binding site (fig. S8A and fig. S9), Get1 must displace helix α2Get2, which is connected to helix α1Get2 by the flexible glycine linker. NMR analyses revealed that Get1 binding indeed causes some Get2 interactions with Get3 to disappear. Specifically, interaction with Get2 was observed in the region of L4 to A49, and upon addition of Get1, residues G24 to A49 no longer interacted with Get3 (fig. S10). This shows that helix α2Get2 is no longer bound to Get3 in the ternary complex.

On the basis of different crystal structures of Get3, we previously proposed a model for how the Get3 ATPase regulates TA protein insertion (19). With structures of different Get3-receptor complexes as well as functional data in hand, distinct docking states can be integrated into this model (Fig. 4). Assisted by Get4/Sgt2, TA proteins bind to Get3-ATP-Mg2+ (step 1). After ATP hydrolysis, the reaction products stay trapped, and the energy gained from hydrolysis is stored in a strained conformation (19). The N terminus of Get2 tethers the Get3/TA protein complex to the ER membrane (step 2). Binding of Get1 displaces α2Get2, and the Get3/TA protein complex is now docked to the receptor complex at the membrane (step 3). When the TA protein is released, Get3 relaxes to the closed state, and inorganic phosphate dissociates (step 4). According to the crystal structures, Get1 can stay bound to Get3 during the transition from the closed to the open state. What actually triggers opening of Get3? We favor the idea that the energy from ATP hydrolysis drives Get3 to the open state, and ADP-Mg2+ leaves by way of the observed tunnels. In this state, Get1 interferes with nucleotide binding and prevents closure of the dimer. Finally, binding of ATP facilitates dissociation of Get3 (step 5), which sets the stage for the next targeting cycle. As Get1-CD is rigidly linked to Get2 and the Get3/Get1 complexes can be extrapolated to the complete membrane receptor (as indicated in Fig. 4 and fig. S11), the opening of Get3 during the transition from the closed to the open state can directly transfer to the TMDs of the receptor, as anticipated in the model above. It is now important to dissect the precise mechanism of TA protein insertion and to see whether a general concept can be derived that is shared by different membrane transport systems.

References and Notes
22. A. Yamagata et al., Genes Cells 15, 29 (20).1

Acknowledgments: V.D. would like to thank M. Frech for his support of the project and acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) (SFB 807), the Centre for Biomolecular Magnetic Resonance (BMRZ), and the Cluster of Excellence Frankfurt (Macromolecular Complexes). I.S. thanks J. Kopp and C. Siegmann from the crystallization platform of the Biochemzentrum and the Cluster of Excellence Heidelberg (Cellnetworks), the European Synchrotron Radiation Facility for access to data collection, D. Dobberstein for generous support and stimulating discussions, and acknowledgements funding by the DFG (SFB 638). Coordinates and structure factors have been deposited in the Research Collaboratory for Structural Bioinformatics Protein Data Bank (PDB) with accession nos. 3SAJ, 3SB, 3SC, and 3SD.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1207125/DC1
Materials and Methods
Figs. S1 to S13
Tables S1 and S2
References
18 April 2011; accepted 21 June 2011
Published online 30 June 2011; 10.1126/science.1207125

The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi

Brown rot decay removes cellulose and hemicellulose from wood—residual lignin contributing up to 30% of forest soil carbon—and is derived from an ancestral white rot saprotroph in which both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot” fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.

