
A Comparison of Evolvable Hardware
Architectures for Classification Tasks

Kyrre Glette1, Jim Torresen1, Paul Kaufmann2, and Marco Platzner2

1 University of Oslo, Department of Informatics,
P.O. Box 1080 Blindern, 0316 Oslo, Norway,

{kyrrehg,jimtoer}@ifi.uio.no
2 University of Paderborn, Department of Computer Science,

Warburger Str. 100, 33098 Paderborn, Germany
{paul.kaufmann,platzner}@upb.de

Abstract. We analyze and compare four different evolvable hardware
approaches for classification tasks: An approach based on a programmable
logic array architecture, an approach based on two-phase incremental
evolution, a generic logic architecture with automatic definition of build-
ing blocks, and a specialized coarse-grained architecture with pre-defined
building blocks. We base the comparison on a common data set and
report on classification accuracy and training effort. The results show
that classification accuracy can be increased by using modular, special-
ized classifier architectures. Furthermore, function level evolution, ei-
ther with predefined functions derived from domain-specific knowledge
or with functions that are automatically defined during evolution, also
gives higher accuracy. Incremental and function level evolution reduce
the search space and thus shortens the training effort.

1 Introduction

Evolvable hardware (EHW) has a variety of applications, one of which is clas-
sifier systems. A number of studies report on the use of EHW for classification
problems such as character recognition [1], prosthetic hand control (PHC) [2],
sonar return classification [3], and face image recognition [4]. These studies have
demonstrated that EHW classifiers can outperform traditional classifiers such
as artificial neural networks (ANNs) in terms of classification accuracy. For the
electromyographic (EMG) signal classification, [5] showed that EHW approaches
can perform close to the modern state-of-the-art classification methods such as
support vector machines.

Furthermore, there are other performance metrics, such as classification speed,
training speed, and resource requirements, where EHW might excel over tradi-
tional methods. Classifiers can benefit from online adaptation and are thus an
interesting target for studying online adaptive EHW schemes. An important as-
pect of online adaptive systems is the adaptation time, which for EHW systems
equates to evolution time. Important factors contributing to evolution time are
the size and the complexity of the search space. Approaches to address these

challenges include variable length chromosomes [6], incremental evolution [3],
function-level building blocks [7] and automatic definition of building blocks [5].

The novel contribution of this paper is the analysis and comparison of four
EHW classifier architectures. The architectures differ mainly in the building
blocks used for evolution and their overall structure. We measure qualities such
as classification accuracy and evolution speed. Generally, it is difficult to com-
pare performance figures for EHW classifiers from literature, since data sets and
evaluation schemes differ. We therefore propose and rely on a common data set
obtained from the classification of EMG signals for PHC.

The paper is structured as follows. Section 2 describes approaches to EHW
classification, especially for the domain of PHC. The selected EHW approaches
are detailed in Section 3. The experimental results are given and discussed in
Section 4. Finally, Section 5 concludes the paper.

2 EHW Classifiers

2.1 Related Work

An early use of EHW for classification was reported in [1]. Originally, the archi-
tecture was applied for character classification but later on used for classification
in a prosthetic hand controller [2,8]. The classifier architecture is a programmable
logic array (PLA)-like structure of AND gates followed by OR gates. The con-
figuration of the architecture was evolved using a genetic algorithm (GA) imple-
mented on the same chip as the classifier, resulting in an online adaptable system.
The system had 16 input feature bits, could classify six different categories, and
its classification accuracy was shown to be competitive to an ANN.

Experiments on two-phase incremental evolution of an EHW architecture
applied to PHC were presented in [9]. The two-phase approach consists of first
evolving category subsystems separately and then assembling them in a second
phase. The results showed that the approach can lead to a better generalization
performance than both traditional direct evolution and ANNs.

An online EHW architecture for classification tasks was proposed in [10,11].
The architecture was applied to multiple-category face image recognition and
sonar return classification. The evolution part of the system is implemented
on an FPGA, where fitness evaluation is carried out in hardware and the evo-
lutionary algorithm (EA) runs on an on-chip processor. The architecture em-
ploys function level modules as well as a method of dividing the evolution into
several smaller tasks. Later, the same architecture was also applied to PHC
and compared to another approach based on embedded cartesian genetic pro-
gramming (ECGP) [5]. The ECGP-based approach uses automatic definition of
sub-functions, and achieves good classification accuracies despite the fact that
evolution is performed on a more general architecture with lower level primitives.

