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Abstract—The evolvable hardware (EHW) paradigm relies on
continuous run-time reconfiguration of hardware. When applied
on modern FPGAs, the technically challenging reconfiguration
process becomes an issue and can be approached at multiple
levels. In related work, virtual reconfigurable circuits (VRC),
partial reconfiguration, and lookup table (LUT) reconfiguration
approaches have been investigated. In this paper, we show how
fine-grained partial reconfiguration of 6-input LUTs of modern
Xilinx FPGAs can lead to significantly more efficient resource
utilization in an EHW application. Neither manual placement
nor any proprietary bitstream manipulation is required in the
simplest form of the employed method. We specify the goal archi-
tecture in VHDL and read out the locations of the automatically
placed LUTs for use in an online reconfiguration setting. This
allows for an easy and flexible architecture specification, as well
as possible implementation improvements over a hand-placed
design. For demonstration, we rely on a hardware signal classifier
application. Our results show that the proposed approach can
fit a classification circuit 4 times larger than an equivalent
VRC-based approach, and 6 times larger than a shift register-
based approach, in a Xilinx Virtex-5 device. To verify the
reconfiguration process, a MicroBlaze-based embedded system
is implemented, and reconfiguration is carried out via the Xilinx
Internal Configuration Access Port (ICAP) and driver software.

I. INTRODUCTION

Evolvable Hardware (EHW) is the combination of evolu-
tionary algorithms (EAs) and reconfigurable logic. In addition
to being used for the automated design of analog or digital
circuits, the paradigm also allows embedded systems to adapt
to changing input data distributions and compensate degrada-
tion effects in the computational resources [1]. On-chip, run-
time adaptable EHW systems usually apply the concept of
online evolution, that is, evaluating candidate solutions in the
real hardware. Further, some sort of partial reconfiguration
of the system is needed, since also the EA is running on
the same chip as the EHW target system. Commercial field
programmable gate arrays (FPGAs) are a good candidate target
platform for such systems, because of their availability and
reconfiguration capabilities.

EHW reconfiguration methods: For digital EHW, Xilinx
FPGAs are popular for realizing reconfigurable architectures.
The reconfigurability of these devices splits roughly into
Full device reconfiguration and partial reconfiguration, where
partial reconfiguration is the ability of changing the function of

rectangular device areas without interfering with the neighbor
elements. Orthogonal to the full and partial reconfiguration is
the way the reconfiguration streams are generated. Generally,
the methods split into using Xilinx implementation tools for a
priori generation of the configuration bitstreams, and the de-
velopment of custom tools for raw bitstream manipulation. The
first approach requires a complete high-performance develop-
ment system, such as a workstation, while the second approach
can be made more lightweight and also be executed on an
embedded system. As the a priori tool-based generation of a
full configuration bitstream is very computationally intensive,
this approach is impractical for evaluation of candidate circuits
consisting of a combination of different functional elements
and their connections.

The high level Xilinx modular partial reconfiguration flow
allows a coarse-grained division of the system into components
that can change, and all potential states of these components
can be a priori implemented into partial bitstreams. Combina-
tions of these component states can then be instantiated using
partial reconfiguration. The drawback of this approach is that
the configuration granularity is relatively coarse, and is thus in
the context of EHW mostly suitable for modifying architecture
parameters [2], [3] or for evolution of systems using high level
functions of a certain complexity [4], [5].

The necessity for a more fine-grained reconfiguration ap-
proach has motivated the work on computationally efficient
bitstream manipulation methods able to run on embedded
systems. As the description of the bitstream format is not
publicly accessible, reverse engineering has been employed to
identify the locations of the lookup table (LUT) configuration
bits, whereas the reverse engineering of the routing has been
judged too complex and impractical [2]. Therefore, some
reconfigurable EHW architectures with a fixed topology and
variable LUT functions have been proposed, using Virtex [6],
Virtex-II [7], [8], and more recently, Virtex-4 [9] devices. The
approaches have achieved fine-grained reconfigurability, but at
the cost of the bitstream manipulation effort and a low-level
design process with manual placement of FPGA resources,
e.g. using the Xilinx FPGA Editor tool. Whereas the most
recent device these EHW approaches have supported is the
Virtex-4, outside the EHW community there exist reports of
direct bitstream manipulation of newer devices, applied to e.g.



