
International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Adaptable Classification Architectures, Category Classifiers, Category Detection Modules,
Evolvable Hardware, Pattern Matching Algorithms

INTRODUCTION

Evolvable hardware (EHW) denotes the com-
bination of evolutionary algorithms with re-
configurable hardware technology to construct
self-adaptive and self-optimizing hardware

systems (Higuchi et al., 1993; de Garis, 1993).
EHW’s principle is the continuous optimiza-
tion of its function to be able to react instantly
to upcoming events. Several applications of
EHW have been proposed, of which some have
been very successful. Examples include data

Compensating Resource
Fluctuations by Means of

Evolvable Hardware:
The Run-Time Reconfigurable Functional

Unit Row Classifier Architecture
Paul Kaufmann, Department of Computer Science, University of Paderborn, Paderborn,

Germany

Kyrre Glette, University of Oslo, Norway

Marco Platzner, University of Paderborn, Paderborn, Germany

Jim Torresen, University of Oslo, Norway

ABSTRACT
The evolvable hardware (EHW) paradigm facilitates the construction of autonomous systems that can adapt
to environmental changes and degradation of the computational resources. Extending the EHW principle to
architectural adaptation, the authors study the capability of evolvable hardware classifiers to adapt to inten-
tional run-time fluctuations in the available resources, i.e., chip area, in this work. To that end, the authors
leverage the Functional Unit Row (FUR) architecture, a coarse-grained reconfigurable classifier, and apply
it to two medical benchmarks, the Pima and Thyroid data sets from the UCI Machine Learning Repository.
While quick recovery from architectural changes was already demonstrated for the FUR architecture, the
authors also introduce two reconfiguration schemes helping to reduce the magnitude of degradation after
architectural reconfiguration.

DOI: 10.4018/jaras.2012100102

18 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

compression for printers (Tanaka et al., 1998),
analog filters (Koza et al., 2004), evolved im-
age filters (Sekanina, 2004), evolved shapes for
space antennas (Lohn et al., 2004), and high
performance reconfigurable caches (Kaufmann
et al., 2009).

EHW-type adaptable systems improve
their behavior in response to system internal
and external stimuli, offering an alternative to
classically engineered adaptable systems. While
the adaptation to environmental changes rep-
resents the main research line within the EHW
community, the ability to balance resources
dynamically between multiple concurrent ap-
plications is still a rather unexplored topic. One
the one hand, an EHW module might run as one
out of several applications sharing a system’s
restricted reconfigurable resources. Depending
on the current requirements, the system might
decide to switch between multiple applications
or run them concurrently, albeit with reduced
logic footprints and reduced performance. We
are interested in scalable EHW modules and
architectures that can cope with such changing
resource profiles. On the other hand, the ability
to deal with fluctuating resources can be used to
support the optimization process, for example
by assigning more resources when the speed
of adaptation is crucial.

In this work we study the capability of
evolvable hardware to adapt to intentional
run-time fluctuations in the available resources,
i.e., chip area. To demonstrate our approach,
we leverage the Functional Unit Row (FUR)
architecture, a scalable and run-time recon-
figurable classifier architecture introduced by
Glette et al. (Glette et al., 2007a). We apply the
FUR classifier on two medical benchmarks,
the Pima and Thyroid data sets from the UCI
Machine Learning Repository. While these
benchmarks do not benefit from fast processing
times, resource-efficient implementations and
run-time adaptation of evolvable hardware, we
consider them as model applications because
they demonstrate nicely FUR’s properties as
fast recovery time, the ability to reach high
accuracy rates using compact configurations
and stable accuracy behavior under a wide

range of parameters. We first investigate FUR’s
general performance for these benchmarks be-
fore examining classification behavior during
architectural reconfigurations. To minimize the
impact of architecture scaling, we introduce two
reconfiguration techniques. The reconfiguration
techniques gather statistical data during train-
ing phases and use it to select the basic pattern
matching elements to duplicate or remove when
changing the architecture size.

The paper is structured as follows: the
next section presents the FUR architecture for
classification tasks, its reconfigurable variant
and the applied evolutionary optimization
method. Benchmarks together with an overfit-
ting analysis as well as the experiments with the
reconfigurable FUR architecture are shown in
the following section. The last section concludes
the paper and gives an outlook on future work.