EHW classification architectures applied to domains other than PHC include,
for example, the function level evolution of [7]. This architecture was applied to
typical ANN applications, however, with fewer inputs and outputs, and attained

accuracies comparable to ANNs. A different EHW pattern classification system,
Logic Design using Evolved Truth Tables (LoDETT), was presented in [3,4].
LoDETT allows for high accuracy classification on problems with a much higher
number of inputs and outputs. An example is face image recognition with 512
inputs and 40 different categories. Although providing high classification accu-
racy, also outperforming an ANN, the system lacks the ability of online evolution
and relies on synthesis in software before the circuit is implemented on a field-
programmable gate array (FPGA). The approach utilizes incremental evolution,
i.e., sub-circuits are evolved separately before being assembled into a final sys-
tem.

2.2 EMG Reference Data Set

We have defined an EMG data set for PHC as common reference for testing all
EHW classifier approaches. A test subject has been equipped with EMG sensors
and asked to perform different hand movements repeatedly. We have collected
signals from four sensor channels. The signals are categorized into the eight
different movements: open, close, flexion, extension, ulnar deviation, radial devi-
ation, pronation and supination. The raw EMG signals have been preprocessed
following the approach of Kajitani et al. [8] which smoothes the signal using the
RMS method and averages the amplitudes over one second. Since we measure
four channels, the feature vector for every movement is represented by a tuple of
four numbers. Overall, we have recorded 20 data sets per category, and repeated
the experiment on three consecutive days. The experimental setup for the signal
acquisition and preprocessing are described in detail in [5].

3 Selected Architectures

This section presents the selected EHW classifier approaches and discusses their
characteristics. We have chosen to compare a PLA-based architecture, an ar-
chitecture using increasing complexity evolution, an ECGP-based system, and
the functional unit row (FUR) approach. It would also have been interesting
to compare with the LoDETT system [3]. However, LoDETT has not yet been
applied to PHC.

3.1 PLA-based Architecture

In [2] a self-contained EHW system running an on-chip GA was presented. The
genome’s representation model is based on a PLA architecture, as shown in
Figure 1. The PLA approach implements a sum of products representation:
Each of the circuit’s primary inputs and their negates can be connected to a
set of AND gates. Accordingly, the AND gates’ outputs can then be connected
to a set of OR gates. The sum of products, which corresponds to the detection
of a single category, is then represented by the output of a single OR gate. A
genome from the population memory configures such a PLA by defining the fuse

AND...

O
R

...

AND...

AND...

O
R

...

O
R

...

......

...

...

...

...
no connection
connected wires

primary inputs

primary outputs

Fig. 1. PLA-based architecture.

C1

AND-

OR

unit S
e

le
c
to

r

C
o

u
n

te
r

AND-

OR

unit S
e

le
c
to

r

C
o

u
n

te
r

CP

x0x15

input pattern
category

classification

 M

a
x
.

d
e

te
c
to

r

Fig. 2. Increased complexity evolu-
tion architecture.

settings at the intersections of primary input lines and inputs of the AND gates,
and output lines of the AND gates and inputs of the OR gates, respectively. A
classifier system is then constructed by assigning a primary output to a category.
Having this, the simultaneous and thus erroneous recognition of multiple hand
movements is solved by selecting the category with the lowest index.

We have reconstructed this PLA-based architecture from [2] which supposes
a genome length of 2048 bits, and from [8] which determines a possible in-
put/output configuration as 4 channels of 4 bits, each coding for 6 different
categories. This gives 32 lines of primary and negated inputs to the AND gates.
Given that there are 6 OR gates, one can have a maximum number of 53 AND
gates from a genome of 2048 bits. We have expanded the PLA-based architecture
to 8 OR gates in order to be able to classify 8 categories. Keeping the same num-
ber of input lines and AND gates, we result at a genome of 32×53+8×53 = 2120
bits. This reconstruction will for the rest of the paper be referred to as the ”PLA”
architecture. The fitness is measured on the number of correct outputs from the
classifier after being presented to all training vectors.

