Intermediate Level FPGA Reconfiguration for an Online EHW Pattern
Recognition System

Kyrre Glette, Jim Torresen, and Mats Hovin
University of Oslo
Department of Informatics
P.O. Box 1080 Blindern, 0316 Oslo, Norway
{kyrrehg,jimtoer,matsh } @ifi.uio.no

Abstract

We propose a field programmable gate array (FPGA)
implementation for a run-time adaptable evolvable hard-
ware classifier system. Previous implementations have been
based on a high-level virtual reconfigurable circuit tech-
nique which requires many FPGA resources. We therefore
apply an intermediate level reconfiguration technique which
consists of using the FPGA lookup tables as shift registers
for reconfiguration purposes. This leads to significant re-
source savings, reducing the classifier circuit size to less
than one third of the original implementation. This in turn
has made it possible to implement a larger, more accurate
classifier than before, giving 97.5% recognition accuracy
for a face image application. Experiments also show that
a reduction of data element resolution can lead to further
resource savings while still maintaining high classification
accuracy.

1 Introduction

Pattern recognition systems could benefit from evolvable
hardware (EHW) in having a high speed of classification,
as well as being contained in a compact and energy-saving
circuit. Further, pattern recognition systems could benefit
from run-time adaptation, where EHW could have an ad-
vantage.

On-chip, run-time adaptable EHW systems usually apply
the concept of online evolution, that is, evaluating candidate
solutions in the real hardware. Further, some sort of partial
reconfiguration of the system is needed, since also the evo-
lutionary algorithm (EA) is running on the same chip as the
EHW target system. Commercial field programmable gate
arrays (FPGAs) would be a good candidate target platform
for such systems, beacuse of their availability and recon-
figuration capabilities. However, going from a high-level

circuit description to an FPGA configuration bitstream is
normally a lengthy process which involves invoking design
implementation tools on a computer. In addition, manual
manipulation of the FPGA configuration bitstream is often
unpractical due to undisclosed bitstream formats.

A popular alternative to direct manipulation of the FPGA
bitstream has been to implement a circuit with user-defined
reconfigurability in the FPGA. Circuit functionality could
in this case be modified by for example using registers to
control the multiplexing of different outputs. Although pro-
viding fast reconfiguration and flexibility through device
independency, a disadvantage of this approach is the in-
creased resource utilization overhead associated with hav-
ing to implement all possible connections and functionality.
This method has been termed virtual reconfigurable circuit
(VRO) [10] or virtual FPGA [5] in earlier work.

In some cases it is still possible to modify the contents
of lookup tables (LUTs) inside the FPGA, by reverse en-
gineering of the bitstream, by utility functions, or even by
configuring the LUTs while in a special shift register (SR)
mode. The first two approaches can be combined with the
use of the Internal Configuration Access Port (ICAP) found
in recent Xilinx Virtex FPGAs. This allows for one part
of the design to reconfigure another part of the chip with a
partial bitstream, and is an interesting possibility for EHW.
Work on reverse engineering the bitstream in order to recon-
figure LUTs through the ICAP in EHW systems has been
performed in [13]. Another EHW approach using the ICAP
and Xilinx utility functions in order to reconfigure LUTs
can be found in [9]. The third EHW approach shifts config-
uration data into LUTs by using the SR behavior of Xilinx
Virtex LUTs [12].

An early use of EHW for pattern recognition was re-
ported in [6]. Originally, the architecture was applied to
character classification but later on used for classification
in a prosthetic hand controller [7]. The classifier architec-
ture is a programmable logic array (PLA)-like structure of

AND gates followed by OR gates. The configuration of
the architecture was evolved using an EA implemented on
the same chip as the classifier, resulting in an online adapt-
able system. Experiments on two-phase incremental evo-
lution of an EHW architecture applied to prosthetic hand
control (PHC) were presented in [11]. A different EHW
pattern classification system, Logic Design using Evolved
Truth Tables (LoDETT), was presented in [14]. LoDETT
allows for high accuracy classification on problems with
a much higher number of inputs and outputs. Although
providing high classification accuracy, the system lacks the
ability of online evolution and relies on a software-based
implementation process before the circuit is downloaded to
an FPGA. The approach utilizes incremental evolution, i.e.,
sub-circuits are evolved separately before being assembled
into a final system.

