
International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Adaptable	Classification	Architectures,	Category	Classifiers,	Category	Detection	Modules,	
Evolvable	Hardware,	Pattern	Matching	Algorithms

INTRODUCTION

Evolvable	hardware (EHW) denotes the com-
bination of evolutionary algorithms with re-
configurable hardware technology to construct 
self-adaptive and self-optimizing hardware 

systems (Higuchi et al., 1993; de Garis, 1993). 
EHW’s principle is the continuous optimiza-
tion of its function to be able to react instantly 
to upcoming events. Several applications of 
EHW have been proposed, of which some have 
been very successful. Examples include data 

Compensating Resource 
Fluctuations by Means of 

Evolvable Hardware:
The Run-Time Reconfigurable Functional 

Unit Row Classifier Architecture
Paul	Kaufmann,	Department	of	Computer	Science,	University	of	Paderborn,	Paderborn,	

Germany

Kyrre	Glette,	University	of	Oslo,	Norway

Marco	Platzner,	University	of	Paderborn,	Paderborn,	Germany

Jim	Torresen,	University	of	Oslo,	Norway

ABSTRACT
The	evolvable	hardware	(EHW)	paradigm	facilitates	the	construction	of	autonomous	systems	that	can	adapt	
to	environmental	changes	and	degradation	of	the	computational	resources.	Extending	the	EHW	principle	to	
architectural	adaptation,	the	authors	study	the	capability	of	evolvable	hardware	classifiers	to	adapt	to	inten-
tional	run-time	fluctuations	in	the	available	resources,	i.e.,	chip	area,	in	this	work.	To	that	end,	the	authors	
leverage	the	Functional	Unit	Row	(FUR)	architecture,	a	coarse-grained	reconfigurable	classifier,	and	apply	
it	to	two	medical	benchmarks,	the	Pima	and	Thyroid	data	sets	from	the	UCI	Machine	Learning	Repository.	
While	quick	recovery	from	architectural	changes	was	already	demonstrated	for	the	FUR	architecture,	the	
authors	also	introduce	two	reconfiguration	schemes	helping	to	reduce	the	magnitude	of	degradation	after	
architectural	reconfiguration.

DOI: 10.4018/jaras.2012100102



18   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

compression for printers (Tanaka et al., 1998), 
analog filters (Koza et al., 2004), evolved im-
age filters (Sekanina, 2004), evolved shapes for 
space antennas (Lohn et al., 2004), and high 
performance reconfigurable caches (Kaufmann 
et al., 2009).

EHW-type adaptable systems improve 
their behavior in response to system internal 
and external stimuli, offering an alternative to 
classically engineered adaptable systems. While 
the adaptation to environmental changes rep-
resents the main research line within the EHW 
community, the ability to balance resources 
dynamically between multiple concurrent ap-
plications is still a rather unexplored topic. One 
the one hand, an EHW module might run as one 
out of several applications sharing a system’s 
restricted reconfigurable resources. Depending 
on the current requirements, the system might 
decide to switch between multiple applications 
or run them concurrently, albeit with reduced 
logic footprints and reduced performance. We 
are interested in scalable EHW modules and 
architectures that can cope with such changing 
resource profiles. On the other hand, the ability 
to deal with fluctuating resources can be used to 
support the optimization process, for example 
by assigning more resources when the speed 
of adaptation is crucial.

In this work we study the capability of 
evolvable hardware to adapt to intentional 
run-time fluctuations in the available resources, 
i.e., chip area. To demonstrate our approach, 
we leverage the Functional	Unit	Row (FUR) 
architecture, a scalable and run-time recon-
figurable classifier architecture introduced by 
Glette et al. (Glette et al., 2007a). We apply the 
FUR classifier on two medical benchmarks, 
the Pima and Thyroid data sets from the UCI 
Machine Learning Repository. While these 
benchmarks do not benefit from fast processing 
times, resource-efficient implementations and 
run-time adaptation of evolvable hardware, we 
consider them as model applications because 
they demonstrate nicely FUR’s properties as 
fast recovery time, the ability to reach high 
accuracy rates using compact configurations 
and stable accuracy behavior under a wide 

range of parameters. We first investigate FUR’s 
general performance for these benchmarks be-
fore examining classification behavior during 
architectural reconfigurations. To minimize the 
impact of architecture scaling, we introduce two 
reconfiguration techniques. The reconfiguration 
techniques gather statistical data during train-
ing phases and use it to select the basic pattern 
matching elements to duplicate or remove when 
changing the architecture size.