3.2 Increased Complexity Evolution (ICE) Architecture

The increased complexity evolution approach (also referred to as incremental
evolution) was introduced by Torresen in [9]. The experiments were based on
software simulations but a hardware implementation of the architecture, either
offline or online, would be straightforward since the number of digital building
blocks and their locations are fixed. An overview of the architecture can be seen
in Figure 2. The classifier system is divided into subsystems, one for each classi-
fication category, which are connected to a maximum detector. Each subsystem
is in turn divided into an AND-OR unit, a selector unit and a counter. The

AND-OR unit consists of a layer of AND gates followed by a layer of OR gates.
Each gate has a fixed number of inputs which are programmable: The AND
gates can connect to any bit from the input data and the OR gates can connect
to any output from the AND gates. The outputs from the OR gates are fed
into the selector unit, which selects which of these outputs are to be counted by
the counter. The number of asserted lines from the selector are thus passed to
the maximum detector, which in turn decides which of the subsystems, that is,
which category, has the highest value. In the case of a tie, the subsystem with
the lowest index is chosen.

The system is evolved in two phases. First, the AND-OR subsystems are
evolved separately, one at a time. All training vectors for all categories are applied
to each subsystem, and fitness is measured on the outputs of the OR layer. If
the category of the training vector corresponds to the category of the subsystem,
a high number of activated OR gates is rewarded by adding the number of
activated gates to the fitness value. In addition, the number of activated gates are
multiplied by a given emphasize value of 4 in order to emphasize the activation
of the current subsystem, which in turn was found to speed up evolution. In the
opposite case, where the categories do not correspond, not activated OR gates
are rewarded in a similar manner, but without the emphasize value. In the second
step, the subsystems are assembled and evolution is performed on the selector
units, measuring the outputs from the complete system. Now, the fitness value is
incremented in the cases where the system output corresponds to the category
belonging to the applied training vector. In addition, in [9] experiments were
made which showed that including only half of the OR gate outputs for the
fitness evaluation in the first phase gives better generalization ability.

We have selected the same system parameters as in [9], with 3 inputs to each
gate, 32 gates in each AND and OR layer, and 16 ”floating” OR-gates. With
an input of 32 lines, one then has 5 × 3 × 32 × 2 = 960 genome bits for each
subsystem in the first step of the evolution. The second phase for evolving the
selectors gives, with 8 categories, 32 × 8 = 256 genome bits. This architecture
will for the rest of the paper be referred to as the ”ICE” architecture.

3.3 The Embedded Cartesian Genetic Programming (ECGP)
Architecture

Figure 3 shows the structure of the ECGP architecture which consists of a num-
ber of category detection modules (CDMs), summation blocks and a maximum
detector. The CDMs split into a number of category detectors and are respon-
sible for the classification of one category. In essence, each category detector
represents an independent classifier structure. The single category detector is a
digital circuit evolved within the ECGP model. ECGP is an extension of the pop-
ular FPGA-oriented cartesian genetic programming (CGP) model [12]. CGP is a
structural hardware model that arranges logic cells in a two-dimensional geomet-
ric layout. An evolved circuit consists of a number of primary inputs, a number of
logic blocks, and a number of primary outputs. ECGP extends CGP by relaxing
the strict geometric layout constraints and by adding the automatic definition

M
ax

im
um

 D
et

ec
to

r

∑
pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f12

f10

m11

po13

{ , , . . .}

f12

pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f12

f10

m11

po13

{ , , . . .}

f12

pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f12

f10

m11

po13

{ , , . . .}

f12

∑
pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f12

f10

m11

po13

{ , , . . .}

f12

pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f12

f10

m11

po13

{ , , . . .}

f12

pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f12

f10

m11

po13

{ , , . . .}

f12

In
pu

t P
at

te
rn

Category

...
Category
Detection
Module

Category
Detector

Fig. 3. Embedded cartesian genetic programming architecture

and reuse of sub-functions (modules) [13]. While primitive nodes correspond to
basic gate functions, modules are defined as compositions of primitive nodes.
The size of a module is restricted, which also restricts the maximal genome size.