Many Agaricomycete fungi have been sequenced to date (1), permitting comparative and functional genomic analyses of nutritional niche adaptation in the underground fungal networks that sustain boreal, temperate, and some subtropical forests (2). Through the sequencing of the brown rot wood decay fungus Serpula lacrymans, we conducted genome comparisons with sequenced fungi, including species representing each of a range of functional niches: brown rot and white rot wood decay, parasitism, and mutualistic ectomycorrhizal symbiosis.
Fig. 1. Molecular phylogeny and lignocellulose-active gene evolution in the Agaricomycetes. (A) Chronogram of Agaricomycetes inferred from a combined six-gene data set by use of Bayesian relaxed molecular clock analyses. Time divergence estimates (in millions of years) are presented as 95% highest posterior density (HPD) node bars in light blue, which describe the upper and lower boundaries of time estimates, and as mean node ages (numbers in bars). The HPD of nodes that were calibrated with fossil ages are in red, and the lower boundaries of time estimates, and as mean node ages (numbers in bars). The numbering of nodes in bold type corresponds to the tMRCA statistics (time to most recent common ancestor) summarized in table S11. (B and C) Patterns of gene duplication and loss in (B) 12 lignocellulose-active CAZy and (C) 7 oxidoreductase gene families estimated by means of gene tree reconciliation analysis and loss in (B) 12 lignocellulose-active CAZy and (C) 7 oxidoreductase gene families estimated by means of gene tree reconciliation analysis and loss in (B) 12 lignocellulose-active CAZy and (C) 7 oxidoreductase gene families estimated by means of gene tree reconciliation analysis. Red, blue, and black branches indicate lineages with net expansions, net contractions, or no change in copy number, respectively. Numbers at nodes and along branches indicate estimated copy numbers for ancestral species and ranges of gains and losses, respectively, estimated by using 90 and 75% bootstrap thresholds for gene trees in reconciliations. Bars indicate copy numbers in sampled genomes.

Only 6% of wood-decay species are brown (3), but being associated with conifer wood (4), they dominate decomposition in boreal forests. Their lignin residues contribute up to 30% of carbon in the organic soil horizons (5). Long-lived (6) and with capacity to bind nitrogen and cations (7), these phenolic polymers condition the nutrient-poor acidic soils of northern conifer forests.

Brown rot wood decay involves an initial non-enzymatic attack on the wood cell wall (8), generating hydroxyl radicals (\(\cdot OH\)) extracellularly via the Fenton reaction:

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + \cdot \text{OH} + \text{H}_2\text{O}
\]

Hydrogen peroxide is metabolically generated by oxidase enzymes such as glyoxal oxidases and copper radical oxidases. The hydroxyl radical has a half-life of nanoseconds (8) and is the most powerful oxidizing agent of living cells. However, we do not know how it is spatially and temporally targeted to wood cell wall components. Divalent iron is scarce in aerobic environments, where the fungus is obligate and the trivalent ion is energetically favored. Phenolates may be modified lignin derivatives or fungal metabolites (10). After initial bond breakage in the cellulose chain, side chain hemicelluloses (arabian and galactan) are removed, followed by main chains (xylan and mannan (11)), with subsequent hydrolysis of cellulose by synergistic glycoside hydrolases.

Only 6% of wood-decay species are brown (3), but being associated with conifer wood (4), they dominate decomposition in boreal forests. Their lignin residues contribute up to 30% of carbon in the organic soil horizons (5). Long-lived (6) and with capacity to bind nitrogen and cations (7), these phenolic polymers condition the nutrient-poor acidic soils of northern conifer forests.

Brown rot wood decay involves an initial non-enzymatic attack on the wood cell wall (8), generating hydroxyl radicals (\(\cdot OH\)) extracellularly via the Fenton reaction:

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + \cdot \text{OH} + \text{H}_2\text{O}
\]

Hydrogen peroxide is metabolically generated by oxidase enzymes such as glyoxal oxidases and copper radical oxidases. The hydroxyl radical has a half-life of nanoseconds (8) and is the most powerful oxidizing agent of living cells. However, we do not know how it is spatially and temporally targeted to wood cell wall components. Divalent iron is scarce in aerobic environments, where the fungus is obligate and the trivalent ion is energetically favored. Phenolates synthesized by brown rot fungi, including \(S. lacrymans\) (9), can reduce \(\text{Fe}^{3+}\) to \(\text{Fe}^{2+}\).

Such phenolates may be modified lignin derivatives or fungal metabolites (10). After initial bond breakage in the cellulose chain, side chain hemicelluloses (arabian and galactan) are removed, followed by main chains (xylan and mannan (11)), with subsequent hydrolysis of cellulose by synergistic glycoside hydrolases.
REPORTS

Acid; 3, atramentic acid). Confirmed with mass spectrometry and by their ultraviolet-visual spectrum (1, variegatic acid; 2, xerocomic acid).

imated ages of the marasmioid (Fig. 1A, node 43) are associated with members of both gymnosperms and gymnosperms, as these fungi are currently recognized as having diverged in historic time (14, 15).