The paper is structured as follows: the 
next section presents the FUR architecture for 
classification tasks, its reconfigurable variant 
and the applied evolutionary optimization 
method. Benchmarks together with an overfit-
ting analysis as well as the experiments with the 
reconfigurable FUR architecture are shown in 
the following section. The last section concludes 
the paper and gives an outlook on future work.

THE FUNCTIONAL UNIT 
ROW ARCHITECTURE

The Functional Unit Row architecture for clas-
sification tasks was first presented by Glette et 
al. (Glette et al., 2007a). It is an architecture 
tailored to online evolution combined with fast 
reconfiguration. To facilitate online evolution, 
the classifier architecture is implemented as a 
circuit whose behavior and connections can 
be controlled through configuration registers, 
similar to the approach of Sekanina (Sekanina 
et al., 2000). By writing the genome bitstream 
produced by a genetic	algorithm (GA) to these 
registers, one obtains the phenotype circuit 
which can then be evaluated. In (Torresen et 
al., 2008), it was shown that the partial recon-
figuration capabilities of FPGAs can be used 
to change the architecture’s footprint. The 
amenability of FUR to partial reconfiguration 
is an important precondition for our work. In 
the following, we present the organization of 
the FUR architecture, the principle of the re-
configurable FUR architecture, and the applied 
evolutionary technique. For details about the 
implementation of FUR we refer to (Glette et 
al., 2007a; Glette et al., 2007b).



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   19

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ARCHITECTURE OVERVIEW

Figure 1 shows the overall organization of the 
FUR architecture. The overall architecture is 
rather generic and can be used with different 
basic pattern matching primitives (Glette et al., 
2007a; Glette et al., 2008). It combines multiple 
pattern matching elements into a single module 
with graded output detecting one specific cat-
egory. A majority voter decides for a specific 
category by identifying the module with the 
highest number of activated pattern matching 
elements. More specifically, for C categories 
the FUR architecture consists of C	Category	
Detection	Modules (CDM). A majority vote on 
the outputs of the CDMs defines the FUR archi-
tecture decision. In case of a tie, the CDM with 
the lower index wins. Each CDM contains M	
Category	Classifiers (CC), basic pattern match-
ing elements evolved from different randomly 
initialized configurations and trained to detect 

CDM’s category. A CDM counts the number of 
activated CCs for a given input vector, thus the 
CDM output varies between 0 and M.

The architecture becomes specific with the 
implementation of the CCs. In our case we 
define a single CC as a row of Functional	Units 
(FU), shown in Figure 2. The FU outputs are 
connected to an AND gate such that in order 
for a CC to be activated all FU outputs have to 
be 1. Each CC is evolved from an initial random 
bitstream, which ensures a variation in the 
evolved CCs. The number of CCs defines the 
resolution of the corresponding CDM.

The FUs are reconfigurable by writing the 
architecture’s register elements. As depicted in 
Figure 3, each FU behavior is controlled by 
configuration lines connected to the configura-
tion registers. Each FU has all input bits to the 
system available at its inputs, but only one data 
element (e.g., one byte) is selected. This data 
is then fed to the available functions. While any 

Figure	1.	The	Functional	Unit	Row	(FUR)	Architecture	is	hierarchically	partitioned	for	every	
category	into	Category	Detection	Modules	(CDM).	For	an	input	vector,	a	CDM	calculates	the	
likeliness	for	a	previously	trained	category	by	summing	up	positive	answers	from	basic	pattern	
matching	elements:	the	Category	Classifiers	(CC).	The	CDM	with	most	activated	CCs	defines	
the	FUR’s	decision.