THE FUNCTIONAL UNIT
ROW ARCHITECTURE

The Functional Unit Row architecture for clas-
sification tasks was first presented by Glette et
al. (Glette et al., 2007a). It is an architecture
tailored to online evolution combined with fast
reconfiguration. To facilitate online evolution,
the classifier architecture is implemented as a
circuit whose behavior and connections can
be controlled through configuration registers,
similar to the approach of Sekanina (Sekanina
et al., 2000). By writing the genome bitstream
produced by a genetic algorithm (GA) to these
registers, one obtains the phenotype circuit
which can then be evaluated. In (Torresen et
al., 2008), it was shown that the partial recon-
figuration capabilities of FPGAs can be used
to change the architecture’s footprint. The
amenability of FUR to partial reconfiguration
is an important precondition for our work. In
the following, we present the organization of
the FUR architecture, the principle of the re-
configurable FUR architecture, and the applied
evolutionary technique. For details about the
implementation of FUR we refer to (Glette et
al., 2007a; Glette et al., 2007b).

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 19

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ARCHITECTURE OVERVIEW

Figure 1 shows the overall organization of the
FUR architecture. The overall architecture is
rather generic and can be used with different
basic pattern matching primitives (Glette et al.,
2007a; Glette et al., 2008). It combines multiple
pattern matching elements into a single module
with graded output detecting one specific cat-
egory. A majority voter decides for a specific
category by identifying the module with the
highest number of activated pattern matching
elements. More specifically, for C categories
the FUR architecture consists of C Category
Detection Modules (CDM). A majority vote on
the outputs of the CDMs defines the FUR archi-
tecture decision. In case of a tie, the CDM with
the lower index wins. Each CDM contains M
Category Classifiers (CC), basic pattern match-
ing elements evolved from different randomly
initialized configurations and trained to detect

CDM’s category. A CDM counts the number of
activated CCs for a given input vector, thus the
CDM output varies between 0 and M.

The architecture becomes specific with the
implementation of the CCs. In our case we
define a single CC as a row of Functional Units
(FU), shown in Figure 2. The FU outputs are
connected to an AND gate such that in order
for a CC to be activated all FU outputs have to
be 1. Each CC is evolved from an initial random
bitstream, which ensures a variation in the
evolved CCs. The number of CCs defines the
resolution of the corresponding CDM.

The FUs are reconfigurable by writing the
architecture’s register elements. As depicted in
Figure 3, each FU behavior is controlled by
configuration lines connected to the configura-
tion registers. Each FU has all input bits to the
system available at its inputs, but only one data
element (e.g., one byte) is selected. This data
is then fed to the available functions. While any

Figure 1. The Functional Unit Row (FUR) Architecture is hierarchically partitioned for every
category into Category Detection Modules (CDM). For an input vector, a CDM calculates the
likeliness for a previously trained category by summing up positive answers from basic pattern
matching elements: the Category Classifiers (CC). The CDM with most activated CCs defines
the FUR’s decision.

20 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

number and type of functions could be imagined,
Figure 3 illustrates only two functions for clar-
ity. In addition, the unit is configured with a
constant value, c. This value and the input data
element are used by the function to compute
the output of the unit. Based on the data ele-
ments of the input, the functions available to
the FU elements are greater than and less than
or equal. These functions have by experimen-
tation shown to work well. Altogether, the FU
transfer function for an input data a, a constant
c and the function selection bit s are defined
as:

FU a c s
s if a c

s else
(, ,)

:

: .
=

>






	

In this specific FU configuration, the FUR
classification principle is closely related to the
classification principle of decision trees, which

realize decision boundaries with sections of
straight lines that must be parallel to the axes
of the input space spanned by all input data
elements.

THE RECONFIGURABLE
FUR ARCHITECTURE

During the design time, FUR’s architecture
can be parameterized along three dimensions,
namely the number of

•	 Categories,
•	 CCs in a category, and
•	 FUs in a CC.

The authors of the FUR architecture show
in (Torresen et al., 2008) that the partial recon-
figuration capabilities of FPGAs can be used to
change the architecture’s footprint dynamically.
For our experiments, we decided to vary the

Figure 2. Category Classifier (CC): n Functional Units (FU) are connected to an n-input AND
gate. Multiple CCs with a subsequent counter for activated CCs define a CDM.

Figure 3. Functional Unit (FU): The data MUX selects which of the input data to feed to the
functions “>” and “≤”. The constant c is given by the configuration lines. Finally, a result MUX
selects which of the function results to output.