We estimated divergence dates in fungal phylogeny using the data set of Binder et al. [supporting online material (SOM), molecular clock analyses] (17), with two well-characterized fungal fossils that were used to calibrate the minimum ages of the marasmioid (Fig. 1A, node 10) and suillloid clades (Fig. 1A, node 11). The estimated age of the split between Serpula and its ectomycorrhizal sister-group Austroplaxillus (53.1 to 15 million years ago) (Fig. 1A and table S11) suggests that transition from brown rot saprotrophy to mutualistic symbiosis occurred after reosids (Eurosids I) became widespread (Fig. 1A) (18).

Diversification in fungal nutritional modes occurred alongside diversification of angiosperms and gymnosperms, as these fungi are currently associated with members of both gymnosperms (Pinacea) and angiosperms (18).

S. lacrymans comprises two subgroups that diverged in historic time (19), S. lacrymans var. shastensis, which is found in montane conifer forest, and S. lacrymans var. lacrymans, which is a cause of building dry rot. Two S. lacrymans var. lacrymans complementary monokaryons (haploids of strain S7), S7.9 (A2B2) and S7.3 (A1B1) (20), were sequenced via Sanger and 454 pyrosequencing, respectively. The genome of S. lacrymans S7.9 was 42.8 megabase pairs (Mbp), containing 12,917 gene predictions (21).

We analyzed 19 gene families of enzymes for lignocellulose breakdown: carbohydrate active enzymes (CAZys; www.cazy.org) (22) (GHs and carbohydrate esterases) and oxidoreductases (table S9). Losses and expansions in these families were compared across 10 fungi, including Agaricomycetes, with a range of nutritional modes (Fig. 1, B and C, and table S9). Convergent changes in enzyme complement were found in the two independently evolved brown rot species, with parallels in the ectomycorrhizal Laccaria bicolor (fig. S3 and table S9). The inferred most recent common ancestor of the Agaricales, Boletales, and Polyporales is predicted to be a white rot with the fewest hydrolytic CAZy genes and 27 to 29 oxidoreductases (Fig. 1, B and C). Brown rot and ectomycorrhizal fungi have the fewest hydrolytic CAZy genes.

Brown rot and ectomycorrhizal fungi lacked class II peroxidases, which are used by white rot fungi in depolymerizing the lignin matrix of wood and unmasking usable cellulose embedded within it. This family was expanded in the white rot Cephalotus cinereus, Phanerochaete chrysosporium, and Schizophyllum commune, with 29, 43, and 24 genes, respectively, with only 19 each in S. lacrymans and P. placenta. Oxidoreductases conserved in brown rot fungi included iron and quinone reductases and multicopper oxidases (fig. S3 and table S8). Absence of ligninolysis in brown rots raises the question of how they achieve pervasive cellulolysis in wood with the lignin matrix intact.

GH gene families had parallel patterns of losses and expansion in both brown rots and ectomycorrhizas. CAZy families GH5 (endoglucanases, hydrolyzing cellulose) and GH28 (pectinases, hydrolyzing intercellular cohesive polysaccharides in plant tissues) were expanded in both brown rot species, in which they might facilitate intercellular enzyme diffusion, and retained in L. bicolor, in which they might facilitate intercellular penetration of living roots. Both brown rot species lacked GH7 (endoglucanase/cellobiohydrolase CBBI), and GH61 genes—unknown function but recently implicated in oxidative attack on polysaccharides (23)—were reduced. GH6 (cellobiohydrolase CBII) and cellulose-binding modules (CBM1), which were absent from P. placenta (13), were present in S. lacrymans. One CBM was associated with an iron reductase in a gene (S. lacrymans S7.9 database protein ID, 452187) originally derived from a cellobiose dehydrogenase.

The general utility of the conserved suite of GH genes in wood decay by S. lacrymans was supported through transcriptomic and proteomic analysis. Carbohydrate-active enzymes accounted for 50% of proteins identified (table S14), and 33.9% of transcripts regulated greater than 20-fold by S. lacrymans growing on pine wood as compared with glucose medium (fig. S4).
Cellulose-, pectin-, and hemicellulose-degrading enzymes (GH families 5, 61, 3, and 28) were prominent, and GH5 endoglucanase (S. lacrymans S7.9 database protein ID, 433209) and GH74 endoglucanase/xylloglucanase (S. lacrymans S7.9 database protein ID, 453342) were up-regulated greater than 100-fold.