Network-on-Chip [10].
Manipulation of LUT contents can also be done by configur-

ing the LUTs while in a special shift register (SR) mode, from
within the implemented circuit. Compared to LUT manipula-
tion using partial bitstreams, SR-based reconfiguration allows
for a reduction of the configuration time, and increased design
flexibility. This method has been applied to EHW applications
in [11]–[13]. However, while on Virtex-II devices all FPGA
slices (building blocks consisting of LUTs and other basic
elements) supported LUT resources to be configured in SR
mode, modern devices only offer a limited number of slices
supporting this functionality.

Finally, virtual reconfigurable circuits (VRCs) implemented
on top of an FPGA is a popular approach for EHW systems.
Reconfiguration is here normally done through writing to
registers, which control multiplexers and select outputs from
all possible implemented functionality. These architectures can
typically be reconfigured within a few cycles, and are thus
attractive for applications requiring very fast reconfiguration.
Another advantage of the approach is the flexibility of design,
not requiring any instantiation of FPGA-specific components.
An example is the universal EHW system of Sekanina [14].
The main drawback of this approach is the need to implement
all possible functionality and thus the resource utilization
overhead can be significant.

EHW Classification Architectures: An early use of EHW
for pattern recognition was reported by Higuchi et al. [15].
Their architecture was originally applied to character classi-
fication but was later used for classification in a prosthetic
hand controller (PHC) [16]. It employed a programmable logic
array (PLA)-like structure of AND gates followed by OR
gates. Although the results showed a competitive classification
rate for evolved circuits compared to artificial neural networks
(ANNs), it was noted that the size of the employed data set
might be insufficient; this is underlined by the strongly varying
classification rates.

Using similar EMG data, Torresen [17] conducted experi-
ments on incremental evolution using an EHW architecture.
The two-layered architecture consisted of AND-OR matrices
followed by a selector layer. The AND-OR matrices were
evolved in the first step followed by the evolution of the
selectors. In addition, the best subsystems from different runs
were combined into one system. The results showed that a two-
step incremental approach can lead to a better generalization
performance and shorter computation times than traditional
one-step evolution and ANN.

An approach to online EHW classification on FPGAs can be
found in [18], [19], where an on-chip system including a Pow-
erPC processor initiates partial reconfiguration on the classifier
sub-system. The system uses a direct bitstream manipulation
approach to reconfigure a hierarchical two-dimensional array
structure. Good classification accuracies are achieved, however
the number of inputs and classes are limited.

A different EHW pattern classification system, Logic De-
sign using Evolved Truth Tables (LoDETT), was presented
in [20], [21]. LoDETT allows for high accuracy classification

on problems with a much higher number of inputs and classes.
However, the system does not implement online evolution
and relies on synthesis in software before the circuit is
implemented on a field-programmable gate array (FPGA). The
approach utilizes incremental evolution; i.e., sub-circuits are
evolved separately before being assembled into a final system.

The evolution of evolvable hardware classification archi-
tectures for prosthesis control has also been investigated by
Kaufmann in [22]. There, the automatic acquisition and reuse
of modules have been applied on the digital circuits to evolve
accurate signal classifiers faster.

Paper Contributions: In our previous work we have
proposed an EHW classifier architecture which handles prob-
lems with higher input dimensionality and multiple categories
like the LoDETT system, but based on a VRC approach
and targeting online evolution [23]. The architecture shows
good performance; comparisons with traditional state-of-the-
art approaches have been performed in [24] and [25], and
comparisons with previously proposed EHW architectures
show favorable classification accuracy and training speed [26].
However, as the FPGA resource requirements of the VRC
implementation have been high, we have also investigated
an implementation based on SR-based LUT reconfiguration
which led to significantly more efficient resource utilization
for Virtex-II Pro devices [13]. With more modern 6-input
LUT-based FPGAs available, having limited resources for SR-
based reconfiguration, it becomes of interest to re-investigate
implementation options for the architecture, and for fine-
grained EHW approaches in general.