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 21

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

number of CCs in a CDM for the following
reasons: The number of categories is typically
known a priori and is fixed. When comparing the
classification principles of the FUR architecture
and decision trees, the number of FUs in a CC
can be seen as analog to decision trees’ depth,
which roughly represents the dimensionality of
the decision space. This is highly application
specific. Reducing the amount of FUs per CC
without increasing the number of CCs in a CDM
would more likely create systems fundamentally
unable to reach the high classification rates of a
proper configured FUR architecture. Additional
motivation for changing the number of CCs in
a CDM is that the FUR architecture is fully
operational with only one CC per CDM. The
number of CCs in a CDM can be seen as the
CDM’s resolution. While the FUR architecture
shows basic discrimination abilities with one
or few CCs in a CDM, increasing the number
of CCs typically makes the accuracy rate reach
higher levels. Reconfiguration of the FUR archi-
tecture is sketched in Figure 4. For a sequence
I = { i1, i2, …, ik } we evolve a FUR architecture
having i1 FUs per CDM, then switching to i2
FUs per CDM and re-evolving the architecture
without flushing the configuration evolved so
far. In this investigation we want to examine
the sensitivity of the classification accuracy to

the changes described above, and how fast the
evolutionary algorithm is able to reestablish pre-
reconfiguration accuracy rates. Furthermore,
we would like to investigate if our strategies
for replacing and duplicating the “best” and
“worst” CCs can reduce the impact of archi-
tectural reconfigurations on the accuracy rate.

EVOLUTION

To evolve a FUR classifier, we employ a 1 + 4
Evolutionary Strategy (ES) scheme variation
introduced by Miller and Thomson (Miller et
al., 2000). In this particular scheme one parent
creates four offspring individuals. The parent
propagates to the new generation only if all off-
spring individuals demonstrate lower accuracy
rates. Otherwise, the best offspring individual
becomes the new parent. The scheme is illus-
trated in Algorithm 1 (Box 1). The fitness of a
candidate solution is evaluated as its classifica-
tion accuracy. New individuals are derived from
the parent by mutating three genes in every CC.
In contrast to previous work [8], we do not use
incremental evolution but evolve the complete
FUR architecture in a single ES run.

FUR’s functional granularity level covers
basic arithmetic functions operating on binary
encoded numbers. Therefore, all elements of

Figure 4. Reconfigurable FUR Architecture: The FUR architecture is parameterized by the number
of categories, category classifiers (CC) and functional units (FU) per CC. While the number of
categories is fixed and the number of FUs is largely application dependent, we scale the FUR
architecture by changing the number of category classifiers in a category detection module.

22 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

an input vector are converted to 8-bit binary
encoded numbers. With n elements in a single
input vector, the configuration bitstring for a
single FU amounts for n n

u
= 


 + +log ()

2
8 1

bits. Having c categories, nf FUs in a CC as
well as nc CCs in a CDM, the total genotype is
c × nc × nf × nu bits long.

EXPERIMENTS AND RESULTS

This section presents two kinds of results. First,
we analyze the general behavior of FUR for the
Pima and Thyroid data sets by successively test-
ing a range of architecture parameter combina-
tions. Combined with an overfitting analysis, we
are then able to picture FUR’s general behavior
for these benchmarks. In the next section, we

Table 1. Pima benchmark: Error rates and standard deviation (SD) in %. We use the data mining
toolbox RapidMiner (Mierswa et al., 2006) to evaluate the algorithms marked by “*”. Prelimi-
nary, we identify good performing algorithm parameters by a grid search. Remaining results
are taken from (Winkler et al., 2009).

Box 1.

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 23

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

select a good-performing configuration to
investigate FUR’s performance, when being
reconfigured during run-time.

BENCHMARKS

For our investigations we rely on the UCI
machine learning repository (Asuncion et al.,
2007) and specifically, on the Pima and the
Thyroid benchmarks. Pima, or the Pima Indians
Diabetes data set is collected by the Johns
Hopkins University in Baltimore, MD, USA
and consists of 768 samples with eight feature
values each, divided into a class of 500 samples
representing negative tested individuals and a
class of 268 samples representing positive
tested individuals. The data of the Thyroid
benchmark represents samples of regular indi-
viduals and individuals suffering hypo- and
hyperthyroidism. Thus, the samples are di-
vided into 6.666, 166 and 368 samples repre-
senting regular, subnormal and hyper-function
individuals. A sample consists of 22 feature
values. Assuming a FUR classifier with 4 FUs
in a CC and 10 CCs in a CDM, the genotype
l e n g t h s a m o u n t f o r
2 10 4 8 8 1 960

2
⋅ ⋅ ⋅ 


 + + =(log ()) bits for the

Pima and 3 10 4 22 8 1 1680
2

⋅ ⋅ ⋅ 

 + + =(log ())

bits for the Thyroid data sets, respectively.
Both benchmarks do not rely on high

classification speeds and run-time adaptation
of EHW hardware classifiers, however, these
benchmarks have been selected because of their
pronounced effects in the run-time reconfigura-
tion experiments presented in the next section
revealing FUR’s characteristics.

