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1 Introduction

Nature has always been a source of inspiration in the field of robot design. Evo-
lution has produced organisms that are perfectly adapted to their environments.
Consider for example the emperor penguin: living in Antarctica, it faces one
of the harshest environments on the planet, with temperatures down to -40°C
and intense wind speeds. However, with its specifically adapted morphological
features, like its layers of fat and feathers, the emperor penguin has no problem
handling this rough environment. Its oily coat and streamlined body also makes
it an expert swimmer, and the characteristic dark back and white belly provides
good camouflage when hunting. [35] These traits were formed through millions
of years of evolution, and leave the penguin well adapted to solve the problems
in its environment. Since the results of evolution in nature is this specialized,
simply copying it into a specific problem solving robot will probably lead to
a design that includes traits unnecessary or even obstructive for solving the
problem at hand. Evolutionary Robotics (ER) attempts to mimic the process
of evolution instead of its biological results, to create robots that are evolved
to handle the environment of a certain problem. Often the control parameters
of an existing robot are improved using this method, but one of the final goals
of ER is the evolution of both control parameters and morphology [32, 4]. Al-
though this task is extremely difficult due to the vast number of iterations and
the many parameters that are often needed to describe solutions and environ-
ments, one advantage of ER is that it is not restrained by biological processes,
and can therefore include problem-specific algorithms such as lifetime learning
in the evolutionary search. This is what constitutes the essential ideas behind
Memetic Algorithms.

2 Memetic Algorithms

Evolutionary Algorithms (EAs) are population based optimization algorithms
inspired by the basic concepts of biological evolution and genetics, such as nat-
ural selection and inheritance. Memetic Algorithms (MAs) use this as a basis,
and in addition includes ideas about lifetime learning, such as Lamarcks theory
of evolution and the Baldwin effect [1].

2.1 Cultural evolution

The word “meme” was introduced by Richard Dawkins in [7], and is used to
describe a unit of human cultural evolution, equivalent to “gene” in biological
evolution. A meme can be described as a small building block in some kind of
knowledge or skill, that an individual can acquire by learning. This means that
the meme can be modified during the lifetime of the individual, and then, if it
is good/interesting enough, be passed on to the next generation. This separates
memes from genes, as the latter will be transmitted to the next generation
unaltered, if the individual’s fitness is good enough. With this concept of memes



in mind, Moscato [20] defined the term Memetic Algorithms. MAs combine the
analogies of genes and memes by including local search as a sort of life-time
learning in a Genetic Algorithms (GA).

2.2 Genetic Algorithms

GAs are a subset of Evolutionary Algorithms, which again is a subset of Evo-
lutionary computation (EC).

In general, EAs/GAs perform iterative search or optimazation of a problem
by evolving a population of candidate solutions, or individuals, towards an opti-
mum, by modifying these using mutation and/or crossover operations. The new
individuals go through a selection process, where individuals with higher fitness
values have a higher chance of being selected to the new generation. The same
process is then repeated on the new generation, until a termination criterion is
reached, i.e. a certain number of iterations have been performed. For a more
detailed description of EAs and its variants, see [9].

Evolutionary computing, as part of the field of artifitial intelligence, is be-
coming an established research area in computer science, and includes a large
set of techniques, including EAs and GAs. It has reached popularity due to its
ability to perform fast global search on high complexity problems that require
satisfactory, but not necessarily optimal, performance, and because it can be
applied to a large number of problems without much altering. This can be done
because of the fact that it makes few assumptions about the final solution, which
also makes it relatively straight forward to implement on different systems.

2.3 Life-time learning

A well known disadvantage of GAs, and EAs in general, is that there is no
guarantee that the global optimum will be found, as the whole process is char-
acterized by stochasticity and lacks the ability to exploit local information.
They do, however, guarantee a near optimum solution, as EAs perform well on
global search due to their ability to explore large areas of the fitness landscape.
The idea behind memetic algorithmss is to combine the explorative qualities
of GA with the exploitative qualities of heuristic local search, so a global op-
timum should have a higher probability of being discovered with this hybrid
global-local search approach. The application of local search is sometimes re-
ferred to as life-time learning, see [21]. There are two main models of life-time
learning, Lamarckian and Baldwinian [16, 34]. Lamarckian learning transmits
the improvement caused by local search back to the population by encoding the
improved phenotype back to a genotype, which is then used in selection and
reproduction in the normal GA way. Although Lamarcks theory of evolution
has been more or less discarded as a correct description of biological evolution,
computational evolution is not bound by biological constraints, and with an
applicable phenotype to genotype encoding there is no reason why this could
not be implemented. Baldwinian learning is based on the more biologically ac-
cepted mechanism of the Baldwin effect [1]. In this method, the fitness of the



individual is altered after the local search and thereby affects the selection pro-
cess, but the results of the local search are not inherited by the new generation.
An early simulation of Baldwinian learning can be found in [12], where it was
stated that learning alters the search space, and that the shape of the search
space indicates if learning will be a positive influence or not. Most successful
MAs to date implement Lamarckian learning [16]. Although it poses the addi-
tional challenge of encoding the phenotype into a corresponding genotype, the
fact that the results of the local improvements are placed back in the population
seems to give better results in general.