Thus, in this paper we adopt the SR-based reconfiguration
technique to a Virtex-5 device, compare with a VRC imple-
mentation, and propose a new implementation based on 6-
input LUTs with partial reconfiguration through the Xilinx
Internal Configuration Access Port (ICAP). Associated with
this implementation, we present a flexible approach to the de-
sign and reconfiguration workflow, reducing the need of low-
level manipulation associated with the previous EHW work on
bitstream based partial reconfiguration. The different partial
reconfiguration techniques are then evaluated and compared
with a focus on FPGA resource utilization.

The remainder of the paper is organized as follows: The next
section introduces the EHW classification architecture and
the benchmark applications. Then, the details of the different
implementations are given in Section III. The experimental
results are given and discussed in Section IV. Finally, Section
V concludes the paper.

II. THE EVOLVABLE HARDWARE CLASSIFICATION
ARCHITECTURE

This section presents a high-level description of the EHW
classification architecture, originally introduced in [23].

A. Architecture description

A high-level view of the system can be seen in Figure 1. The
system consists of three main parts – the classification module,
the evaluation module, and the central processing unit (CPU),
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Fig. 1. A high-level overview of the on-chip EHW system.
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Fig. 2. Classification module.

all designed to be residing on the same chip. The classification
module operates stand-alone except for its reconfiguration
which is carried out by the CPU. In a real-world application
one would imagine some preprocessing module providing the
input pattern and possibly some software interpretation of the
classification result. The evaluation module operates in close
cooperation with the CPU for the evolution of new config-
urations, and the evolution happens incrementally on small
sub-circuits of the larger classifier module. The evaluation
module accepts a configuration bitstring, also called genome,
and calculates its fitness value. This information is in turn used
by the CPU for running the rest of the evolutionary algorithm
(EA). Thus, while the reconfiguration rate in the evaluation
module is relatively high, that is, for every new genome to
be evaluated, the larger classifier module is only reconfigured
infrequently when a new sub-circuit has been evolved.

The classifier system consists of K category detection
modules (CDMs), one for each category Ci to be classified—
see Figure 2. The input data to be classified is presented to
each CDM concurrently on a common input bus. The CDM
with the highest output value will be detected by a maximum
detector, and the identifying number of this category will be
output from the system. Alternatively, the system could also
state the degree of certainty of a certain category by taking
the output of the corresponding CDM and dividing by the
maximum possible output.

Each CDM consists of M “rules” or functional unit (FU)
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Fig. 3. Category detection module.
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Fig. 4. High-level representation of a functional unit.

rows—see Figure 3. Each FU row consists of N FUs. The
inputs to the circuit are passed on to the inputs of each FU.
The 1-bit outputs from the FUs in a row are fed into an N -
input AND gate. This means that all outputs from the FUs
must be 1 in order for a rule to be activated. The 1-bit outputs
from the AND gates are connected to an input counter which
counts the number of activated FU rows. As the number of FU
rows is increased, so is the output resolution from each CDM.
Each FU row is evolved separately from an initial random
bitstream, which ensures a variation in the evolved FU rows.

The FUs are the reconfigurable elements of the architecture.
As seen in Figure 4, each FU behavior is controlled by a
configuration which is dictated by the genome bitstring. Each
FU has all input bits to the system available at its inputs,
but only one data element (e.g. one byte) of these bits is
chosen. One data element is thus selected from the input
bits, depending on the configuration. This data element, I ,
is then fed to the available functions. Any number and type of
functions could be imagined, but for clarity, in Figure 4 only
two functions are illustrated. In addition, the unit is configured
with a constant value, C. This value and the input data element
are used by the function to compute the output, O, from the
unit.

B. Classification Setup

This paper uses two classification benchmarks: The sonar
return [27], a two-class problem, and the Olivetti face image



database [28], a 40-class problem. For the selected applications
the choice of functions for the FU is the same, based on
previous experimentation:

f Description Function
0 Greater than (GT) O = 1 if I > C, else 0
1 Less than or equal (LTE) O = 1 if I ≤ C, else 0

The sonar return feature vector contains 60 input data ele-
ments, and the image vector has been resized to 8x8 pixels,
thus containing 64 elements. In addition, the resolution of the
data elements has been scaled to a 6-bit binary representation,
which has been demonstrated by earlier experimentation to
give adequate results [13]. For the sonar application we use
a classifier configuration of N = 6, K = 2, while the face
image application is configured to N = 8, K = 40.