ACCURACY AND
OVERFITTING ANALYSIS

We implement parameter analysis of the FUR
architecture by a grid search over the number of
CCs and number of FUs. For a single (i,j)-tuple,
where i denotes the number of CCs and j the
number of FUs, we evolve a FUR classifier by
running 1+4 evolutionary strategies for 100.000

generations. In contrast to our original work on
the FUR architecture in (Glette et al., 2006), we
do not use incremental evolution but evolve the
complete FUR architecture in a single ES run.
Thereby we use a mutation operator modifying
three genes in every CC. As we employ a 12-
fold cross validation scheme, the evolution is
repeated 12 times while alternating the training
and test data sets. We select n=12 in our experi-
ments as an acceptable compromise between
computational complexity and precision of
classifier evaluation. During the evolution, we
log for every increase in the training accuracy
FUR’s performance on the test data set. The
test accuracies are not used while the evolution
runs. To detect the tipping point where FUR
starts to overfit, i.e. where FUR learns to match
each training vector instead of learning the
general model, we average the test accuracies
logged during the evolutionary runs and select
the termination training accuracy according
to the highest average test accuracy. With an
a priori known termination training accuracy
we can evolve a new classifier until it reaches
the termination training accuracy and expect
it having on average a good classification
performance for unknown data. An example
is shown in Figure 5 for the Pima benchmark
and the (30,8) configuration. The test average
accuracy, drawn along the y-axis, rises in relation
to the average training accuracy, drawn along
the x-axis, until the training accuracy reaches
0.76. After this point the test accuracy degrades
gradually. Consequently, we note 0.76 and 0.76
as the best combination of test and termination
training accuracies.

To examine the general FUR performance
for the Pima and Thyroid data sets, we config-
ure and evaluate the FUR architecture for all
combinations of 2,4,6,…,20 FUs per CC and
for 2, 4, 6, 8, 10, 14, 16, 20, 25, 30, 35, 40, 50,
60, 70, 80 CCs. Figure 6 displays the results.
In the horizontal level the diagrams span the
parameter area of CCs and FUs. The accuracy
for each parameter tuple is drawn along the
z-axis with a projection of equipotential ac-
curacy lines on the horizontal level. While the
test accuracies for the Pima benchmark, pre-

24 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 5. Overfitting analysis for the Pima data set and FUR architecture having 8 FUs per
CC and 30 CCs per CDM. In this example, the termination training accuracy lies around 0.76,
before the test accuracy begins to decline, indicating overfitting.

Figure 6. Pima and Thyroid overfitting analysis: Best generalization and the according termina-
tion training accuracies for the Pima (a) (b) and the Thyroid (c) (d) benchmarks, respectively

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 25

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

sented in Figure 6(a) and 6(b) are largely inde-
pendent from the number of FUs and CCs with
small islands of improved behavior around the
(8,8-10) configurations, the Thyroid benchmark
presented in Figure 6(c) has a performance loss
in regions with a large number of FUs and few
CCs.

Tables 1 and 2 compare FUR’s results for
the Pima and the Thyroid benchmarks to re-
lated work. We use additionally the data mining
tool RapidMiner (Mierswa et al., 2006) to cre-
ate numbers for standard and state-of-the-art
algorithms and their modern implementations.
The following algorithms are evaluated with
12-fold cross validation: Decision Trees (DTs),
k-th Nearest Neighbor (kNN), Multi-layer
Perceptrons (MLPs), Linear Discriminant
Analysis (LDA), Support Vector Machines
(SVMs) and Classification and Regression
Trees (CART). For the Pima benchmark the
FUR architecture demonstrated higher recogni-
tion rates than any other method. It forms to-
gether with SVMs, LDA, Shared Kernel
Models and kNNs a group of best performing
algorithms within a 3% margin. The accuracy
range of the Thyroid-benchmark is much
smaller because of the disproportional catego-
ry data sizes and a single dominant category
amounting for 92.5% of the data. In this bench-
mark the FUR architecture lays 0.66% behind
the best algorithm.