20   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

number and type of functions could be imagined, 
Figure 3 illustrates only two functions for clar-
ity. In addition, the unit is configured with a 
constant value, c. This value and the input data 
element are used by the function to compute 
the output of the unit. Based on the data ele-
ments of the input, the functions available to 
the FU elements are greater	than and less	than	
or	equal. These functions have by experimen-
tation shown to work well. Altogether, the FU 
transfer function for an input data a, a constant 
c and the function selection bit s are defined 
as:

FU a c s
s if a c

s else
( , , )

:

: .
=

>






 

In this specific FU configuration, the FUR 
classification principle is closely related to the 
classification principle of decision trees, which 

realize decision boundaries with sections of 
straight lines that must be parallel to the axes 
of the input space spanned by all input data 
elements.

THE RECONFIGURABLE 
FUR ARCHITECTURE

During the design time, FUR’s architecture 
can be parameterized along three dimensions, 
namely the number of

• Categories,
• CCs in a category, and
• FUs in a CC.

The authors of the FUR architecture show 
in (Torresen et al., 2008) that the partial recon-
figuration capabilities of FPGAs can be used to 
change the architecture’s footprint dynamically. 
For our experiments, we decided to vary the 

Figure	2.	Category	Classifier	(CC):	n	Functional	Units	(FU)	are	connected	to	an	n-input	AND	
gate.	Multiple	CCs	with	a	subsequent	counter	for	activated	CCs	define	a	CDM.

Figure	3.	Functional	Unit	(FU):	The	data	MUX	selects	which	of	the	input	data	to	feed	to	the	
functions	“>”	and	“≤”.	The	constant	c	is	given	by	the	configuration	lines.	Finally,	a	result	MUX	
selects	which	of	the	function	results	to	output.



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   21

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

number of CCs in a CDM for the following 
reasons: The number of categories is typically 
known a priori and is fixed. When comparing the 
classification principles of the FUR architecture 
and decision trees, the number of FUs in a CC 
can be seen as analog to decision trees’ depth, 
which roughly represents the dimensionality of 
the decision space. This is highly application 
specific. Reducing the amount of FUs per CC 
without increasing the number of CCs in a CDM 
would more likely create systems fundamentally 
unable to reach the high classification rates of a 
proper configured FUR architecture. Additional 
motivation for changing the number of CCs in 
a CDM is that the FUR architecture is fully 
operational with only one CC per CDM. The 
number of CCs in a CDM can be seen as the 
CDM’s resolution. While the FUR architecture 
shows basic discrimination abilities with one 
or few CCs in a CDM, increasing the number 
of CCs typically makes the accuracy rate reach 
higher levels. Reconfiguration of the FUR archi-
tecture is sketched in Figure 4. For a sequence 
I = {	i1,	i2,	…,	ik	} we evolve a FUR architecture 
having i1 FUs per CDM, then switching to i2 
FUs per CDM and re-evolving the architecture 
without flushing the configuration evolved so 
far. In this investigation we want to examine 
the sensitivity of the classification accuracy to 

the changes described above, and how fast the 
evolutionary algorithm is able to reestablish pre-
reconfiguration accuracy rates. Furthermore, 
we would like to investigate if our strategies 
for replacing and duplicating the “best” and 
“worst” CCs can reduce the impact of archi-
tectural reconfigurations on the accuracy rate.

EVOLUTION

To evolve a FUR classifier, we employ a 1 + 4 
Evolutionary Strategy (ES) scheme variation 
introduced by Miller and Thomson (Miller et 
al., 2000). In this particular scheme one parent 
creates four offspring individuals. The parent 
propagates to the new generation only if all off-
spring individuals demonstrate lower accuracy 
rates. Otherwise, the best offspring individual 
becomes the new parent. The scheme is illus-
trated in Algorithm 1 (Box 1). The fitness of a 
candidate solution is evaluated as its classifica-
tion accuracy. New individuals are derived from 
the parent by mutating three genes in every CC. 
In contrast to previous work [8], we do not use 
incremental evolution but evolve the complete 
FUR architecture in a single ES run.