An alternative approach, the Functional Unit Row (FUR)
architecture, was proposed by the authors in [2]. The system
provides high classification capabilities, like the LoDETT
system, combined with online evolution. This was applied
to face image recognition and slightly higher recognition
accuracy than the LoODETT system was achieved. While a
large number of inputs to the AND gates in LODETT can
be optimized away during circuit synthesis, the run-time re-
configuration aspect of the online FUR architecture has led
to a different approach employing fewer elements. The re-
configuration of the system is VRC-based and implemen-
tation details for the on-chip adaptable system are given in
[4,3].

Another classification architecture has been proposed in
[15], the Direct Data Implementation (DDI) classifier, re-
lated to the LODETT architecture. While not being an EHW
system, this architecture has been enabled for online adap-
tation in [8]. In this case, reconfiguration is made possible
through the use of the SR behavior of Xilinx Virtex LUTs.

While the FUR system has provided good classifica-
tion results, resource requirements for implementation have
been relatively high due to the VRC-based reconfiguration
approach. It is therefore the goal of this paper to investigate
the possible advantages of applying the aforementioned SR-
based reconfiguration to the FUR classifier.

The next section introduces the FUR architecture. Then,
the implementation details are given in Section 3. The ex-
perimental results are given and discussed in Section 4. Fi-
nally, Section 5 concludes the paper.

2 The online EHW architecture

The FUR EHW architecture, proposed in [2], is designed
as a circuit whose behavior and connections can be modi-
fied through online reconfiguration. By writing the genome
bitstream from the genetic algorithm (GA) to the internal
configuration lines, one obtains the phenotype circuit which

CPU
configuration EVALUATION
& MODULE
training B fitness
patterns

configuration | C| ASSIFICATION

MODULE
input category
pattern decision

Figure 1. A high-level overview of the on-chip
EHW system.

input M
pattern [CDM‘] A
X.
— CDM2 D

E 7;,

. E category

. c classification
T
L CDM, o
R

Figure 2. Classification module.

can then be evaluated.

A high-level view of the system can be seen in Fig-
ure 1. The system consists of three main parts — the clas-
sification module, the evaluation module, and the central
processing unit (CPU), all designed to be residing on the
same chip. The classification module operates stand-alone
except for its reconfiguration which is carried out by the
CPU. In a real-world application one would imagine some
preprocessing module providing the input pattern and possi-
bly some software interpretation of the classification result.
The evaluation module operates in close cooperation with
the CPU for the evolution of new configurations. The eval-
uation module accepts a configuration bitstring, also called
genome, and calculates its fitness value. This information is
in turn used by the CPU for running the rest of the GA. The
evaluation module has been implemented and described in
detail in [4].

The classifier system consists of K category detection
modules (CDMs), one for each category C; to be classified

input
pattern ‘FUﬂ
¥

| N-input AND -

‘FUQ

‘FUW

C
‘FU21 ‘Fu22 ...‘Fu2N 0
' N —
N T outpu
| input AND || T
. R
‘FUW ‘FUW ‘FUMN

1

l N-input AND]_>

Figure 3. Category detection module.

output

configuration

Figure 4. High-level representation of a func-
tional unit.

—see Figure 2. The input data to be classified is presented to
each CDM concurrently on a common input bus. The CDM
with the highest output value will be detected by a maxi-
mum detector, and the identifying number of this category
will be output from the system. Alternatively, the system
could also state the degree of certainty of a certain category
by taking the output of the corresponding CDM and divid-
ing by the maximum possible output.