RECONFIGURABLE SCHEMES
FOR FUNCTIONAL UNIT ROW
ARCHITECTURE

In this section we investigate FUR’s run-time
adaptation capabilities to gradual and radical
changes in resource sizes. To this end, we
configure FUR with 4 FUs per CC and change
the number of CCs every 50.000 generations.
We split the data set into disjoint training and
test sets similar to the previously used 12-fold
cross validation scheme and start the training
with 10 CCs. Then, we gradually change the
number of CCs to 9, 8…1 and back to 2, 3…10
executing altogether 106 generations. In the
second experiment we investigate larger

changes, switching from 10 to 4 to 2 to 5 and
back to 10 CCs. For sound results, we repeat
the experiments 96 and 32 times for first and
second experiments, respectively.

Our basic implementation of FUR’s recon-
figuration reduces and increases the amount of
CCs in a CDM by removing randomly selected
and adding randomly initialized CCs to a CDM.
In order to improve adaptation times during
architectural reconfigurations, we define two
additional schemes to change the amount of
CCs in a CDM by removing and duplicating
“worst“ and “best“ CCs, respectively. To quan-
tify the quality of a CC, we define for every
CC a penalty counter that is increased by the
number of wrongly activated CCs in the same
CDM for some input vector. A specific CC’s
counter is only increased when the CC itself
decides incorrectly. The rationale behind this
is that FUR’s global decision is taken at the
CDM level. Thus, a CDM with, for instance, 4
wrongly decided CCs is more likely to cause an
incorrect global decision than a CDM with only
2 wrongly decided CCs. In the first case, every
CC in the particular CDM with an incorrect
decision adds a 4 to its penalty counter while
in the second case, a 2 is added. Consequently,
a CC is considered “bad“ when having a higher
penalty counter and “good“ otherwise.

GRAUDALLY CHANGING
FUR’S SIZE

Figure 7 compares accuracy drop magnitudes
during architectural reconfiguration using
“random”, “best” and “worst” schemes. The
diagrams plot averaged numbers over 96 experi-
ments for the Pima data set. The top diagrams
show exemplarily the training behavior when
removing a randomly CC and adding a randomly
initialized CC to FUR architecture. Diagrams
in the next three lines illustrate test accuracy
behavior for the “random”, “best” and “worst”
reconfiguration schemes. An obvious conclu-
sion is that removing “worst” CCs result in
smallest accuracy drops. Analog, duplicating
“best” CCs helps minimizing accuracy drops
when adding resources to the FUR architecture.

26 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Generally, we observe for the Pima benchmark
the following:

•	 The training and test accuracies drop for
any reconfiguration scheme for almost any
positive and negative changes in the number
of CCs and recover subsequently. The drops
are slightly larger for configurations with
few CCs. The average accuracy drops, as
summarized in Table 3, are minimized
when removing “worst“ and duplicating
“best“ CCs during FUR reconfiguration.
Randomly removing and initializing CCs
comes second while removing “best“ and
duplicating “worst“ CCs result in largest
accuracy losses. Altogether, the differences
between the reconfiguration schemes are
rather small, amounting roughly for up to

3.5% and 1% for removing and adding
CCs, respectively.

•	 We observed maximal training accuracies
to be somewhat lower when using fewer
CCs, while the test accuracies tend to stay
at the same levels. Only for configurations
with one and sometimes two CCs per
CDM, the accuracy rates did not reach the
pre-switch levels. The gaps, however, are
small, roughly amounting for up to 5%.

•	 Test accuracies are recovered quickly for
most schemes and FUR configurations.
However, the strategy of removing “worst“
and “random“ CCs maintains a fast recov-
ery speed also when going below five CCs
per CDM, whereas removing “best“ leads
to significantly longer times before the
asymptotic test accuracies are recovered.

Table 2. Thyroid benchmark: Error rates and standard deviation (SD) in %. We use the data
mining toolbox RapidMiner (Mierswa et al., 2006) to evaluate the algorithms marked by “*”.
Preliminary, we identify good performing algorithm parameters by a grid search. Remaining
results are taken from (Winkler et al., 2009).

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 27

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

•	 The test accuracies are mostly located
between 0.72 and 0.76, independent of
the changes in the number of CCs. Thus,
and this is the main observation, the FUR
architecture shows to a large extent a robust
test accuracy behavior under reconfigura-
tion for the Pima benchmark.