We conclude that brown rot fungi have cast off the energetically expensive apparatus of ligninolyis and acquired alternative mechanisms of initial attack. Wood decomposition by S. lacrymans may involve metabolically driven nonenzymatic disruption of lignocellulose with internal breakage of cellulose chains by highly localized -OH radical action. Mycelia in split plates mimicking realistic nutrient heterogeneity (fig. S1) produced variegate acid (VA), an iron-reducing phenolate (Fig. 2A to C), via the Boletales atrotomentin pathway, which was recruited in S. lacrymans for the Fenton’s reaction.

Wood decomposition is presumably followed by coordinated induction of the decay machinery revealed in the wood-induced transcriptome (Fig. 3 and fig. S4). GHs and oxidoreductases accounted for 20.7% of transcripts, accumulating greater than fourfold on wood relative to glucose medium (fig. S4 and table S12). Iron reduction mechanisms included an enzyme harboring a C terminal cellulose-binding module (S. lacrymans S7.9 database protein ID, 452187) (fig. S5) that is up-regulated 122-fold on wood substrate (fig. S4 and table S12). This enzyme, which is present in Ph. chrysosporium but absent from P. placenta (26), is a potential docking mechanism for localizing iron reductase activity, and hence -OH generation, on the surface of microcrystalline cellulose. Cellulose-targeted iron reduction, combined with substrate induction of variegate acid biosynthesis, might explain the particular ability of brown rot fungi in Boletales to degrade unassociated microcrystalline cellulose without the presence of lignin (27).

Thus, comparative genomics helps us understand the molecular processes of forest soil fungi that drive the element cycles of forest biomes (28). Sequenced forest Agaricomycetes reveal shared patterns of gene family contractions and expansions associated with emergences of both brown rot saprotrophy and ectomycorrhizal symbiosis. In Boletales, loss of aggressive ligninolysis might have permitted brown rot transitions to biotrophic ectomycorrhiza, which is promoted in soils impoverished in nitrogen by brown rot residues, and by the nutritional advantage conferred by the connection to a mycorhizal network. S. lacrymans and other fungi cultured with conifer roots (29) ensheath Pinus sylvestris roots with a mantle-like layer (fig. S6), suggesting nutrient exchange.

The chronology of divergences in extant fungal nutritional mode (Fig. 1A) matches the predicted major diversification in conifers (18), suggesting that the boreal forest biome may have originated via genetic coevolution of above- and below-ground biota.

References and Notes

The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation

Lan Wang,1 Alexander Gural,1 Xiao-Jian Sun,2 Xinyang Zhao,1 Fabiana Perna,1 Gang Huang,1 Megan A. Hatlen,1 Ly Vu,2 Fan Liu,1 Haiming Xu,1 Hao Xu,1 Tony Deblasio,1 Silvia Menendez,1 Francesca Voza,1 Yanwen Jiang,3 Philip A. Cole,4 Jinsong Zhang,5 Megan A. Hatlen,1 Ly Vu,2 Fan Liu,1 Haiming Xu,1 Hao Xu,1 Tony Deblasio,1 Silvia Menendez,1 Francesca Voza,1 Yanwen Jiang,3 Philip A. Cole,4 Jinsong Zhang,5 Ari Melnick,3 Robert G. Roeder,2 Stephen D. Nimer1

The chromosomal translocations found in acute myelogenous leukemia (AML) generate oncogenic fusion transcription factors with aberrant transcriptional regulatory properties. Although therapeutic targeting of most leukemia fusion proteins remains elusive, the postranslational modifications that control their function could be targetable. We found that AML1-ETO, the fusion protein generated by the t(8;21) translocation, is acetylated by the transcriptional coactivator p300 in leukemia cells isolated from t(8;21) AML patients, and that this acetylation is essential for its self-renewal–promoting effects in human cord blood CD34+ cells and its leukemogenicity in mouse models. Inhibition of p300 abrogates the acetylation of AML1-ETO and impairs its ability to promote leukemic transformation. Thus, lysine acetyltransferases represent a potential therapeutic target in AML.

Histone-modifying enzymes can regulate the binding of specific chromatin-binding proteins to histone marks and can change the affinity of the histones for DNA (1, 2). These enzymes also affect nonhistone proteins, and postranslational modifications of transcription factors such as p53 or AML1 (which is required for definitive hematopoietic development) can...