As a fitness metric for the training phase we use the reciprocal square error
distance to the predictions of a perfect classifier. Similar to [13], we have chosen
a standard 1 + 4 evolutionary strategy (ES) as the optimization algorithm. The
population is initialized randomly with circuits that comprise 10 logic blocks.
Depending on the created modules, the chromosome of a single category classifier
is allowed to grow up to 250 logic blocks. While the chromosome’s size can vary
between 560 and 17.685.000 bits, starting with the shortest configuration the
chromosomes grow on average up to 678 bits.

Our ECGP-based classifier system evolves twelve classifier circuits for each
movement (category). For each feature vector and category, we calculate the
maximum of activated classifier circuits and take the category with the most
activations as a result. In case of a tie, the CDM with the lowest index is chosen.
For the rest of the paper, this architecture will be referred to as the ”ECGP”
architecture.

3.4 The Functional Unit Row (FUR) Architecture

Like the PLA architecture, the following architecture is designed for online evo-
lution. To facilitate online evolution, the classifier architecture is implemented
as a circuit whose behavior and connections can be controlled through configu-
ration registers. By writing the genome bitstream produced by the GA to these
registers, one obtains the phenotype circuit which can then be evaluated.

The classifier system consists of CDMs, one for each category to be classified.
These equate to the subcircuits in the ICE architecture as well as to the CDMs
in the ECGP architecture, and are connected to a maximum detector. The input
data to be classified is presented to each CDM concurrently on a common input
bus. The CDM with the highest output value will be selected by the maximum
detector, and in the case of a tie, the category with the lowest index is chosen.
Each CDM consists of M FURs – ”rules” or rows of functional units (FUs). See

FU FUFU

N-input AND

FU FUFU

N-input AND

input

pattern

C

O

U

N

T

E

R

output

C

FU FUFU

N-input AND

11 12 1N

2N2221

M1 MNM2

Fig. 4. Category detection module

D
a

ta
 M

U
X

f

f
M

U
X

input

pattern
output

configuration

C f
addr

1

f2

Fig. 5. Functional unit

Figure 4. These FURs equate to the category detectors evolved by the ECGP
approach. Each FUR consists of N FUs. The inputs to the circuit are passed on
to the inputs of each FU. The 1-bit outputs from the FUs in a row are fed into
an N -input AND gate. The 1-bit outputs from the AND gates are connected to
an input counter which counts the number of activated FURs. As the number
of FURs is increased, so is the output resolution from each CDM. Each FUR is
evolved from an initial random bitstream, which ensures a variation in the final
evolved FURs.

The FUs are the reconfigurable elements of the architecture. As seen in Fig-
ure 5, each FU behavior is controlled by configuration lines connected to the
configuration registers. Each FU has all input bits to the system available at its
inputs, but only one data element (e.g., one byte) of these bits is selected from
the input bits, depending on the configuration lines. This data is then fed to the
available functions, which, for the EMG classification, will be detailed below. In
addition, the unit is configured with a constant value, C, used together with the
input data element to compute the output from the selected function.

The functions chosen for to FU elements are summarized as follows, with I
being the selected input value, O the output, and C the constant value:

f Description Function
0 Greater than O = 1 if I > C, else 0
1 Less than or equal O = 1 if I ≤ C, else 0

Further, the architecture parameters N = 4 FUs per row and M = 10 rows per
CDM have been used.

The EA is written to be run on a PowerPC or MicroBlaze core in a Xilinx
FPGA. Each FU is encoded in the genome string with 2, 1, and 8 bits for the
feature address, function type, and constant, respectively. This gives a total of
11 bits for each unit. The total amount of bits in the genome for one FUR is
then, with N = 4, 44 bits. Like with the two previously described approaches,
an incremental approach is chosen for the evolution, such that one FUR can be
evolved at a time. Each FUR is fed with all the training vectors Vt, and fitness
is based on the row’s ability to give a positive (1) output for vectors v belonging
to its own category (Cv = Cp), while giving a negative (0) output for the rest
of the vectors (Cv 6= Cp). In the case of a positive output when Cv = Cp, the
value A is added to the fitness sum. When Cv 6= Cp and the row gives a negative
output (value 0), 1 is added to the fitness sum. The fitness function F for a row
can then be expressed in the following way, where o is the output of the FUR:

F =
∑
v∈Vt

xv where xv =
{

A · o if Cv = Cp

1− o if Cv 6= Cp

For the experiments, a value of A = 4 has been used. This architecture will for
the rest of the paper be referred to as the ”FUR” architecture.