Each CDM consists of M rules” or functional unit (FU)
rows — see Figure 3. Each FU row consists of N FUs. The
inputs to the circuit are passed on to the inputs of each FU.
The 1-bit outputs from the FUs in a row are fed into an N-
input AND gate. This means that all outputs from the FUs
must be 1 in order for a rule to be activated. The 1-bit out-
puts from the AND gates are connected to an input counter
which counts the number of activated FU rows. As the num-
ber of FU rows is increased, so is the output resolution from
each CDM. Each FU row is evolved from an initial random
bitstream, which ensures a variation in the evolved FU rows.

The FUs are the reconfigurable elements of the architec-
ture. This section describes the FU in a general way, and
section 3 will describe the implementation details. As seen
in Figure 4, each FU behavior is controlled by configuration
lines connected to the configuration registers. Each FU has
all input bits to the system available at its inputs, but only
one data element (e.g. one byte) of these bits is chosen. One
data element is thus selected from the input bits, depending
on the configuration lines. This data element, I, is then fed
to the available functions. Any number and type of func-
tions could be imagined, but for clarity, in Figure 4 only
two functions are illustrated. In addition, the unit is config-
ured with a constant value, C. This value and the input data
element are used by the function to compute the output, O,
from the unit.

3 Implementation

This section first presents the classification applications
which will have consequences for the details of the imple-
mentation of the classifier system. Then the original VRC-
like implementation will be presented, before the new pro-
posed SR-based implementation is explained.

3.1 Applications

This paper will mainly focus on two classification ap-
plications: The sonar return and the face image recognition
tasks. In addition, an electromyographic (EMG) signal clas-
sification task is also discussed. Detailed information about
the application of the FUR architecture to these tasks, in-
cluding the evolutionary training process and classification
accuracy, can be found in [2, 3, 1]. For all of the abovemen-
tioned tasks the choice of functions for the FU is the same,
and can be summarized as follows:

Function
O=1ifI>C,else0
O=1ifI <C,else0

In addition, for all of the problems, the input vector consists
of 8-bit elements. The sonar return feature vector contains
60 8-bit elements, the image vector contains 64 elements,
while the EMG vector contains only 4 elements. For the
implementations considered in this paper we will assume
the number of input elements to be in the range of the sonar
and image tasks.

f | Description
0 | Greater than (GT)
1 | Less than or equal (LTE)

3.2 Original implementation

A VRC-like implementation has been proposed in [2]
and further detailed in [4]. This approach consists of imple-
menting all possible configurations of the circuit in hard-
ware and let configuration register content control the be-
havior. We will hereafter refer to this approach as the VRC

selected
address
-

P
. L —
input CE
element
address OUTPUT |—

D REG. output

input o >

>
value

constant

]ﬂmchon

configuration
input

Figure 5. VRC implementation of the FU.

approach, however it should be noted that there could be de-
tails which differ from other authors’ definition of the term.
A high-level implementation for the FU using this technique
can be seen in Figure 5. Notice here that the actual con-
figuration registers are not shown. This method abandons
the straightforward approach of implementing a large mul-
tiplexer (MUX) for selecting the input elements because of
the high number of FPGA resources required for such an
implementation, especially when the data element resolu-
tion and the number of elements are high. Instead, time
multiplexing is applied, that is, each data element of the in-
put vector is presented to the circuit sequentially, one per
cycle, together with the sequence number (input address) of
the given element. This has the advantage of reducing the
MUX implementation to a single comparator which checks
for equality between the configuration address and the in-
put address. When the addresses are equal, the output of
the comparator makes a register store the result of the func-
tion part of the circuit, calculated from the selected input
element. The drawback of this approach, compared to a
standard MUX implementation, is the increased delay: a
cycle count which equals to the number of data elements in
the input vector. The implementation of all possible func-
tionality has, given the specified function set, been reduced
to a single GT comparator and the selection of its real or
inverted output by a MUX element.