2.4 Overview of the process

Figure 1 on the following page shows an outline of a standard run of a memetic
algorithm. The first step is to initialize a population. This is often done ran-
domly to avoid bias, but can also be done using known information about the
problem. Local search is then performed on the initial population, before the
main loop is entered, starting with parent selection based on the current fitness
values of each individual. In some configurations, not only fitness affects the
parent selection, but also other parameters, like age. Mutation and/or recombi-
nation of the parents is then performed, generating new individuals which form
the new generation, on which local search then can be done. All individuals now
represent local optima, or near local optima depending on the configurations of
the local search algorithm. If the implementation uses Lamarckian learning,
the new individuals receives a new genotype encoded from their improved phe-
notype before continuing, otherwise only the fitness stays improved. A new
population is then made through survivor selection of the old and the new in-
dividuals, which can be done using either an elitist or a generational approach.
With an elitist algorithm, which is the more common, individuals of high fitness
are kept in the new population, as apposed to a generational algorithm, where
all individuals of the last population are replaced by the new. This is repeated
until a specified termination criterion is reached, often after a certain number
of iterations. For a more detailed explanation, see [9] or [22].

2.5 Local search and fitness landscapes

The success of the MA largely depends on the choice of local search. This is
rarely a non-trivial choice to make, as the effectiveness of different local search
algorithms varies over the local structures of the search space, in correspon-
dance with the No Free Lunch Theorem [36]. Much research has been done
on the topic of fitness landscapes and MAs, including [19, 16, 5, 26]. [19] em-
phasizes the importance of fitness landscape analysis when considering MAs,
and suggests a few methods for determining both global and local structures.
To find the best performing local search, random walk correlation analysis is
used to analyze the local structure. A high correlation between neighbouring
points indicates a smooth fitness landscape, whereas a low correlation suggests
a rugged fitness landscape with many local optima. Correlations between local
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Figure 1: Overview of process

and global optimums are also examined, to determine the effectiveness of muta-
tion versus recombination based MAs, and to denote the performance of MAs
over certain types of landscapes compared to other heuristics. [5] uses the term
phenotypic plasticity to describe the change in an inidividuals fitness due to
lifetime learning, and demonstrates how this can have a smoothing effect on the
fitness landscape. Their findings suggest that this effect is beneficial in rugged
multipeaked landscapes, but that it may slow evolution down if the landscape
is shaped by a simple function without multiple local optima. Random walk
provides a baseline for their experiments, and is used as a way of measuring
evolution rate on different fitness landscapes. [16] proposes benchmark analyses
for connectivity structures for Lamarckian memetic algorithms, and attemps by
this to introduce generality in this field, as most earlier research has been con-



cerned with spesific problems and proof-of-concepts. Their results are similar to
those in [19], confirming that connectivity/correlation and local optimum struc-
ture in general influences the performance of MAs notably. More specifically,
local structures of the fitness landscape influence the effectiveness of the local
search, while global structures affect the evolutionary meta-search. They sug-
gest using a statistical analysis method, like random walk correlation analysis,
to create an idea of the fitness landscape and thereby find the best local search
algorithm. [26] explores the effects of shifting the balance between individual
and population adaptation on changing environments, as a possible solution to
limited computational power. This is done by introducing a “life-time parame-
ter” which sets the degree of individual level versus population level adaptation,
or exploitation versus exploration, respectively.

2.6 Adaptive MAs

As the choice of local search is of real importance, finding good methods for
this has been some of the main topics in recent studies on MAs. [25] proposes
a classification of adaptive MAs, and shows how adaptive MAs are capable
performing more robustly than traditional MAs. This classification is revis-
ited in [21], and an updated version is proposed. Four main categories are
described; Adaptive Hyper-heuristic, where local search algorithms are coor-
dinated using fixed rules; Meta-Lamarckian learning, where the success of the
different local searches affects how often they are applied; Self-Adaptive and
Co-Evolutionary, where local searches are evolved alongside the candidate so-
lutions; Fitness Diversity-Adaptive, where fitness diversity is used to select the
most appropriate local search algortihm. In [24], the term Meta-Lamarckian
learning is used to describe methods that use multiple local search algorithms
during a run of a Lamarckian MA. Their proposed approach uses a pool of lo-
cal searches which compete and cooperate during the evolutionary meta-search,
thereby avoiding having to manually select the best local search algorithm be-
forehand. On problems with a priori unknown fitness landscapes, this approach
could be useful.

