Faglige interesser
- Kjemi/klima modelleringer
- Stratosfærisk/troposfærisk ozon
- Vegetasjon-ozon interaksjon ved klimaendringer
- Ozon tørr avsetning
- Very short-lived ozone depleting substances (VSLS)
- Arktik grenselag: brom utbrudd og reduksjon av ozon
Bakgrunn
- Jan 2018 – nåværende: Postdoktor, Institutt for geofag, Universitetet i Oslo
- Modellering av ozon påført skade på vegetasjon i Nord-Skandinavia ved klimaendringer i OsloCTM3, WRF, Do3SE.
- 2015 – 2017: PostDoc, Karlsruhe Institute of Technology
- Simuleringer av interaksjon av klimaprosesser og atmosfærisk kjemi ved bruk av klimamodellen (kjemi) EMAC (ECHAM/MESSy).
- Analyser av aspekter av fremtidig påvirkning av bromerte VSLS på reduksjon av ozon.
- Modellering av brom utbrudd i Arktis innenfor rammeverket av EMAC og sammenlikning av in-situ ozon og BrO målt fra satellitter.
- 2014: Ph.d. i Astropartikkel fysikk, Karlsruhe Institute of Technology
- 2011: Diplom i fysikk, Karlsruhe
Annet tillitsverv
- Nestleder i UiODoc, forening for stipendiater og postdoktorander på Universitet i Oslo (Mai 2018 - dag i dag)
Emneord:
Atmosfærekjemi,
Modellering,
Klimaeffekt,
Ozon
Publikasjoner
Update and evaluation of the ozone dry deposition in Oslo CTM3 v1.0
Publication date Nov 08 2019 Geosci. Model Dev.
Abstract High concentrations of ozone in ambient air are hazardous to the whole ecosystem. The impact of ozone-induced damage on vegetation and agricultural plants in combination with advancing climate change may affect food security in the future. The process of dry deposition is important for predicting and understanding the observed surface ozone concentrations. We have updated the dry deposition scheme in Oslo CTM3 to a more process-based parameterization and assess the effect on modeled ozone.
More
Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm
Publication date Mar 28 2018 Geosci. Model Dev.
Abstract Ozone depletion events (ODE) in the polar boundary layer are observed frequently in spring. ODE serve as source of tropospheric BrO at high latitudes. A treatment of bromine release and recycling on sea ice and snow covered surfaces has been implemented in global chemistry-climate model EMAC based on scheme of Toyota et al. (2011). Many aspects of bromine enhancement and associated ODE are reproduced in both polar regions. Further bromine release mechanisms can now be tested in a global model.
More
Brominated VSLS and their influence on ozone under a changing climate
Publication date Sep 25 2017 Atmospheric Chemistry and Physics
Abstract Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. We find an increase of future ocean-atmosphere flux of brominated VSLS of 8–10 % compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Bromine impact on stratospheric ozone at the end of the 21st century is reduced compared to present day.
More
-
Falk, Stefanie & Søvde, Ole Amund (2019). Update and evaluation of the ozone dry deposition in Oslo CTM3 v1.0. Geoscientific Model Development.
ISSN 1991-959X.
12(11), s 4705- 4728 . doi:
10.5194/gmd-12-4705-2019
Fulltekst i vitenarkiv.
Vis sammendrag
High concentrations of ozone in ambient air are hazardous not only to humans but to the ecosystem in general. The impact of ozone damage on vegetation and agricultural plants in combination with advancing climate change may affect food security in the future. While the future scenarios in themselves are uncertain, there are limiting factors constraining the accuracy of surface ozone modeling also at present: the distribution and amount of ozone precursors and ozone-depleting substances, the stratosphere–troposphere exchange, as well as scavenging processes. Removal of any substance through gravitational settling or by uptake by plants and soil is referred to as dry deposition. The process of dry deposition is important for predicting surface ozone concentrations and understanding the observed amount and increase of tropospheric background ozone. The conceptual dry deposition velocities are calculated following a resistance-analogous approach, wherein aerodynamic, quasi-laminar, and canopy resistance are key components, but these are hard to measure explicitly. We present an update of the dry deposition scheme implemented in Oslo CTM3. We change from a purely empirical dry deposition parameterization to a more process-based one which takes the state of the atmosphere and vegetation into account. We examine the sensitivity of the scheme to various parameters, e.g., the stomatal conductance-based description of the canopy resistance and the choice of ozone surface resistance, and evaluate the resulting modeled ozone dry deposition with respect to observations and multi-model studies. Individual dry deposition velocities are now available for each land surface type and agree generally well with observations. We also estimate the impact on the modeled ozone concentrations at the surface. We show that the global annual total ozone dry deposition decreases with respect to the previous model version (−37 %), leading to an increase in surface ozone of more than 100 % in some regions. While high sensitivity to changes in dry deposition to vegetation is found in the tropics and the Northern Hemisphere, the largest impact on global scales is associated with the choice of prescribed ozone surface resistance over the ocean and deserts.
-
Falk, Stefanie (2020). Ongoing work in Double Punch Ozone Damage – OzoneLUNA – Crowberry PFT.
-
Falk, Stefanie & Vollsnes, Ane Victoria (2020). Introduction of a new plant functional type in CLM/FATES: Arctic Evergreen (dwarf-)shrub.
-
Falk, Stefanie; Vollsnes, Ane Victoria; Stordal, Frode; Eriksen, Aud Else Berglen & Berntsen, Terje Koren (2020). Surface Ozone in Northern Scandinavia and Implications on Local Vegetation - A Case Study.