For the training of the classifier, a genetic algorithm is
run independently on each FU row. The fitness score is
based on the number of training vectors which are classified
correctly for the given row. Each FU is encoded in the genome
string with 6, 1, and 6 bits for the feature address, function
type, and constant, respectively. Finally, the ensemble of the
evolved FU rows constitutes a full classifier. Further details on
the evolutionary training setup for the different classification
applications can be found in [23], [29].

III. IMPLEMENTATION OPTIONS

This section will present the implementation alternatives
for FPGA runtime reconfiguration of the architecture. The
original VRC and SR approaches will be presented first, before
describing the proposed 6-input LUT based implementation
approach. Although we have earlier considered data elements
of up to 8 bits, we focus in this paper on an implementation
tuned for the FPGA LUT structure. We therefore choose 6 bit
data width for the 6-input LUT and VRC approaches, while
the SR based approach will use 5 bits.

A. VRC implementation

The VRC approach consists of implementing all possible
configurations of the circuit in hardware and let the contents of
configuration registers select the current behavior. The design
flow is typically HDL-based and device agnostic, and will
result in a high number of LUTs required to implement the
multiplexing functionality, and a number of registers to store
the configuration. A high-level implementation for the FU
using this technique can be seen in Figure 5. The imple-
mentation of all possible functionality has, given the specified
function set, been reduced to a single GT comparator and the
selection of its real or inverted output by a MUX element.
Note that this is a high-level description which will in turn
be synthesized by the design tool to a number of LUTs. The
design abandons the straightforward approach of implementing
a multiplexer (MUX) for selecting the input elements because
of the high number of FPGA resources required for such an
implementation, especially when the data element resolution
and the number of elements are high. Instead, one data element
of the input vector is presented to the circuit per cycle,
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Fig. 5. High-level VRC implementation of the FU. Notice that the
configuration registers are not shown.

together with the address of the given element, reducing the
MUX implementation to a single comparator which checks
for equality between the configuration address and the input
address. Although this principle gives a delay equal to the
number of data elements in the input vector, it is acceptable for
medium-dimensionality input vectors, and will be employed
also for the other approaches. Reconfiguration of a VRC-based
FU can be performed in as little as one clock cycle, by writing
to the configuration registers, if communication overhead is
disregarded.

B. Shift register LUT implementation

Although the existing VRC implementation has been op-
timized compared to a straightforward implementation, the
complete classification circuit still requires many FPGA re-
sources. As an example, a typical configuration for the face
image application would be N=8, M=8, K=40, which gives a
total of 2560 FUs to be instantiated in the classifier. Therefore,
it is desirable to further reduce the resource requirements of
each single FU.

Instead of storing configuration values in registers which
in turn are input as control lines to the VRC, the following
approach instead embeds the configuration values together
with the functionality into the LUTs which the circuit is
built on, thus saving registers and routing resources. Similarly,
instead of implementing all possible functions and selecting
between the outputs, only one function would be needed
implemented at a time. Note that this requires a general LUT
structure which can accommodate all desired functions by
reconfiguring the LUTs, and also a method to calculate the
LUT contents. Such a structure can be designed manually,
and there also exists work on automating the process [30].

Some LUTs in Xilinx FPGAs allow LUTs to function as
SRs at the same time as having LUT functionality, hereafter
referred to as SRLs. This duality makes it possible to shift
configuration bits into the LUT, defining the LUT content and
thus the behavior, without having to go through the FPGA’s
normal configuration interfaces such as the ICAP. Our original
implementation was based on a Virtex-II Pro device which
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allowed all LUTs to be used as 4-input SRLs. However, newer
devices (Virtex-5 and above) only allow a limited number of
the LUT resources (those located in SLICEM slices) to be
configured as SRLs, and the maximum number of inputs is 5,
whereas standard LUTs have 6 inputs.