3 Evolutionary Robotics

Evolutionary robotics (ER) has yet to become an established part of main-
stream robotics. To this day, robot design in general involves manual design
of the robot’s shape, and the use of machine learning for control policy opti-
mization on the hand-designed robot. This process is extremely time consuming
and demands a lot of resources, however, the results still outperform the cur-
rent results obtained through ER [4]. Still, ER keeps gaining popularity for a
number of reasons, one being that improving control policies and morphology
can be done automatically while making few assumptions about the final sys-
tem. This is mainly based on the formulation of a fitness function or a novelty
search. Another advantage is that evolutionary algorithms can find solutions



that are non-intuitive for human designers. This makes robotic design in ER
more efficient, automatic design of robot control and/or morphology can and
has created vast numbers of robots, obviously of varying quality. ER has also
been shown to exploit rather than fight against morphological or environmental
features, e.g. in [10], evolution of locomotion patterns on a monkey-like robot
produced a pattern which exploited the momentum of the robots body, similar
to what primates do when swinging from one tree to the next.

Another benefit of ER is that it can be interesting not only to roboticists,
but also to biologists, as robots might evolve traits that are also seen in nature,
and through this possibly help explain why these traits exist.

One disadvantage of ER, and EAs in general, is that the optimal solution
is rarely found, and the number of iterations performed before a near optimal
solution is found is often vast. Incorporating MAs in ER could lead to an
improvement in this area, when looking at some of the promising research done
on MAs.

See [4] for a more detailed overview of the field.

3.1 Evolving robots

So far, ER researchers have mainly been evolving control policies, often in the
form of a neural networks. However, full automation of robot design is desirable,
and some research has also been done on the evolution of morphology, or more
ideally, morphology and control policy simultaneously, starting with [32, 31].
Sims used genetic algorithms to evolve both morphology and control of virtual
creatures, which in the end were capable of swimming, walking, jumping or
following a light. Similar simulated creatures were brought into the physical
world through the GOLEM Project [27]. Although these early attempts at
full automation were fairly simple, they show the potential to automatically
create natural robots. A more recent experiment conducted by Cheney et al.
[6] addresses the issue of lacking improvement since Sims [32], and present a
new approach which includes multiple material types, like soft muscles and
tissue. They use a CPPN-NEAT encoding [6] which is shown to produce more
advanced creatures in simulation, and the multiple materials make evolution of
more natural looking creatures possible.

3.2 Variants

In addition to classic legged or wheeled locomotive robots, there exists a wide
array of variants suitable for artificial evolution, such as modular, swarm, and
soft robotics.

3.2.1 Modular robotics

Modular robotics makes repetition or reuse of evolved sections or modules pos-
sible, which is also often seen in biological organisms, see [2, 30, 18]. Modularity



seems a great advantage when evolving complex morphology, and could poten-
tially increase the evolvability of robotic systems [2].

3.2.2 Swarm robotics

Swarm robotics takes its inspiration from social insects like ants, in other words,
simple individuals that work collectively in a group. Early work includes [28],
which focuses on evolving controllers for cooperative behavoir in small, homo-
geneous robots. The results showed that the robots developed distinct roles in
the team, and worked together to complete a coordinated movement task.

3.2.3 Soft robotics

Soft robots are, as the term suggests, built using soft materials in addition
to rigid parts. Such robots could potentially handle environments that stan-
dard discrete robots struggle with, i.e. by climbing walls or squeezing through
holes. However, this flexibility also makes controller design difficult due to the
fact that deformation of one part of the robot will consequently cause deforma-
tion of another part. Artificial evolution would then be ideal for controller or
morphological design for robots of this kind. This is attempted in [29], where
NVidia’s PhysX is used to simulate evolution of soft robot gaits, as well as for
soft-body modeling.

3.3 Challenges

There are still a number of unresolved challenges within ER which can explain
why it has yet to produce a robot which is superior to one of manual design.
Current research mainly focuses on these challenges.

3.3.1 Reality gap

The large number of iterations needed for artifitial evolution to produce good
results is the reason why simulation is such an important part of the process.
Ideally, evolution would be performed on the physical robotic system, but for
most applications this process is too time consuming, and also involes a lot of
wear and tear on the physical robot. The continuous and noise filled properties
of the real world make creating a realistic physics based simulator a difficult
task, and an inaccurate simulator would lead to badly transferable solutions
due to the fact that evolution exploits all aspects of the environment. Solu-
tions may become overly adapted to a simulated environment that does not
accurately match the real world. This difference in performance between a sim-
ulated solution/controller and the transferred real world solution/robot is called
“the reality gap”. [13] found that adding noise to the simulation can create bet-
ter correspondence between real world applications and simulations if the level
of noise is appropriate, as noise blurs the fitness landscape in simulation. The
more accurate a simulator is, the more time the optimization process will take.