3.3 Shift register-based implementation

Although the existing VRC implementation has been
optimized compared to a straightforward implementation,
given the large number of FUs often required for the classi-
fication applications, the complete classification circuit still
requires many FPGA resources. As an example, a typical
configuration for the face image application would be N=8,
M=8, K=40, which gives a total of 2560 FUs to be instan-
tiated in the classifier. Therefore, it is desirable to further
reduce the resource requirements of each single FU.

Instead of storing configuration values in registers which

in turn are input as control lines to the VRC, the proposed
approach instead embeds the configuration values together
with the functionality into the FPGA LUTs which the cir-
cuit is built on. By reconfiguring the actual FPGA LUTs for
each virtual circuit reconfiguration, the configuration regis-
ters can be omitted, and thereby resources are saved. Fur-
ther, by not having the configuration values as inputs to the
circuit, the total number of inputs to the logic is reduced,
allowing for simpler circuits and therefore possible further
savings. In addition, in the case of several functions per-
formed by an FU, instead of implementing all possible func-
tions and selecting the desired function’s output, only one
function would be needed implemented at a time. Note that
this requires a general structure which can accommodate all
of the functions by reconfiguring the LUTs. It should also
be noted that this last advantage is less visible for the FU in
the current application, where the LTE output can be found
by only inverting the output from the GT circuit.

The approach considered in this paper consists of ex-
ploiting the dual nature of LUTs in the Xilinx Virtex series
which allow LUTs to function as SRs at the same time as
having LUT functionality. This makes it possible to shift
configuration bits into the LUT, defining the LUT content
and thus the behavior, without having to go through the
FPGA'’s normal configuration interfaces such as the ICAP
or external interfaces. These dual-mode SR and LUT ele-
ments will hereafter be referred to as SRLs. The following
sections present how such an SRL-based FU can be con-
structed based on 4-input SRLs found in Xilinx FPGAs.

3.3.1 Address comparator

The VRC-based address comparator for time multiplexing,
described in Section 3.2, needs the same number of input
bits both from the configuration register which holds the
configured address and the input address which holds the
address of the current input element. However, with the
SRL-based approach, the configured address can be stored
in the comparator circuit itself, removing half of the inputs.
Therefore, given a 6-bit addressing scheme, 6 inputs are
needed. It is possible to implement the address comparator
with 2 4-input SRLS, as seen in Figure 6. One of the LUTs
checks for equality of the 4 most significant bits (MSBs) of
the input and configured addresses, while the second LUT
does the same on the 2 least significant bits (LSBs). AMUX
element present in the FPGA slice, which functions as an
AND gate, checks that both of the equality tests are true
before the result from the function part of the FU can be
stored in the output register. Two 1-bit configuration inputs
are needed per SRL, one for data and one for configuration
control.

input from
element function
address circuit
52 SRLC16E
> SR/LUT
— “msb=addr’ D FDCE
—
9. loutput
CE
srLc1ee | © E |
1.0
»| SR/LUT
“Isb=addr”
— “and”
config

Figure 6. SRL-based address comparator.

input
data
element
74 SRLC16E
> SR/LUT T
— L1:“msb>C"
| e | smone |
—| L2:‘msb=C" [[L1or L2 and L3y S result
register
SRLC16E
3.0 2 o srRLUT
L3: “lsb > C”
. E——
config

Figure 7. SRL-based 8-bit function circuit.

3.3.2 Function element

The part of the circuit which generates the functionality of
the FU has two configuration parameters: the function se-
lection f and the constant value C'. While the VRC ap-
proach can be optimized according to the description in
Section 3.2, it is still necessary to have the configuration
parameters as inputs, giving 17 inputs in total.On the other
hand the SRL approach needs, as C' and f can be embed-
ded in the circuit, only the selected 8-bit input value I as
input. A circuit is therefore proposed, which performs an
8-bit GT/LTE comparison, using a compound of 4 4-input
LUTs - see Figure 7. The first LUT, L1, checks if I > C
for the MSBs, in which case it is not necessary to check the
LSBs. The next two LUTs, L1 and L2, checks the second
possible case for which I could be greater, if I = C for the
MSBs and I > C for the LSBs. The final LUT then com-
bines these two cases to give the GT function, or its inverse,
the LTE function. If one considers only 4-bit precision, that
is, using 4-bit values for I and C, by using the SRL ap-

proach one could fit the entire functionality into one 4-input
LUT.