FUR’s functional granularity level covers 
basic arithmetic functions operating on binary 
encoded numbers. Therefore, all elements of 

Figure	4.	Reconfigurable	FUR	Architecture:	The	FUR	architecture	is	parameterized	by	the	number	
of	categories,	category	classifiers	(CC)	and	functional	units	(FU)	per	CC.	While	the	number	of	
categories	is	fixed	and	the	number	of	FUs	is	largely	application	dependent,	we	scale	the	FUR	
architecture	by	changing	the	number	of	category	classifiers	in	a	category	detection	module.



22   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

an input vector are converted to 8-bit binary 
encoded numbers. With n elements in a single 
input vector, the configuration bitstring for a 
single FU amounts for n n

u
= 


 + +log ( )

2
8 1  

bits. Having c categories, nf FUs in a CC as 
well as nc CCs in a CDM, the total genotype is 
c × nc × nf × nu bits long.

EXPERIMENTS AND RESULTS

This section presents two kinds of results. First, 
we analyze the general behavior of FUR for the 
Pima and Thyroid data sets by successively test-
ing a range of architecture parameter combina-
tions. Combined with an overfitting analysis, we 
are then able to picture FUR’s general behavior 
for these benchmarks. In the next section, we 

Table	1.	Pima	benchmark:	Error	rates	and	standard	deviation	(SD)	in	%.	We	use	the	data	mining	
toolbox	RapidMiner	(Mierswa	et	al.,	2006)	to	evaluate	the	algorithms	marked	by	“*”.	Prelimi-
nary,	we	identify	good	performing	algorithm	parameters	by	a	grid	search.	Remaining	results	
are	taken	from	(Winkler	et	al.,	2009).	

Box	1.	



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   23

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

select a good-performing configuration to 
investigate FUR’s performance, when being 
reconfigured during run-time.

BENCHMARKS

For our investigations we rely on the UCI 
machine learning repository (Asuncion et al., 
2007) and specifically, on the Pima and the 
Thyroid benchmarks. Pima, or the Pima	Indians	
Diabetes data set is collected by the Johns 
Hopkins University in Baltimore, MD, USA 
and consists of 768 samples with eight feature 
values each, divided into a class of 500 samples 
representing negative tested individuals and a 
class of 268 samples representing positive 
tested individuals. The data of the Thyroid 
benchmark represents samples of regular indi-
viduals and individuals suffering hypo- and 
hyperthyroidism. Thus, the samples are di-
vided into 6.666, 166 and 368 samples repre-
senting regular, subnormal and hyper-function 
individuals. A sample consists of 22 feature 
values. Assuming a FUR classifier with 4 FUs 
in a CC and 10 CCs in a CDM, the genotype 
l e n g t h s  a m o u n t  f o r 
2 10 4 8 8 1 960

2
⋅ ⋅ ⋅ 


 + + =( log ( ) ) bits for the 

Pima and 3 10 4 22 8 1 1680
2

⋅ ⋅ ⋅ 

 + + =( log ( ) )  

bits for the Thyroid data sets, respectively.
Both benchmarks do not rely on high 

classification speeds and run-time adaptation 
of EHW hardware classifiers, however, these 
benchmarks have been selected because of their 
pronounced effects in the run-time reconfigura-
tion experiments presented in the next section 
revealing FUR’s characteristics.

