reasonable assumption (Christensen and Mooney, 1995). The apparent good quality of the modelling results, and in particular the close similarity between the simulated GPE pattern and undulations of the truncated geoid, seems, however, to be dictated by the best-constrained input parameter that is topography and to some extent by Moho topography. This observation strongly suggests that the results are not, in the present case, very sensitive to lateral density changes in the crust. Recent and on-going active and passive seismic soundings onshore southern Norway will allow for refinements of our model in the near future.

Our GPE calculations are based on a simple 1D approach that has been proved to be in good agreement with more complete 2D ones (Bott, 1991). For the Indian Plate, Gosh et al. (2006) showed that GPE values calculated using a spherical thin-sheet model are reduced by half with respect to GPE values predicted by 2D models. However, our studied case is much simpler from the geometrical point of view than the Indian Plate case modelled by Gosh et al. (2006). For example, mid-oceanic ridges show constant orientations in the northern Atlantic, allowing for 2D or 1D approaches. We recognise nevertheless that our results need to be confirmed by more advanced modelling methods but anticipate that our main findings will remain.

Despite artefacts at the edges of the model, our simulated stress pattern reflects in general the observed stress rotations (compare Fig. 8 with Fig. 3). In particular the counterclockwise rotation in the northern North Sea is remarkably well reproduced. This rotation has already been noticed (Bungum et al., 1991) and ascribed either to diverging ridge push directions in the NE Atlantic (Lindholm et al., 2000), deviation of far-field stresses caused by pre-existing major weak faults (Pascal and Gabrielsen, 2001) or post-glacial rebound flexural stresses (Grollimund and Zoback, 2000, 2003). To our opinion, the small-scale character of the stress rotation implies a local origin and is unlikely to result from far-field causes. Pre-existing discontinuities in the crust are prone to deviate far-field stresses (Gölke et al., 1996; Pascal and Gabrielsen, 2001). This effect is merely limited to areas in the close vicinity of the discontinuity in contrast with model predictions by Pascal and Gabrielsen (2001). We base this conclusion on the notion that the E–W trend for the maximum horizontal stresses appears to persist across domains with different structural grains in the North Sea and onshore Norway (Fig. 3). However, we acknowledge that in the N–S Viking Graben this E–W trend might be locally influenced by the boundary faults of the rift structure.

Alteration of the tectonic stress field by post-glacial rebound stresses stands as a natural explanation in Fennoscandia, formerly covered by an ice cap until ~10 ky ago, and has been very often invoked in the literature (e.g. Stein et al., 1989; Fejerskov and Lindholm, 2000; Muir Wood, 2000). It is clear from the presence of impressive late glacial reverse faults in northern Fennoscandia (Olesen, 1988; Lagerbäck, 1990) that, in the past, the stress field has been significantly influenced by glacial unloading. However, as pointed out by Pascal et al. (2005) and Gregersen (2006), indicators of present-day stresses from formerly glaciated regions are mainly consistent with plate tectonic driving forces and no clear correlation with post-glacial rebound patterns can be seen (Heidbach et al., 2008).

In case of significant post-glacial rebound stresses, it would be extremely doubtful that the area studied here would be the only one where a post-glacial stress signal could be detected.

Furthermore, in order to create significant flexural stresses, Grollimund and Zoback (2000, 2003) needed to assume ice thickness of more than 1 km over the mountains of southern Norway for most of the Pleistocene. To date, no consensus exists concerning the thickness of the ice that covered the Norwegian mountains during the last Ice Age (e.g. Winguth et al., 2005). Geomorphological studies (Nesje et al., 1988), cosmogenic nuclide datings (Brook et al., 1996) and ice-flow modelling (Winguth et al., 2005) tend to support a thin ice model in...

We should emphasize that the Southern Scandes are in excess of GPE with respect to the surroundings, as intuitively suggested by e.g. Lindholm et al. (1995). This is clearly proven by the geoid signal (Fig. 6). Other elements that add support to the validity of our model are: (1) its capacity to reproduce the stress rotation observed onshore in the Trøndelag region (Figs. 3 and 8a), not accounted for by previous models, and (2) the good agreement (at least onshore) between observed earthquake distribution and predicted areas for maximum brittle deformation (Fig. 8b).

Our study has obvious implications for other passive margins worldwide and eventually other settings. We showed here that a moderately elevated landmass can produce stresses competing with far-field induced stresses. This suggests that not only the system of mid-oceanic spreading ridges has to be considered when studying the
dynamical evolution of a specific margin but also the spatial and
and plate convergence. Geology 34, 893

By

Acknowledgements

The present work has been initially supported by NWO in the framework of the ESF Eurocores/Euromargins Programme (Nemesdynam-EMA16 Project). C. Pascal benefited from a visiting research fellowship from the Netherlands Research Centre for Integrated Solid Earth Science (ISES NedSeis-2.7) to finalise the present Ms. We are indebted to Fred Beekman (VU Amsterdam) for providing help while using Ansys. Bernhard Steinberger (NGU) is kindly acknowledged for his help with the geoid data. We thank two anonymous reviewers for very critical and thoughtful reviews. This is the Netherlands Research School of Sedimentary Geology (NSG) publication nr. 2008.09.01. Maps have been generated using the GMT software package created by Pål Wessel and Walter Smith.

References

Mid Norwegian Margin and the northern North Sea. Tectonics 20, 585–599.
Pascal, C., Roberts, D., Gabrielsen, R.H., 2005. Quantification of neotectonic stress
orientations and magnitudes from field observations in Finnmark, northern
Plomerová, J., Arvidsson, R., Babuška, V., Granet, M., Kulhanek, O., Poupinet, G., Šilény, J.,
2001. An array study of lithospheric structure across the Protogine zone, Värmland,
south-central Sweden – signs of a paleocontinental collision. Tectonophysics 332,
1–21.
Poudjom Djomani, Y.H., O’Reilly, S.Y., Grif
fi
n, W.L., Morgan, P., 2001. The density
structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184,
605–621.
456 pp.
evolution of the Pacific Ocean basin. Nature 283, 532–537.
Thickness evolution of the Scandinavian ice sheet during the Late Weichselian in
stresses. Int. Geol. Rev. 45, 95–118.