4 Experiments and results

This section describes the results of the implementations
and experiments which have been undertaken. In these im-
plementations we consider only the classifier module and
not the evaluation module or other parts controlling the EA.
Details about evolution and the evaluation module can be
found in [4].

4.1 Implementation results

The SRL-based FU has been implemented in both 8-
bit and 4-bit precision configurations. The Xilinx Virtex-II
Pro has been chosen as the target device since it allows all
LUTs to be instanciated as SRLs. The systems have been
described in VHDL with explicit instantiation of device-
specific primitives, however no further low-level efforts,
such as floorplanning, have been performed. The FUs have
then been assembled into a FU row and further a complete
classifier module for the sonar application, with a classifier
configuration of N = 6, M = 20, and K = 2. For com-
parison, the VRC-based equivalents have also been imple-
mented, and resource utilization for all configurations have
been measured.

100% 1
90% -
M Slices
80% 1 mLUTs
70% FFs
60% -
50% -
40% 4
30% -
20%
10%
0% T T r .

VRC 8bit VRC 4bit SRL 8bit SRL 4bit

Figure 8. Relative resource requirements for
the sonar classifier

A detailed resource utilization report can be seen in Ta-
ble 1, and a visualization of resource requirements relative
to the the 8-bit precision VRC implementation of the whole
classifier can be seen in Figure 8. Note that the numbers
reported have been taken from the synthesis report of the
Xilinx synthesis tool, which is an estimate of the final uti-
lization, with default optimization parameters. The excep-
tion to this is the ”Full impl.” row which reports the utiliza-
tion after a full implementation process for an XC2VP30

Table 1. FPGA elements required for different implementations of the sonar classifier.

VRC 8 bit VRC 4 bit SRL 8 bit SRL 4 bit
Implementation | LUTs FFs Slices | LUTs FFs Slices | LUTs FFs Slices | LUTs FFs Slices
Address comp. 4 0 2 4 2 2 0 1 2 0 1
Function part 9 1 5 3 2 4 1 2 1 1 1
Whole FU 13 1 7 7 4 6 1 3 3 1 2
FU+conf. regs. 13 16 14 8 8 NA NA NA NA NA NA
Whole classifier | 3280 4080 3560 | 2080 3120 2150 | 1600 240 1051 889 240 697
Full impl. VP30 | 3288 4048 3926 | 2086 3112 2975 | 1840 240 1287 | 1129 240 820

100 1

90 4

Table 2. Implementation configurations for
the face and sonar classifiers.

Test accuracy (%)

70 A

60

50 A

40

sonar
—emg

face

A\

Precision (bits)

Figure 9. Classification accuracy for various
applications as a function of data precision.

FPGA, including added overhead such as routing. The row
”FU+conf. regs.” refers to the VRC implementation includ-
ing the register flip flops for storing the configuration. "FFs”
refers to the number of flip flops used.

Configuration of the SRLs is in this case implemented as
parallel over one FU row, which means that with 6 FUs and
6 SRLs per FU there are 36 parallel configuration bits which
are shifted into a FU row per cycle, and the total configu-
ration time per row is 16 cycles. The VRC implementation
can be configured in one cycle, but 15 configuration bits are
required per FU and this gives a configuration word size of
90 bits per FU row.