We thus present a modified implementation of the SRL-
based FU taking advantage of the increased input width of
5 bits, and set the data width correspondingly, as this will
make a resource efficient implementation. The circuit can be
seen in Figure 6. For the address comparator part, 6 input
bits are needed, and we implement it with two 4-input SRLs,
named SRL16E. One of the LUTs checks for equality of the
4 most significant bits (MSBs) of the input and configured
addresses, while the second LUT does the same on the 2 least
significant bits (LSBs). The second LUT also implements an
AND gate to combine the results and can then enable the
register to load the result from the function part. The function
part of the circuit is implemented using one single 5-input
LUT, named SRLC32E, as the data width is tailored to its
size. Thus, the function selection f and the constant value C
are both embedded into the configuration. Some configuration
lines are still needed for the serial shifting of configuration
data into the LUTs. Reconfiguration of an SRL-based FU is
also fast, disregarding communication overhead the delay is
based on the largest SRL size and thus counts 32 cycles.

C. LUT implementation for bitstream partial reconfiguration

The 6-input LUT based circuit is very much similar to the
SRL-based circuit, however, all 6 inputs of a LUT can be
utilized as opposed to only 5 in the SRL-based approach.
This allows encoding the full address comparator into one
LUT, hereafter referred to as LUT6, as opposed to needing two
LUTs in the SRL approach. Further, a full 6 bits data width can
be employed for the function element, whereas for the SRL
approach the most practical data width is 5. An illustration of
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Fig. 7. LUT6-based FU implementation.

the circuit can be seen in Figure 7. Another difference from
the SRL approach is that there are no explicit configuration
lines, as the configuration is set using the ICAP. The design
and reconfiguration workflow of the approach is outlined in
the following steps:

• The design of the circuit is VHDL-based, although ex-
plicit instantiation of the LUT6 primitives is required.
As the FUs, rows, and CDMs in the architecture are in-
stantiated using for ... generate statements, each
instantiated LUT will be given a unique numbered name
during the implementation process which will be easily
identifiable later. It is necessary to apply the lock_pins
constraint to the LUTs so that the router does not swap
the input order of the pins in the routing process.

• When the Xilinx tools have fully implemented the design
to an .ncd file, we use the xdl -ncd2xdl command
to generate a text based description of the system. We
have written a script which extracts the location and
LUT type (A-D) of each of the LUTs from the .xdl
and combines this with device information from the xdl
-report command to find the slice type (SLICEM,
SLICEL) at the given location. Finally, C code is gen-
erated from this information, to be used in an embedded
program controlling the reconfiguration.

• The LUTs can then be reconfigured via the ICAP
at runtime from e.g. an embedded MicroBlaze pro-
cessor core, using the generated information to locate
the desired LUTs. When using EDK, Xilinx provides
the XPS HWICAP core for interfacing the ICAP, and
associated driver software. The most accessible ap-
proach to reconfiguring the LUTs is to use the provided
XHwIcap_SetClbBits function1 which reads a con-
figuration frame from the ICAP, manipulates the bits
corresponding to the specified LUT position, and writes
the content back. It would however also be possible to
directly manipulate the configuration frame for a more

1The supplied bitstream position lookup functions did not function
correctly for our Virtex-5 device, but a correction was found at http:
//forums.xilinx.com/t5/Embedded-Development-Tools/
Issues-about-HWICAP-driver-for-Virtex-5/m-p/285288



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VRC 6bit SRL 5bit LUT6 6bit

Slices

LUTs

FFs

Fig. 8. Relative resource requirements for the sonar classifier

efficient approach.
It should also be noted that reconfiguration may corrupt data
which is stored in SRLs or LUT RAM in the same column,
and thus care should be exercised so that no such resources
from other IPs are overlapping with the EHW architecture. A
simple way of prohibiting this is to apply the area_group
constraint to reserve a specific region of the FPGA for imple-
mentation of the EHW architecture only.

IV. EXPERIMENTS AND RESULTS

This section describes the results of the conducted im-
plementations and experiments. In these implementations we
consider only the classifier module and not the evaluation
module or other parts controlling the EA.

A. FPGA resource utilization

For the implementation experiments, a Xilinx ML505 eval-
uation board fitted with a Virtex-5 XC5VLX50T device has
been employed. The FUs have been implemented for the VRC,
SRL, and LUT6 approaches as described in Sec. II. Further,
the FUs have been assembled in rows and then a complete
classifier module for the sonar application, with M = 20. Note
that in these results we do not consider the max detector part
of the classifier, or any logic related to reconfiguration such
as a CPU or ICAP module. The resource utilization for all
approaches are reported in detail in Table I, and a visualization
of resource requirements relative to the VRC implementation
of the whole classifier can be seen in Figure 8. The results
are reported from a full implementation process in Xilinx ISE
14.2, with default parameters. ”FFs” refers to the number of
flip flops used. The LUT6 approach uses 32% and 70% of the
LUTs used by the VRC and SRL approaches, respectively,
however on the slice level the SRL and LUT6 approaches
both utilize 34% of the number of slices used by the VRC
approach.