For the Thyroid benchmark we can make
the following conclusions:

•	 The test accuracies drop significantly when
changing the number of CCs. The drops are
roughly three to five times larger reaching

up to 40%. Reducing FUR size, the accu-
racy drops became smallest when remov-
ing “worst“ CCs during reconfigurations,
followed by schemes selecting random
and “best“ CCs.

•	 When increasing the number of CCs, the
smallest accuracy drops are obtained from
the random CC duplication scheme, fol-
lowed by schemes duplicating “best“ and
“worst“ CCs. The difference between the
random and “best“ duplication scheme
is, however, small accounting for 0.69%.

•	 As anticipated by previous results shown
in Figure 6(c), the test accuracy drops for

Figure 7. Gradually reconfiguring the FUR architecture using the Pima data set. The left column
presents FUR’s averaged classification behavior when reducing and the right column when
increasing the number of CCs. The diagrams on the bottom show the number of CCs in the
system. Both diagrams on the top show exemplarily the training behavior for the randomized
reconfiguration scheme. Diagrams in the second, third and fourth lines show test behavior for
the randomized, “best”, and “worst” FUR reconfiguration schemes, respectively.

28 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

FUR architecture configurations with very
few CCs. For instance, a FUR configuration
with only one CC demonstrates an error
rate of 7%. This is considerably low as
the baseline recognition rate lies at 92.5%
which corresponds to an error rate of 7.5%
due to a single category amounting for
6.666 out of 7200 vectors.

•	 The main result is that given enough
resources reconfigurations are quickly
compensated. The limitation in the case
of the Thyroid benchmark is a minimum
amount of CCs required to achieve high
recognition rates.

RADICALLY CHANGING
FUR’S SIZE

Challenges of an autonomous and adaptable
embedded system are manifold. It may for in-
stance have to react to periodic events where the
solution may benefit from additional resources.
With typically restricted energy the embedded
system faces sometimes also the challenge
of balancing resources between multiple ap-
plications. We anticipate resource assignment
changes in such situations being of a more
radical nature. To investigate FUR’s behavior in
such situations, we define a second reconfigu-
ration sequence switching form 10 to 4 to 2 to
5 and back to 10 CCs. In each reconfiguration

step we nearly halve or double FUR’s size.
The results are summarized in Table 4. Almost
all observations and conclusions made in the
previous experiment hold also for the current
experiment. The important differences are:

•	 The accuracy drops are now mostly two to
three times as large compared to gradual
FUR size changes. Despite the dramatic
numbers, accuracies recover similarly fast.

•	 Analog to the previous experiment, remov-
ing “worst“ CCs and duplicating “best“
CCs reduces the accuracy drops for Pima
and Thyroid benchmarks. There is, how-
ever, one exception. Lowest test accuracy
drops when switching from 2 to 5 CCs in
the Thyroid benchmark are achieved by
duplicating the “worst“ CC three times.

In summary, for all experiments in this
section we can conclude that the FUR archi-
tecture is exceptionally fast in recovering from
architectural reconfigurations, given enough
resources are provided for learning. Still, the
proposed schemes of removing “worst“ and
adding “best“ CCs help to reduce the impact
on the classification rate after reconfiguration
of the architecture dimensions. This is both in
terms of lower magnitudes on the instantaneous
accuracy drops, as well as a shortened recovery
time before pre-reconfiguration test accuracies
are regained.

Table 3. Averaged accuracy drops in % over 96 algorithm runs. 1+4 ES is executed for 50.000
generations between the reconfigurations. During a reconfiguration randomly selected, “best“
or “worst“ CCs are removed or duplicated. Bold numbers indicate best-performing replace-
ment strategy.

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 29

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

CONCLUSION

In this work we propose to leverage the FUR
classifier architecture for creating evolvable
hardware systems that can cope with fluctuat-
ing resources. We describe FUR’s architecture
and experimentally evaluate it on two medical
benchmarks. In the first experiment we analyze
FUR’s overfitting behavior and demonstrate that
FUR performs similar or better than conven-
tional state-of-the-art classification algorithms.
Then we investigate FUR performance during
architectural reconfigurations. This is done by
reducing or increasing the available resources
and measuring the accuracy behavior during the
transitions. To reduce the impact of reconfigu-
ration on the accuracy rate, we also introduce
two reconfiguration schemes for adding and
removing Functional Unit rows to an existing
FUR architecture. We demonstrate that the
generalization performance of FUR is very
robust to changes in the available resources
as long as a certain amount of CCs is present
in the system. While for the Pima benchmark
the differences between the reconfiguration
schemes and also the absolute accuracy drops
are small, for the Thyroid benchmark we can
substantially improve the behavior of FUR
during a reconfiguration.