In [37], a different approach is used, namely a back-to-reality algorithm,
which does coevolution of simulator and robot/controller. This involves regular
validations of the simulation model in the real world, followed by updates in
fitness. [15] also uses a robot-in-the-loop approach, namely the transferabil-
ity approach, but here a Pareto-based multiobjective evolutionary algorithm is
used, where the objectives to be optimized are fitness and transferability. Trans-
ferability is measured using a simulation-to-reality disparity measure, which for
most potential solutions is approximated using interpolation of a few real world
measures. This approach ensures that the optimal solutions found in simulation
are transferable, but it does not necessarily find the best real world solutions,
which is yet to be done.

3.3.2 Nature of EAs

To achieve evolution of adequate controllers/robots in simulation the task envi-
ronment must be well described, often demanding a large number of parameters.
An increasing expressiveness rapidly increases the evaluation time of each robot,
creating a complexity problem, and demanding extensive computational power.
[4] mentions coevolution of robots and task environments and evolvability of
algorithms as possible solutions to this problem.

Another key element in EAs is the fitness function, which describes the
quality of a solution. It is near impossible to design an unbiased fitness function,
resulting in biased solutions, even though one of the goals of EAs is to include
as few assumptions as possible about the final result. One possible adaption
of this can be to omit the fitness function and instead do novelty search [17].
Novelty search does not evalutate each individual on a certain performance like
the fitness function, it rather compares the difference in functionality between
new individuals and what has been discovered before. Significant difference is
rewarded, leading to higher complexity, similar to natural evolution.

3.4 Resent work in ER

In addition to some of the work already mentioned, extensive research has been
performed on the subject of ER. [8] lists two methods in ER as current trends,
evolutionary aided design and online evolutionary adaptation.

3.4.1 Evolutionary aided design

Evolutionary aided design aims at using EAs to find promising strategies, and
then using more traditional design techniques based on the results. In this way
an evolutionary algorithm is used more as an analysis tool than for optimization,
which can be useful for systems where possible optimization parameters are not
obvious, possibly because of stochasticity or non-linearity. In [11], this technique
is used to find controllers for a homogeneous swarm of micro air vehicles (MAVs).
They first applied an evolutionary algorithm to automatically evolve neural
controllers, then analysed the resulting behaviours and reverse-engineered these
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using hand-design to provide simple controllers that were easy to parameterize
for different scenarios.

3.4.2 Online evolutionary adaptation

Online evolutionary adaptation involves continuously running an alogrithm on
the robot, in order to online deal with possible changes on the robot or in
the environment. This means that human intervention is unnecessary, which
is obviously advantageous where such is unavailable, like in hazardous environ-
ments. [33] applied a form of online evolution to a population of robots, called
embodied evolution, in which an evolutionary algorithm was distributed among
a group of robots which then evolved through mutation and recombination be-
tween robots. An advantage of this approach is that evolution could be done
outside simulation, thus avoiding transferability issues. Another is that evolu-
tion could be done “in the field” without human intervention. [3] also uses an
online approach, by letting a legged robot detect changes in its own morphology,
and then adapting the controller by synthesizing new models. In any case, the
idea is that optimization is done whithout interfering with the robot performing
its task. Since online evolution is a real-time operation, including MA could
be advantageous as it has been shown that MAs can provide solutions more
efficiently than plain genetic algorithms in some cases.

4 Combining Memetic Algorithms and Evolu-
tionary Robotics

The fields of Memetic Algorithms and Evolutionary Robotics both lack matu-
rity, so it is not surprising that very little research has been done on combining
the two. Still, some work has been done on the field, including [23] and [14].
[23] applies a compact memetic algorithm to a cartesian robot for optimization
of the control system, with good results. Their Memetic compact Differential
Evolution (McDE) algorithm is designed for problems where high power com-
putational components are unavailable, i.e. due to space/cost requirements or
limited hardware, making it ideal for robotics. In [14], a hybrid genetic al-
gorithm including bacterial foraging was used to optimize the parameters of
the PID controller of an automatic voltage regulator. This algorithm showed
promising results, and could pontentially be used for other similar optimization
problems, such as the development of robot controllers.

Another reason for why this is a little explored field, could be that finding
a good local search algorithm for ER is not trivial. The performance of MAs is
as mentioned highly dependent on fitness landscape, which is usually unknown
in ER. However, the stochastic local search used in [23] produced good results,
which seems promising for other ER applications. Moreover, although the exact
shape of the fitness landscape is mostly unknown, it will in most situations
in ER be multi-peaked. MAs have demonstrated good performance on such
landscapes, so further research on this is of interest. A possible solution to the
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problem of choice of local search could be to use an adaptive memetic algorithm,
as resent research on this topic indicate that this could lead to good results on
unknown fitness landscapes.
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