4.2 Data element precision effects

The effect of the data element precision on the recog-
nition accuracy was investigated. A number of simulation
experiments were run, with the precision varying from 1 to
8 bits on all three classification applications. The resulting
test set classification accuracies have been plotted in Fig-
ure 9. Further experimental setup details can be found in

VRC SRL

Config. [Acc. | Slices | Device | Slices | Device

Face
8x8x4 93.5% | 22864 VP50 7281 VP20
8x8x8 954% | 37904 | VP100 | 11121 VP30
8x18x8 | 97.5% | 85304 NA | 25267 VP70

Sonar
6x20x4 | 86.6% 2150 VP4 697 VP2
6x20x8 | 87.8% 3560 VP7 1051 VP2
6x58x8 | 91.4% | 10324 VP20 3052 VP7

[2, 3, 1], although some details differ, such as the maximum
number of generations allowed for the EA.

4.3 Size and performance considerations

We have investigated the possible benefits of the reduced
resource utilization of the new implementations. The ben-
efits can be in the form of possibilities for larger FUR sys-
tems in the same FPGA, e.g. CDMs with more rows, or
in the form of systems requiring less resources than before.
This will in turn have an impact on the recognition accuracy
of the system, or the smallest possible device on which the
system can be installed. The results of these investigations
have been summarized in Table 2, which suggests some
possible implementation configurations and presents their
test set classification accuracy and resource requirements.
The three numbers identifying the configuration represent
N, M, and the data element bit precision, respectively. The
device column indicates the smallest possible device the
system can fit into from the Xilinx Virtex-II Pro XC2VP
range, given the slice count estimates. The "NA” for the
face image VRC 8x18x8 configuration indicates there is
no device which is large enough to accomodate the sys-
tem. It would also be possible to fit the smallest configura-
tions into lower-cost devices, such as the Spartan-3A range.

The 6x20x4 sonar configuration would require 59% of the
slices of an XC3S400A device in the case of a VRC imple-
mentation, while it would require 38% of the slices of an
XC3S200A device with an SRL implementation. Note that
the Spartan-3A range only has 50% SLICEM slices, which
are the slices containing SRL LUTs. Therefore the SRL-
based implementation can only make use of 50% of the
Spartan-3A slices for reconfiguration purposes. The highest
classification accuracy of 91.4% for the sonar application is
the same results as was reported in [3], while the accuracy
of 97.5% for the face image application is higher than the
96.3% previously achieved in [2].

4.4 Discussion

It is clear from the implementation results that the SRL-
based configurations offer significant savings in terms of
FPGA resources. The number of LUTs required is halved
going from the 8-bit VRC configuration to the 8-bit SRL
configuration, which can be primarily be explained by the
omission of the configuration register inputs in the SRL-
based circuits. More importantly, the number of slices
needed for the SRL version is reduced to one third of the
slices needed for the VRC version, which can be explained
by the configuration registers in the VRC approach requir-
ing several slices. Going from 8-bit precision to 4-bit pre-
cision further reduces the resource requirements of the SRL
approach, due to the simpler function part fitting in only
one LUT. With applications requiring 16 or fewer input ele-
ments it would also be possible to fit the address comparator
part into one LUT, opening for a possible implementation
using only one slice per FU. This becomes even more inter-
esting when considering the increased LUT size of newer
FPGA devices, making it possible to have a higher number
of input elements as well as a higher precision while still
using only one slice per FU.

Although using a full MUX implementation instead of
the time multiplexing scheme was not considered in this
paper due to the large number of data elements in the in-
put vectors, this could be an interesting option for smaller
input vectors. Also in this case it should be possible to save
resources by configuring the LUTs directly with the MUX
select value.

While the 16 cycles reconfiguration time of the SRL ap-
proach is longer than in the case of the VRC approach, it
is still an acceptably short time given that the rest of the
classifier module can be operational while one row is being
reconfigured. This is also compatible with the incremen-
tal evolution principle applied by the system in which one
FU row is evolved at a time, giving a gradual replacement
of the complete system. For the evaluation module, which
contains only the row under evaluation by the EA, one can
consider employing the VRC technique instead, giving fast

reconfiguration for the fitness evaluation. This could be use-
ful if the reconfiguration time is critical for the total fitness
evaluation time, although in many cases this would be dom-
inated by time spent processing the training data. Also note
that in practice there may be increases in reconfiguration
time for both approaches, as the VRC configuration word
size of 90 for one row may be too large for the configuration
bus and that the configuration words for the SRL approach
should be calculated from the original genome of 90 bits.