ACCURACY AND 
OVERFITTING ANALYSIS

We implement parameter analysis of the FUR 
architecture by a grid search over the number of 
CCs and number of FUs. For a single (i,j)-tuple, 
where i denotes the number of CCs and j the 
number of FUs, we evolve a FUR classifier by 
running 1+4 evolutionary strategies for 100.000 

generations. In contrast to our original work on 
the FUR architecture in (Glette et al., 2006), we 
do not use incremental evolution but evolve the 
complete FUR architecture in a single ES run. 
Thereby we use a mutation operator modifying 
three genes in every CC. As we employ a 12-
fold cross validation scheme, the evolution is 
repeated 12 times while alternating the training 
and test data sets. We select n=12 in our experi-
ments as an acceptable compromise between 
computational complexity and precision of 
classifier evaluation. During the evolution, we 
log for every increase in the training accuracy 
FUR’s performance on the test data set. The 
test accuracies are not used while the evolution 
runs. To detect the tipping point where FUR 
starts to overfit, i.e. where FUR learns to match 
each training vector instead of learning the 
general model, we average the test accuracies 
logged during the evolutionary runs and select 
the termination training accuracy according 
to the highest average test accuracy. With an 
a	priori known termination training accuracy 
we can evolve a new classifier until it reaches 
the termination training accuracy and expect 
it having on average a good classification 
performance for unknown data. An example 
is shown in Figure 5 for the Pima benchmark 
and the (30,8) configuration. The test average 
accuracy, drawn along the y-axis, rises in relation 
to the average training accuracy, drawn along 
the x-axis, until the training accuracy reaches 
0.76. After this point the test accuracy degrades 
gradually. Consequently, we note 0.76 and 0.76 
as the best combination of test and termination 
training accuracies.

To examine the general FUR performance 
for the Pima and Thyroid data sets, we config-
ure and evaluate the FUR architecture for all 
combinations of 2,4,6,…,20 FUs per CC and 
for 2, 4, 6, 8, 10, 14, 16, 20, 25, 30, 35, 40, 50, 
60, 70, 80 CCs. Figure 6 displays the results. 
In the horizontal level the diagrams span the 
parameter area of CCs and FUs. The accuracy 
for each parameter tuple is drawn along the 
z-axis with a projection of equipotential ac-
curacy lines on the horizontal level. While the 
test accuracies for the Pima benchmark, pre-



24   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure	5.	Overfitting	analysis	for	the	Pima	data	set	and	FUR	architecture	having	8	FUs	per	
CC	and	30	CCs	per	CDM.	In	this	example,	the	termination	training	accuracy	lies	around	0.76,	
before	the	test	accuracy	begins	to	decline,	indicating	overfitting.

Figure	6.	Pima	and	Thyroid	overfitting	analysis:	Best	generalization	and	the	according	termina-
tion	training	accuracies	for	the	Pima	(a)	(b)	and	the	Thyroid	(c)	(d)	benchmarks,	respectively



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   25

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

sented in Figure 6(a) and 6(b) are largely inde-
pendent from the number of FUs and CCs with 
small islands of improved behavior around the 
(8,8-10) configurations, the Thyroid benchmark 
presented in Figure 6(c) has a performance loss 
in regions with a large number of FUs and few 
CCs.

Tables 1 and 2 compare FUR’s results for 
the Pima and the Thyroid benchmarks to re-
lated work. We use additionally the data mining 
tool RapidMiner (Mierswa et al., 2006) to cre-
ate numbers for standard and state-of-the-art 
algorithms and their modern implementations. 
The following algorithms are evaluated with 
12-fold cross validation: Decision	Trees (DTs), 
k-th Nearest	 Neighbor (kNN), Multi-layer	
Perceptrons (MLPs), Linear	 Discriminant	
Analysis (LDA), Support	 Vector	 Machines 
(SVMs) and Classification	 and	 Regression	
Trees (CART). For the Pima benchmark the 
FUR architecture demonstrated higher recogni-
tion rates than any other method. It forms to-
gether with SVMs, LDA, Shared Kernel 
Models and kNNs a group of best performing 
algorithms within a 3% margin. The accuracy 
range of the Thyroid-benchmark is much 
smaller because of the disproportional catego-
ry data sizes and a single dominant category 
amounting for 92.5% of the data. In this bench-
mark the FUR architecture lays 0.66% behind 
the best algorithm.