3.5 Characteristics of the EHW Classifier Architectures

All of the approaches except the PLA architecture feature a way of having a
graded output for each of the categories, which is then connected to a maximum
detector. This can be seen as a way of having several different ”detection rules”
for each category, which in turn should reduce the effect of overfitting. A parallel
could be drawn to stochastic models such as random decision forests [14]: where
single decision trees (DTs) can be prone to overfitting, having a collection of
slightly different DTs for one category can significantly reduce this effect. In
ECGP and FUR these detection rules are evolved separately, while in the ICE
approach the rules are all drawn from the same set of AND-OR gates, which
could make them more interdependent.

Another difference from the PLA architecture is that all of the other architec-
tures use incremental evolution, i.e. evolving different subsystems one at a time.
The concept of dividing the system into subsystems gives smaller genomes and
a simpler search, which in turn should reduce the total evolution time. While
the ICE architecture evolves a subsystem for an entire subcategory at a time,
the ECGP and the FUR approaches further subdivide this. An advantage of
this further subdivision is the ability of starting classification before all of the
sub-circuits are evolved, i.e., in the case of the FUR architecture, one could start
classifying once one FU row for each category is evolved.

The last two approaches, ECGP and FUR, further employ high-level building
blocks in addition to, or instead of, gate-level components. The rationale for this
is to reduce the search space for the EA. While the ECGP approach extracts

building blocks automatically, and thus is a very general approach, the FUR
architecture uses a priori knowledge in form of pre-defined building blocks found
to be good for classification.

4 Experimental Evaluation

To evaluate the different classifier approaches with respect to classification accu-
racies, we rely on our data set from EMG signal classification. We have chosen
this application domain because this is one of the intended applications for all
of the compared EHW architectures. The complexity of the problem is close to
the problems reported in the original publications and, thus, it is likely that
we select suitable parameters in the recreation of the previously proposed ar-
chitectures. However, we have not tried to optimize the parameters of the PLA
and ICE architectures and therefore it could be that they would perform better
with other parameters. Each of the classifier architectures is provided with the
same feature vectors as input data and has to compute a classification result.
We use 3-fold cross-validation, where data from two days (320 4-tuples) is used
for training and the third day (160 4-tuples) for testing. This scheme is repeated
three times, such that every day once provides test data. In addition, we perform
this experiment for ten times and average the classification accuracies.

4.1 Results

Table 1 presents the results of our experiments. It shows the training and test
accuracies for the different architectures over the number of fitness evaluations.
The number of fitness evaluations measures the effort for training the classi-
fiers. Since the EHW architectures differ in their complexity, also the effort for
evaluating one specific instance of a classifier can differ. To account for that,
we have defined as one basic fitness evaluation step the evaluation of an entire
classifier system for the PLA architecture, the evaluation of only one category
sub-circuit for the ICE architecture, one FU row for the FUR architecture, and
one single category detector for the ECGP architecture. This makes it possible to
compare the computational efforts required to reach a certain classification ac-
curacy, given that now a single evaluation would take roughly the same amount
of time for all of the EHW approaches. The results for all of the approaches have
been evolved using a 1+4 ES.

4.2 Discussion

Table 1 shows the learning abilities (training accuracy) and the generalization
abilities (test accuracy) for the EHW classifiers. From that data, we can derive
the following observations:

The PLA architecture requires a high number of fitness evaluations in order
to reach its maximum classification accuracy. At 220 evaluations the fitness value
and thus the training accuracy is near 100%. Also the maximum test accuracy of

Table 1. Average accuracies (in %) achieved for given numbers of evaluations.

of evaluations 213 214 215 216 217 218 219 220

PLA-train 72.0 85.3 92.5 94.7 96.5 97.8 98.5 99.0
PLA-test 52.9 65.3 70.2 70.4 71.7 73.0 72.9 74.1

Difference 13.0 20.0 22.3 24.3 23.5 24.8 25.6 24.9

ICE-train 83.3 89.0 91.9 92.6 92.7 93.0 92.9 93.7
ICE-test 65.0 72.7 76.4 77.4 78.0 79.8 79.8 78.5