Vis sammendrag
The Arctic biosphere is subject to comprehensive changes induced by climate change. The highly specialized subartic vegetation will be challenged by both, changing environmental conditions as well as further interference through human activity. Permission of exploitation of natural resources in the Artic is likely to increase the levels of air pollutants which are precursors to ozone. n the course of our project (OzoNorClim: The Double Punch), we had an ozone monitor installed at the Norwegian Institute for Bioeconomic Research (NIBIO) Svanhovd Research Station operated by the Norwegian Institute for Air Research (NILU). In 2018, a long-lasting heatwave accompanied by extensive forest fires across Europe and Scandinavia enhanced surface ozone concentrations by about 2 ppt above the climatological mean in Northern Scandinavia. Ozone sensitive glover species in the ozone garden at Svanhovd showed clear signs of ozone damage in 2018 but not in 2019. We study these two years as example for probable future scenarios in which both heat stress and ozone stress affect vegetation negatively. We look at the corresponding surface ozone concentrations, accumulated ozone dose, and implications on natural and semi-natural vegetation especially in the Pasvik valley in Northern Norway, put these in a larger regional context, and give an outlook on further modelling work.
-
Vollsnes, Ane Victoria; Falk, Stefanie; Eriksen, Aud Berglen; Kapperud, Åshild Fandango; Kauserud, Håvard; Stordal, Frode & Berntsen, Terje Koren (2020). Responses to experimental ozone exposure in some native plant species from Northern Scandinavia.
-
Vollsnes, Ane Victoria; Falk, Stefanie; Eriksen, Aud Else Berglen; Stordal, Frode; Kauserud, Håvard; Berntsen, Terje Koren; Emberson, Lisa D.; O’Neill, Connie & Lombardozzi, Danica (2020). The double punch: ozone and climate stresses on vegetation.
-
Byre, Hanne Eline; Falk, Stefanie; Stordal, Frode & Berntsen, Terje Koren (2019). An Investigation of Source Regions Contributing to the Deposition of Reactive Nitrogen in Arctic and Boreal Areas.
Vis sammendrag
Long range atmospheric transport is an important source of reactive nitrogen (Nr) to Boreal and Artic ecosystems. The combined effect of climate change and deposition of reactive nitrogen which is an important nutriant for these systems, have the potential to change the carbon storage in high latitude reservoirs. Furthermore a change in vegetation, will lead to changes in the exchange of energy and humidity between the land surface and the atmosphere. We have conducted several model studies to investigate and quantify the importance and contribution of distinguished source regions to Nr deposition in polar and sub-polar regions in the northern hemisphere. Using a global chemistry transport model, we will assess the following questions: To what extent are emissions from agriculture in South-Asia affecting NOx deposition in the Arctic? What would happen if we shut down the automotive sector in Germany, do we see a reduction in the amount of NOx deposited in Norway?
-
Falk, Stefanie; Stordal, Frode & Vollsnes, Ane Victoria (2019). Ozon und seine Auswirkungen auf die Vegetation in Nordskandinavien.
Vis sammendrag
Ozon ist eines der wichtigsten Spurengasen in der Atmosphäre. Während es uns in Form der Ozonschicht in der Stratosphäre vor schädlicher, kurzwelliger Strahlung schützt, zählt es in der planetaren Grenzschicht zu den überaus schädlichen Reizgasen. Eine Aufnahme einer Dosis von 50 ppm über die Dauer von 30 min gilt für den Menschen als tödlich. Pflanzen nehmen Ozon durch ihre Stoma auf, wo dieses zur Zerstörung von Zellen beiträgt, die der Photosynthese dienen, und letztlich Wachstum und Ertrag reduziert. Die empfindlichen Ökosysteme im Norden Skandinaviens erfahren bereits durch den Klimawandel einen erhöhten Stress. Sollte das Polarmeer dauerhaft eisfrei werden, so würde sich der Schiffsverkehr und damit die Menge der Ozonvorläufersubstanzen drastisch erhöhen. Insbesondere während des Polarsommers ist eine nächtliche Reparatur der entstandenen Ozonschäden gehindert. Wir präsentieren hier einen Überblick über die schädlichen Auswirkungen von Ozon auf Vegetation und erste Studien zu der Entwicklung von Ozonkonzentrationen in Nordskandinavien. Dabei greifen wir sowohl auf Langzeitmessungen als auch Modellsimulationen zurück.
-
Stordal, Frode; Berntsen, Terje Koren; Büker, Patrick; Falk, Stefanie; Rydsaa, Johanne Hope; Gillies, David & Vollsnes, Ane Victoria (2018). Ozone and climate stresses on sub-ARctic tundra vegetation: Modelling of stomatal fluxes in midnight sun.
-
Vollsnes, Ane Victoria; Eriksen, Aud Berglen; Büker, Patrick; Kauserud, Håvard; Falk, Stefanie & Stordal, Frode (2018). Ozone stress on sub-Arctic tundra vegetation: ozone exposure experiments with daylength manipulation..
-
Vollsnes, Ane Victoria; Eriksen, Aud Berglen; Falk, Stefanie; Berntsen, Terje Koren; Kauserud, Håvard; Emberson, Lisa D. & Stordal, Frode (2018). Project The double punch: ozone and climate stresses on vegetation.
-
Vollsnes, Ane Victoria; Eriksen, Aud Berglen; Falk, Stefanie; Bryn, Anders; Viken, Jeanette & Stordal, Frode (2018). Ozonforurensning. Klima, vegetasjon og matproduksjon.
Publisert 10. jan. 2018 16:10
- Sist endret 29. juni 2020 10:53