The results from the precision experiment show that al-
though a higher number of bits give a higher level of clas-
sification accuracy, the biggest performance drops become
visible when the precision is reduced to as little as 3 or even
2 bits, depending on the application. This shows that it is
very possible to consider for instance 4-bit precision config-
urations of the classifiers, saving resources while still main-
taining high classification accuracy.

It is interesting to notice from Table 2 that by adopting
the SRL-based implementation and reducing the data preci-
sion it is possible to make the classifier fit into significantly
smaller devices than before, opening up for cost savings or
better possibilities for integration with other systems. In
addition it is possible to implement larger configurations of
the systems which would not earlier fit into a single chip,
resulting in better classification accuracies than what was
possible before.

The implementations have targeted a Virtex-II Pro de-
vice, which is advantageous to an SRL-based approach be-
cause all of the device’s LUTs can be used as SRLs. Newer
devices from Xilinx do not offer 100% of the LUTs avail-
able as SRLs, such as the Spartan3 and Virtex4 devices
which have 50% SLICEMs and the Virtex5 around 25%
SLICEMs. This may give less efficient implementations,
however it could be that other parts of the system could
make use of the other slices. A way to overcome the re-
duced SRL ratio would be to reconfigure the LUTs in an-
other fashion, through the internal ICAP reconfiguration
port. This would make it possible to achieve reconfigura-
tion of all LUTs in the classifier module, without having to
use the SRL interface. However, this approach is more low-
level and one has to keep track of the precise FPGA loca-
tion of every LUT. Thus, although giving potentially higher
resource utilization, this low-level reconfiguration method
would require a higher implementation effort.

One could sum up the different levels of internal recon-
figuration with VRC being the high-level approach, SRL
being an intermediate and ICAP the low-level approach.
VRC can be specified in a high-level, device-independent
way, giving the possibility for fast reconfiguration but also
being the least efficient in terms of FPGA resource utiliza-
tion. The SRL requires some explicit primitive instantiation
while the layout on FPGA can be given less attention. This
approach gives a much better resource utilization, given that

the FPGA LUTs can be used as SRLs. The ICAP is the
most device-specific approach and would be required in or-
der to maximize resource utilization on newer devices. Al-
though a high level of attention to the FPGA details would
be required, this approach also offers the potential for a very
efficient circuit implementation through the use of 6-input
LUTs in the newer devices.

5 Conclusions and future work

An intermediate-level FPGA partial reconfiguration ap-
proach was applied to the implementation of the FUR
pattern recognition EHW architecture, resulting in signif-
icantly reducing the resource requirements. This econo-
mization makes it possible to deploy the FUR architecture
to smaller FPGA devices and thus save costs. Alternatively,
a FUR configuration with more rows can fit into the same
space as before, increasing recognition accuracy. This was
demonstrated by the FPGA implementation of a face image
classifier with a higher accuracy than previously achieved.
In addition it was discovered that the precision of the archi-
tecture can be reduced from 8 to 4 bits without a large loss
in classification accuracy, thus making it possible to further
reduce the FPGA resource usage. Future work includes ex-
perimenting with an even lower level of partial reconfigu-
ration by means of the ICAP port in order to make full use
of the resources in newer FPGA devices. This would be
important in the process of optimizing the architecture for
low-cost devices such as the Xilinx Spartan range.

Acknowledgment

This work was supported by the Research Council of
Norway through the project Biological-Inspired Design of
Systems for Complex Real-World Applications under project
number 160308/V30.