B. Maximum classifier configuration

After investigating the amount of resources required for a
given configuration of the classifier, we wanted to investigate
the maximum configuration possible to pack in a given device.

TABLE II
MAXIMUM CLASSIFIER ROWS FOR AN XC5VLX50T DEVICE, RESOURCE

USAGE, AND CLASSIFICATION ACCURACIES.

Approach Max. rows / CDM Slices Accuracy
Face

VRC 5 7044 93.3%
SRL 3 1775 87.8%
LUT6 20 6904 97.0%

Sonar
VRC 130 6999 86.1%
SRL 90 1992 84.8%
LUT6 550 7156 86.3%

This perspective also allows us to observe the effect of the
limited number of LUTs available in shift register mode for the
SRL approach. We targeted the XC5VLX50T device, where
27% of the slices offer SRL functionality (SLICEM), and
searched for the maximum possible configuration for each
of the approaches. Configurations were tested in increments
of 1 and 10 rows, M , per CDM for the face and the sonar
application, respectively, until the place and route process
was unable to fit the design. The results are reported in
Table II, together with the number of slices used for the given
configuration. We also report the classification accuracies
corresponding to these configurations, found through evolution
in a software simulation. The reported numbers are average
classification accuracies based on 10 runs, each using 10-fold
cross validation, for the face image data set, and 100 runs
on a separate training and test set for the sonar application.
The results show that, in the sonar case, the LUT6 approach
makes it possible to fit an architecture 4.2 times larger than
when using VRC, and 6.1 times larger than when using SRL.

C. Verification and reconfiguration speed

As a verification of the proposed approach, we have im-
plemented an embedded system using Xilinx EDK 14.2, for
the Xilinx ML505 board. The system contains a MicroBlaze
soft CPU core, an XPS HWICAP core for internal recon-
figuration, a custom designed PLB core containing a LUT6-
based classifier circuit, and some utility cores. The system
clock frequency was set to 100MHz, limited by the ICAP core
frequency. The FU row classifier was designed as described
in Section III-C, and the positions of the automatically placed
LUTs were extracted from the final generated .ncd file. A C
program running on the MicroBlaze used this information to
configure and reconfigure the LUTs of the classifier, and apply
stimuli for classification. Using the Xilinx supplied ICAP
driver function XHwIcap_SetClbBits, which reads and
writes back a full frame, the reconfiguration time for a single
LUT was measured to be 1.96 ms. In the case of the sonar
classifier, the reconfiguration time for a full row would then
be 23.54 ms.

D. Discussion

The implementation results in Table I clearly show that
both the SRL-based and the LUT6-based implementations



TABLE I
FPGA ELEMENTS REQUIRED FOR DIFFERENT IMPLEMENTATIONS OF THE SONAR CLASSIFIER.

VRC 6 bit SRL 5 bit LUT6 6 bit
Implementation LUTs FFs Slices LUTs FFs Slices LUTs FFs Slices
FU 6 1 4 3 1 3 2 1 2
FU + conf. regs. 7 14 7 NA NA NA NA NA NA
Whole classifier 1773 3410 1287 813 290 433 573 290 434

offer significant resource savings compared to a VRC-based
implementation of the architecture. These numbers are ex-
plained by both reducing the number of inputs needed to the
circuit by storing the configuration in the LUT contents, and
also by saving register resources which are needed to store
the configuration in the VRC case. From the same resource
utilization perspective, the LUT6 approach has an advantage
over the SRL approach by being able to take advantage of
all 6 inputs to the LUTs, thus saving a LUT in the address
comparison part, and also having higher precision (6 vs. 5 bits)
in the function part. However, the extra LUT required by the
SRL approach does not generate any slice utilization overhead
in this case, as shown in Table I.