Difference 23.3 16.3 15.5 15.2 14.7 13.2 13.1 15.2

ECGP-train 82.2 82.2 84.3 87.3 89.7 92.6 95.6 97.7
ECGP-test 44.4 44.5 52.4 62.7 75.4 84.1 88.6 90.3

Difference 37.8 37.8 31.9 24.6 14.4 8.4 7.1 7.5

FUR-train 90.2 94.3 95.8 96.4 96.4 96.7 96.7 96.6
FUR-test 84.9 88.7 89.2 90.0 89.7 89.0 88.4 88.1

Difference 5.3 5.6 6.6 6.4 6.7 7.7 8.3 8.5

74.1% is reached at 220 evaluations. The slow convergence compared to ICE and
FUR could be the result of the genome having a high number of bits and thus
the search uses more time to converge than the incremental approaches which
divide the genome into smaller parts. Despite the high ability to fit the training
set, there is a significant difference between the training accuracy and the test
accuracy, indicating a low generalization ability.

The ICE architecture reaches lower training set accuracies, but still manages
to achieve a higher test accuracy than the PLA approach, indicating a better
generalization ability. The slightly worse ability to fit the training set could
stem from the fact that the number of AND-OR gates is rather limited for one
category which might make it difficult to accommodate the whole training set.

The ECGP architecture is a very general approach and therefore features a
large chromosome compared to the other, more domain-specific, architectures.
The large chromosome size results in a slow initial convergence rate. However,
the ECGP architecture delivered the best test accuracy among all architectures.
Moreover, the tendencies in the training and test accuracies let us assume that
the ECGP architecture has the best generalization behavior among all architec-
tures for this particular benchmark.

The FUR architecture gives, like the ECGP approach, good test set accura-
cies, and also small gaps between the accuracies for the training and test sets,
indicating good generalization abilities. Further, the number of evaluations re-
quired before a high accuracy is achieved is significantly lower than for the other
approaches. The use of predefined high-level building blocks selecting logical
features of the inputs significantly reduces the genome size and thus the search
space, in addition to making the search simpler. Combined with fine-grained
incremental evolution the genome becomes very short and high evolution speed
is achieved. On the other hand, the FUR architecture seems to overfit slightly
when the evolution is run for too long.

The PLA, ICE and to some extent the ECGP architecture as well are rather
fine-granular, while the FUR architecture definitely uses more complex func-

tional blocks. In the first group the test accuracies increase from PLA over ICE
to ECGP. This can be explained by the rising complexity of the according hard-
ware representation models: The PLA architecture is limited by its two-level
logic structure. The ICE architecture can be viewed as multi-PLA that applies
several sum-of-products for each category detection unit. The ECGP architec-
ture’s basically has the same structure as the ICE architecture, a set of classifiers
followed by summation blocks and a maximum detector. However, compared to
ICE, ECGP is neither restricted to single or multiple two-level logic expres-
sions nor to a limited set of logic block functions. The drawback of this general
architecture is the increased computational effort.

5 Conclusions

In this paper, we have compared four EHW classifier approaches using a com-
mon data set. Two of the architectures, ECGP and FUR are our own recent
developments while the other two, PLA and ICE, have been proposed earlier.
The experimental results show that both our approaches outperform the pre-
vious architectures. By introducing incremental evolution combined with high
level functions, one obtains higher classification rates and significantly faster
training times than earlier EHW approaches. The ECGP architecture relies on
a very general hardware representation model and requires a high number of
fitness evaluations to fit the training data set, but excels at classifying the test
data. The FUR approach, on the other hand, relies on a domain-specific hard-
ware representation model which on average allows to evolve classifiers with high
classification accuracies much faster.

The ECGP and FUR approaches have earlier shown to work on a higher
number of inputs in [5], although in that case the FUR approach obtained better
overall accuracies. The FUR approach has also been shown to handle a larger
number of categories in [10]. In contrast, the experiment presented in this paper
used only of few input features and a rather moderate number of categories.
The investigation of how the different architectures scale with other applications
having a higher number of inputs and categories is subject of further work.