References

[1] K. Glette, J. Torresen, P. Kaufmann, and M. Platzner. A
Comparison of Evolvable Hardware Architectures for Clas-
sification Tasks. In Proceedings 8th International Confer-
ence on Evolvable Systems (ICES), volume 5216 of Lecture
Notes in Computer Science, pages 22-33. Springer, 2008.
K. Glette, J. Torresen, and M. Yasunaga. An Online EHW
Pattern Recognition System Applied to Face Image Recog-
nition. In Proceedings Applications of Evolutionary Com-
puting (EvoWorkshops2007), volume 4448 of Lecture Notes
in Computer Science, pages 271-280. Springer, 2007.

K. Glette, J. Torresen, and M. Yasunaga. An Online EHW
Pattern Recognition System Applied to Sonar Spectrum
Classification. In Proceedings 7th International Conference
on Evolvable Systems (ICES), volume 4684 of Lecture Notes
in Computer Science, pages 1-12. Springer, 2007.

[2

[

3

—

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

(13]

(14]

[15]

K. Glette, J. Torresen, and M. Yasunaga. Online Evolu-
tion for a High-Speed Image Recognition System Imple-
mented On a Virtex-II Pro FPGA. In Proceedings 2nd
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), pages 463-470, Los Alamitos, CA, USA, 2007.
IEEE CS Press.

P. Haddow and G. Tufte. Bridging the genotype-phenotype
mapping for digital FPGAs. In Proc. of the Second
NASA/DoD Workshop on Evolvable Hardware, 2001.

T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, B. Man-
derick, and T. Furuya. Evolvable Hardware and its Appli-
cations to Pattern Recognition and Fault-Tolerant Systems.
In Towards Evolvable Hardware: The evolutionary Engi-
neering Approach, volume 1062 of LNCS, pages 118-135.
Springer, April 1996.

I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya,
T. Yamauchi, T. Inuo, N. Kajihara, M. Iwata, D. Keymeulen,
and T. Higuchi. A Gate-Level EHW Chip: Implementing
GA Operations and Reconfigurable Hardware on a Single
LSIL. In Proceedings 2nd International Conference on Evolv-
able Systems (ICES), volume 1478 of LNCS, pages 1-12.
Springer, 1998.

H. Kawai, Y. Yamaguchi, M. Yasunaga, K. Glette, and
J. Torresen. An adaptive pattern recognition hardware with
on-chip shift register-based partial reconfiguration. In Pro-
ceedings International Conference on Field-Programmable
Technology (ICFPT), pages 169-176. IEEE CS Press, 2008.
S. Lynch. A platform for intrinsic evolution of digital cir-
cuits on Virtex II pro. B.E. electronic and computer engi-
neering project report, National University of Ireland, Gal-
way, 2006.

L. Sekanina and R. Ruzicka. Design of the Special Fast
Reconfigurable Chip Using Common FPGA. In Proceed-
ings of the IEEE Conference on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pages 161-168,
2000.

J. Torresen. Two-Step Incremental Evolution of a Digi-
tal Logic Gate Based Prosthetic Hand Controller. In Pro-
ceedings 4th International Conference on Evolvable Systems
(ICES), volume 2210 of Lecture Notes in Computer Science,
pages 1-13. Springer, 2001.

G. Tufte and P. C. Haddow. Biologically-inspired: A rule-
based self-reconfiguration of a virtex chip. In Proc. of Inter-
national Conference on Computational Science 2004, vol-
ume 3038 of Lecture Notes in Computer Science, pages
1249-1256, May 2004.

A. Upegui. Dynamically Reconfigurable Bio-inspired Hard-
ware. PhD thesis, Ecole Polytechnique Fdrale de Lausanne
(EPFL), 2006. Thesis No. 3632.

M. Yasunaga, T. Nakamura, and I. Yoshihara. Evolvable
Sonar Spectrum Discrimination Chip Designed by Genetic
Algorithm. In Systems, Man and Cybernetics, volume 5,
pages 585-590. IEEE, 1999.

M. Yasunaga, T. Takami, and I. Yoshihara. Image Recog-
nition Hardware Using FPGAs for Nano-Second Range
Recognition Speed. IEICE Transactions on Information and
Systems, 84(10):2280-2292, 2001.