As EHW applications often can benefit from a low-level
hardware specification of its components, the increased func-
tionality of the wide LUTs in the modern FPGA architectures
can simplify the design process. Using fewer LUTs also
facilitates the routing and should allow for specification of
larger EHW structures. The results from Table II show that
the LUT6 approach packs well in the FPGA, as the maximum
possible rows is in the order of 4 times as large as with VRC,
even though the resource utilization results from Table I only
would suggest a threefold improvement.

Moreover, when considering the results from Table II it be-
comes evident that the SRL approach is limited by the number
of available SLICEMs, and that even the VRC approach can
fit a larger classifier configuration. Although the remaining
resources could be used for other IP cores, the SRL approach
does not seem to be suitable for implementation of large EHW
architectures on modern Xilinx FPGAs.

Although the proposed partial reconfiguration implemen-
tation is low-level compared to the device-agnostic VRC
implementation, the design process described here is relatively
simple. Instantiation of LUTs in VHDL and then automatic
place and route is more convenient, flexible, and requires less
expert knowledge than earlier EHW approaches, describing
manually placed components with e.g. the FPGA Editor [2].
For more complex EHW architectures, several LUTs may have
to be combined in order to achieve the desired functionality,
and the complexity may prove to be a design challenge. In this
case specialized tools such as TMAP, which calculates LUT
contents based on parameter values, would be helpful [30].

The current approach is based on manipulation of a partial
bitstream to reconfigure the LUTs. While this can be achieved
through Xilinx driver functions for the XPS HWICAP core,
the method is somewhat inefficient given that it is necessary
to read and write back one full configuration frame per LUT.
Therefore, if higher reconfiguration speed is required, an

improvement to the current proof-of-concept reconfiguration
method would be to write custom code to directly manipulate
the bitstream. Although the exact placement of LUT contents
in the bitstream is not documented, several works demonstrate
the feasibility of such an approach [2], [10]. Moreover, another
possible way of speeding up the partial reconfiguration would
be to use a custom ICAP core which optimizes and/or over-
clocks the ICAP interface [31].

Note that in the current application the reconfiguration speed
of the full classifier module is not critical, since the EA is
applied to a single FU row at a time, in a separate evaluation
module. This single row under evaluation could be quickly
reconfigured using the VRC implementation, as it is only a
fraction of the full classifier and is not required to be compact
in the same way. Therefore, although the proof-of-concept
implemented here does not present an effort to achieve high-
speed reconfiguration, the approach has the advantage of being
readily available and may be sufficient for applications where
reconfiguration speed is not critical.

The classification accuracies provided are intended to
demonstrate some relationships between different configura-
tions and classification performance, but the effort here has
not been focused on maximizing classifier performance. The
low difference in moving from 130 to 550 rows of the sonar
classifier indicates that using the LUT6 approach it would be
possible to fit this classifier configuration in a much smaller
FPGA and still achieve good results. Moreover, the results
from the face application indicate that, on the current device,
only the LUT6 approach would fit a configuration which can
give competitive results.

Given the current fit of the function part in only one 6-
input LUT, it would be interesting to investigate if higher
discrimination performance could be achieved by evolving the
entire contents of the LUT instead of following the currently
pre-defined function. This would however come at the cost of
having 64 instead of 7 bits to evolve for the function part, and
would thus increase the search space significantly.

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a dynamically reconfig-
urable evolvable hardware classifier architecture by means of
partial reconfiguration of 6-input LUTs. This reconfiguration
technique is intriguing, as it has multiple benefits over other
reconfiguration types: Compared to the VRC implementation,
the proposed approach allows for a significantly more compact
implementation. Compared to the SRL-based reconfiguration,
which only gives limited access to the FPGA LUTs, partial
reconfiguration allows for a full utilization of the FPGA LUT



resources, both in terms of the number of resources as well
as the number of LUT inputs. While the VRC approach
still has advantages in terms of design flexibility and fast
reconfiguration, the design process of the proposed approach
is significantly simplified compared to a low-level manual
placement of resources, and no reverse engineering of the
configuration bitstring format is required.

In our next steps we will validate our implementation on
the current Xilinx 7 series, and also investigate improving the
reconfiguration times. Here, we will implement own methods
for efficient bitstream manipulation and investigate the speeds
of a complete evolvable system, considering the genotype
processing times and ICAP interface bandwidths. Another path
for future investigation would be to study the performance of
the approach for other EHW architectures.
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