Acknowledgment

This work was supported by the German Research Foundation under project
numbers PL 471/1-2 and SI 674/3-2 within the priority program Organic Com-
puting and the Research Council of Norway through the project Biological-
Inspired Design of Systems for Complex Real-World Applications under project
number 160308/V30.

References

1. Higuchi, T., Iwata, M., Kajitani, I., Iba, H., Hirao, Y., Manderick, B., Furuya,
T.: Evolvable Hardware and its Applications to Pattern Recognition and Fault-

Tolerant Systems. In: Towards Evolvable Hardware: The evolutionary Engineering
Approach. Volume 1062 of LNCS. Springer (1996) 118–135

2. Kajitani, I., Hoshino, T., Nishikawa, D., Yokoi, H., Nakaya, S., Yamauchi, T., Inuo,
T., Kajihara, N., Iwata, M., Keymeulen, D., Higuchi, T.: A Gate-Level EHW Chip:
Implementing GA Operations and Reconfigurable Hardware on a Single LSI. In:
Proceedings 2nd International Conference on Evolvable Systems (ICES). Volume
1478 of LNCS., Springer (1998) 1–12

3. Yasunaga, M., Nakamura, T., Yoshihara, I.: Evolvable Sonar Spectrum Discrimi-
nation Chip Designed by Genetic Algorithm. In: Systems, Man and Cybernetics.
Volume 5., IEEE (1999) 585–590

4. Yasunaga, M., Nakamura, T., Yoshihara, I., Kim, J.: Genetic Algorithm-based De-
sign Methodology for Pattern Recognition Hardware. In: Proceedings 3rd Interna-
tional Conference on Evolvable Systems (ICES). Volume 1801 of LNCS., Springer
(2000) 264–273

5. Glette, K., Kaufmann, P., Gruber, T., Torresen, J., Sick, B., Platzner, M.: Compar-
ing Evolvable Hardware to Conventional Classifiers for Electromyographic Pros-
thetic Hand Control. In: Submitted to 3rd NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). (2008)

6. Kajitani, I., Hoshino, T., Iwata, M., Higuchi, T.: Variable Length Chromosome
GA for Evolvable Hardware. In: International Conference on Evolutionary Com-
putation (ICEC), IEEE (1996) 443–447

7. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.:
Hardware Evolution at Function Level. In: Proceedings 4th Parallel Problem Solv-
ing from Nature (PPSN). Volume 1141 of LNCS., Springer (1996) 62–71

8. Kajitani, I., Sekita, I., Otsu, N., Higuchi, T.: Improvements to the Action Decision
Rate for a Multi-Function Prosthetic Hand. In: Proceedings 1st International
Symposium on Measurement, Analysis and Modeling of Human Functions (ISHF).
(2001) 84–89

9. Torresen, J.: Two-Step Incremental Evolution of a Digital Logic Gate Based Pros-
thetic Hand Controller. In: Proceedings 4th International Conference on Evolvable
Systems (ICES). Volume 2210 of LNCS. Springer (2001) 1–13

10. Glette, K., Torresen, J., Yasunaga, M.: An Online EHW Pattern Recognition Sys-
tem Applied to Face Image Recognition. In: Proceedings Applications of Evolu-
tionary Computing (EvoWorkshops2007). Volume 4448 of LNCS. Springer (2007)
271–280

11. Glette, K., Torresen, J., Yasunaga, M.: Online Evolution for a High-Speed Image
Recognition System Implemented On a Virtex-II Pro FPGA. In: Proceedings 2nd
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Los Alamitos,
CA, USA, IEEE CS Press (2007) 463–470

12. Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Proceedings 3rd
European Conference on Genetic Programming (EuroGP), Springer (2000) 121–
132

13. Walker, J.A., Miller, J.F.: Evolution and Acquisition of Modules in Cartesian
Genetic Programming. In: Proceedings 7th European Conference on Genetic Pro-
gramming (EuroGP). Volume 3003 of LNCS., Springer (2004) 187–197

14. Ho, T.K.: Random Decision Forests. In: Proceedings 3rd International Conference
on Document Analysis and Recognition (ICDAR). Volume 1., IEEE (1995) 278

	A Comparison of Evolvable Hardware Architectures for Classification Tasks
	Kyrre Glette, Jim Torresen, Paul Kaufmann, Marco Platzner

