Global ozone depletion and increase of UV radiation caused by pre-industrial tropical volcanic eruptions

Hans Brenna¹, Steffen Kutterolf², and Kirstin Krüger²

¹Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, Norway ²GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany

Contact: Hans.Brenna@geo.uio.no

Abstract

Large explosive tropical volcanic eruptions inject significant amounts of gases into the stratosphere, where they disperse globally through the large-scale meridional circulation. Halogens from tropical eruptions have been thought to be negligible based on observations of the largest eruptions of the satellite era, and thus most studies focus on sulfuric acid aerosols. More recent observations and models indicate that explosive volcanism can be a big source of halogens to the stratosphere. Here, we present the first study, based on observations, of sulfur, chlorine and bromine releases from tropical volcanic eruptions from the Central American Volcanic Arc over the last 200 ka combined with state-of-the-art coupled chemistry-climate model simulations using CESM1(WACCM). The simulations reveal global, long-lasting impacts on the ozone layer affecting atmospheric composition and circulation for a decade. Column ozone drops below 220 DU (ozone hole conditions) in the tropics, Arctic and Antarctica, increasing biologically active UV by 80 to 400%. Given the current decline in anthropogenic chlorine, halogen and sulfur rich explosive volcanic eruptions may become the major threat to the future ozone layer.

Model and experiments

WACCM model:
- CESM1(WACCM) (Marsh et al., 2013)
- High top version of Community Atmosphere Model (CAM4)
- 66 vertical layers; model top at 5.1 x 10^6 hPa (~150 km)
- 1.9 x 2.5 horizontal resolution
- MOZART middle atmosphere chemistry
- Prescribed SSTs
- Pre-industrial atmospheric composition

Central American Volcanic Arc:
- One of the most volcanically active regions in the world (A)
- Large halogen-rich eruptions are common (B,C)
- Recurrence time of ~130 years for Magnitude > 6 eruptions (Metzner et al 2014).
- Potential for large halogen injections to the stratosphere (B,C)
- Relevance for the 21st century as ozone-depleting substances (ODSs) decline.
- Input to pre-industrial coupled chemistry-climate model simulations.
- Recent observations support halogen injection to the stratosphere from small and moderate volcanic eruptions (e.g. Carn et al 2016).

Conclusions

Our pre-industrial simulations show:
- A combined sulfur and halogen injection leads to global stratospheric halogen enhancement ad ozone depletion lasting ~10 years (Box 1.2).
- Interaction between sulfate aerosols and halogen gas to deepen ozone depletion (Box 2).
- Multi-year Antarctic ozone depletions on the scale of modern ozone holes (Box 4).
- Strong global and regional increases in surface ultraviolet radiation (Box 5).
- More than 80% increase over large parts of the populated NH and < 400% in the Antarctic (Box 5).
- Potentially large impacts on human health, agriculture and the environment (Box 5).
- UV anomaly might be detectable in ice core or plant pollen proxies.
- Halogen-rich eruption reduces the EQ-NP temperature gradient during the first post-eruption winter (Box 6).
- NH polar vortex significantly weakens the first post-eruption winter (Box 6).
- During years 3-6 NH polar vortex is strengthened during SCN, with extensions to the surface during DJF (Box 6).
- The same pattern is seen over the NH polar regions during JJA of years 1-3 (Box 6).

Background

Halogen-Magnitute relation
- High activity
- Moderate activity
- Low activity

Ozone depletion causes enhancement of up to 400% of surface UV radiation.

6. Circulation changes

Significantly colder stratosphere and strengthening of the polar vortices.

Average CAVA eruption parameters and implementation:
- Location: 15N, 91W
- Injection altitude: 30 hPa
- Injected sulfur: 2.9 Mt (Kutterolf et al., 2015)
- Injected bromine: 9.5 kt (Kutterolf et al., 2015)
- Assumed halogen injection to the stratosphere: 10% (Tost et al., 2003)
- Degassed sulfur: 5.7 Mt (Metzner et al., 2014)
- Sulfur aerosol forcing implemented using prescribed WACCM forcing for 1982 El Chichon eruption (SPARC, 2006).

Experiment summary

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CTR</th>
<th>Halogen</th>
<th>Aerosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulations</td>
<td>1x20 yrs</td>
<td>1x20 yrs</td>
<td>1x20 yrs</td>
</tr>
<tr>
<td>Halogen Input</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sulfur Forcing</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>