In future we will continue our work on
run-time reconfiguration support for an FPGA-
based hardware prototype of the system, and

will benchmark the performance with regard to
training and reconfiguration time. In addition,
we will extend the benchmarking scenarios
for resource fluctuations to reflect real-world
situations in embedded systems.

REFERENCES

Asuncion, A., & Newman, D. (2007). UCI machine
learning repository. Irvine, CA: University of Cali-
fornia. Irvine: School of Information and Computer
Sciences.

de Garis, H. (1993). Evolvable hardware: Genetic
programming of a Darwin Machine. In Proceedings
of the International Conference on Artificial Neural
Nets and Genetic Algorithms (pp. 441-449).

Glette, K., Gruber, T., Kaufmann, P., Torresen, J.,
Sick, B., & Platzner, M. (2008). Comparing evolvable
hardware to conventional classifiers for electromyo-
graphic prosthetic hand control. In Proceedings of
the Conference on Adaptive Hardware and Systems
(pp. 32-39).

Glette, K., Torresen, J., & Yasunaga, M. (2007a).
An online EHW pattern recognition system applied
to face image recognition. In M. Giacobini (Ed.),
Proceedings of the Workshop on Applications of
Evolutionary Computing (LNCS 4448, pp. 271-280).

Glette, K., Torresen, J., & Yasunaga, M. (2007b).
Online evolution for a high-speed image recognition
system implemented on a Virtex-II Pro FPGA. In
Proceedings of the Conference on Adaptive Hardware
and Systems (pp. 463-470).

Table 4. Averaged accuracy drops in % over 32 algorithm runs. 1+4 ES is executed for 50.000
generations between the reconfigurations. During a reconfiguration randomly selected, “best“
or “worst“ CCs are removed or duplicated. Bold numbers indicate best-performing replace-
ment strategy.

30 International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Glette, K., Torresen, J., Yasunaga, M., & Yamaguchi,
Y. (2006). On-chip evolution using a soft processor
core applied to image recognition. In Proceedings of
the Conference on Adaptive Hardware and Systems
(pp. 373-380).

Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis,
H., & Furuya, T. (1993). Evolving hardware with ge-
netic learning: A first step towards building a Darwin
Machine. In Cliff, D., Husbands, P., Meyer, J.-A., &
Wilson, S. W. (Eds.), From animals to animats (pp.
417–424). Cambridge, MA: MIT Press.

Kaufmann, P., Plessl, C., & Platzner, M. (2009).
EvoCaches: Application-specific adaptation of
cache mappings. In Proceedings of the Conference
on Adaptive Hardware and Systems (pp. 11-18).

Koza, J., Keane, M., & Streeter, M. (2004). Routine
high-return human-competitive evolvable hardware.
In Proceedings of the NASA/DoD Conference on
Evolvable Hardware (pp. 3-17).

Lohn, J., Hornby, G., & Linden, D. (2004). Evolu-
tionary antenna design for a NASA spacecraft. In
O’Reilly, U. M., Yu, T., Riolo, R. L., & Worzel, B.
(Eds.), Genetic programming theory and practice II
(pp. 301–315). New York, NY: Springer.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz,
M., & Euler, T. (2006). YALE: Rapid prototyping
for complex data mining tasks. In Proceedings of the
International Conference on Knowledge Discovery
and Data Mining (pp. 935-940).

Miller, J., & Thomson, P. (2000). Cartesian genetic
programming. In Proceedings of the European Con-
ference on Genetic Programming (pp. 121-132).

Sekaina, L., & Ruzicka, R. (2000). Design of the
special fast reconfigurable chip using common
FPGA. In Proceedings of the Conference on Design
and Diagnostics of Electronic Circuits and Systems
(pp. 161-168).

Sekanina, L. (2004). Evolutionary design space
exploration for median circuits. In G. R. Raidl, S.
Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y.
Jin, et al. (Eds.), Proceedings of the Workshop on
Applications of Evolutionary Computing (LNCS
3005, pp. 240-249).

Tanaka, M., Sakanashi, H., Salami, M., Iwata, M.,
Kurita, T., & Higuchi, T. (1998). Data compression
for digital color electrophotographic printer with
evolvable hardware. In M. Sipper, D. Mange, & A.
Pérez-Uribe (Eds.), Proceedings of the International
Conference on Evolvable Systems (LNCS 1478, pp.
106-114).

Torresen, J., Senland, G., & Glette, K. (2008). Par-
tial reconfiguration applied in an on-line evolvable
pattern recognition system. In Proceedings of the
Conference on Nordic Microelectronics (pp. 61-64).

Winkler, S. M., Affenzeller, M., & Wagner, S. (2009).
Using enhanced genetic programming techniques for
evolving classifiers in the context of medical diagno-
sis. Genetic Programming and Evolvable Machines,
10(2), 111–140. doi:10.1007/s10710-008-9076-8

Paul Kaufmann received diplomas in computer science and mathematics from the University
of Paderborn, Germany, in 2005. Currently, he is working towards a PhD degree in computer
science at the Faculty for Electrical Engineering, Computer Science and Mathematics of the
University of Paderborn. There, he is conducting research and development in the areas of
automatic digital circuit design, evolutionary multi-objective optimization and optimization of
adaptable systems with applications in processor design, adaptable controller evolution and
recognition of electromyographic signals.

International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012 31

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Kyrre Glette received his MSc in Computer Engineering (2004) from the Norwegian University
of Science and Technology, Norway, and his PhD in Evolvable Hardware (2008) from the Uni-
versity of Oslo, Norway, with stays at the French Space Agency (CNES) in Toulouse, France,
and the University of Tsukuba in Japan. He is currently employed at the University of Oslo as a
Postdoctoral Research Fellow. His research interests are artificial intelligence and biologically-
inspired systems, with a special focus on embedded and runtime evolvable hardware systems.
A second research interest is evolutionary robotics with an emphasis on design and prototyping
of biologically inspired robots.

Marco Platzner is Professor for Computer Engineering at the University of Paderborn. Previ-
ously, he held research positions at the Computer Engineering and Networks Lab at ETH Zurich,
Switzerland, the Computer Systems Lab at Stanford University, USA, the GMD - Research Center
for Information Technology (now Fraunhofer IAIS) in Sankt Augustin, Germany, and the Graz
University of Technology, Austria. Marco Platzner holds diploma and PhD degrees in Telemat-
ics (Graz University of Technology, 1991 and 1996), and a “Habilitation” degree for the area
hardware-software codesign (ETH Zurich, 2002). His research interests include reconfigurable
computing, hardware-software codesign, and parallel architectures. He is a senior member of
the IEEE, a member of the ACM, serves on the program committees of several international
conferences (e.g., FPL, FPT, RAW, ERSA, DATE), and is an associate editor of the International
Journal of Reconfigurable Computing, the EURASIP Journal on Embedded Systems, and the
Journal of Electrical and Computer Engineering. Marco Platzner is member of the board of the
Paderborn Center for Parallel Computing and served on the board of the Advanced System
Engineering Center of the University of Paderborn. He is faculty member of the International
Graduate School Dynamic Intelligent Systems of the University of Paderborn, and of the Advanced
Learning and Research Institute (ALaRI) at Universita' della Svizzera Italiana (USI), in Lugano.

Jim Torresen received his MSc and PhD degrees in computer architecture and design from the
Norwegian University of Science and Technology, University of Trondheim in 1991 and 1996,
respectively. He has been employed as a senior hardware designer at NERA Telecommunications
(1996-1998) and at Navia Aviation (1998-1999). Since 1999, he has been a professor at the De-
partment of Informatics at the University of Oslo (associate professor 1999-2005). Jim Torresen
has been a visiting researcher at Kyoto University, Japan for one year (1993-1994) and four
months at Electrotechnical laboratory, Tsukuba, Japan (1997 and 2000). His research interests
at the moment include reconfigurable hardware, machine learning, bio-inspired computing,
robotics and applying this to complex real-world applications. Several novel methods have been
proposed. He has published a number of scientific papers in international journals, books and
conference proceedings. 10 tutorials and several invited talks have been given at international
conferences. He is in the program committee of more than ten different international conferences
as well as a regular reviewer of a number of international journals (mainly published by IEEE
and IET). He has also acted as an evaluator for proposals in EU FP7. A list and collection of
publications can be found at the following URL: http://www.ifi.uio.no/~jimtoer/papers.html