RECONFIGURABLE SCHEMES 
FOR FUNCTIONAL UNIT ROW 
ARCHITECTURE

In this section we investigate FUR’s run-time 
adaptation capabilities to gradual and radical 
changes in resource sizes. To this end, we 
configure FUR with 4 FUs per CC and change 
the number of CCs every 50.000 generations. 
We split the data set into disjoint training and 
test sets similar to the previously used 12-fold 
cross validation scheme and start the training 
with 10 CCs. Then, we gradually change the 
number of CCs to 9, 8…1 and back to 2, 3…10 
executing altogether 106  generations. In the 
second experiment we investigate larger 

changes, switching from 10 to 4 to 2 to 5 and 
back to 10 CCs. For sound results, we repeat 
the experiments 96 and 32 times for first and 
second experiments, respectively.

Our basic implementation of FUR’s recon-
figuration reduces and increases the amount of 
CCs in a CDM by removing randomly selected 
and adding randomly initialized CCs to a CDM. 
In order to improve adaptation times during 
architectural reconfigurations, we define two 
additional schemes to change the amount of 
CCs in a CDM by removing and duplicating 
“worst“ and “best“ CCs, respectively. To quan-
tify the quality of a CC, we define for every 
CC a penalty counter that is increased by the 
number of wrongly activated CCs in the same 
CDM for some input vector. A specific CC’s 
counter is only increased when the CC itself 
decides incorrectly. The rationale behind this 
is that FUR’s global decision is taken at the 
CDM level. Thus, a CDM with, for instance, 4 
wrongly decided CCs is more likely to cause an 
incorrect global decision than a CDM with only 
2 wrongly decided CCs. In the first case, every 
CC in the particular CDM with an incorrect 
decision adds a 4 to its penalty counter while 
in the second case, a 2 is added. Consequently, 
a CC is considered “bad“ when having a higher 
penalty counter and “good“ otherwise.

GRAUDALLY CHANGING 
FUR’S SIZE

Figure 7 compares accuracy drop magnitudes 
during architectural reconfiguration using 
“random”, “best” and “worst” schemes. The 
diagrams plot averaged numbers over 96 experi-
ments for the Pima data set. The top diagrams 
show exemplarily the training behavior when 
removing a randomly CC and adding a randomly 
initialized CC to FUR architecture. Diagrams 
in the next three lines illustrate test accuracy 
behavior for the “random”, “best” and “worst” 
reconfiguration schemes. An obvious conclu-
sion is that removing “worst” CCs result in 
smallest accuracy drops. Analog, duplicating 
“best” CCs helps minimizing accuracy drops 
when adding resources to the FUR architecture. 



26   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Generally, we observe for the Pima benchmark 
the following:

• The training and test accuracies drop for 
any reconfiguration scheme for almost any 
positive and negative changes in the number 
of CCs and recover subsequently. The drops 
are slightly larger for configurations with 
few CCs. The average accuracy drops, as 
summarized in Table 3, are minimized 
when removing “worst“ and duplicating 
“best“ CCs during FUR reconfiguration. 
Randomly removing and initializing CCs 
comes second while removing “best“ and 
duplicating “worst“ CCs result in largest 
accuracy losses. Altogether, the differences 
between the reconfiguration schemes are 
rather small, amounting roughly for up to 

3.5% and 1% for removing and adding 
CCs, respectively.

• We observed maximal training accuracies 
to be somewhat lower when using fewer 
CCs, while the test accuracies tend to stay 
at the same levels. Only for configurations 
with one and sometimes two CCs per 
CDM, the accuracy rates did not reach the 
pre-switch levels. The gaps, however, are 
small, roughly amounting for up to 5%.

• Test accuracies are recovered quickly for 
most schemes and FUR configurations. 
However, the strategy of removing “worst“ 
and “random“ CCs maintains a fast recov-
ery speed also when going below five CCs 
per CDM, whereas removing “best“ leads 
to significantly longer times before the 
asymptotic test accuracies are recovered.

Table	2.	Thyroid	benchmark:	Error	rates	and	standard	deviation	(SD)	in	%.	We	use	the	data	
mining	toolbox	RapidMiner	(Mierswa	et	al.,	2006)	to	evaluate	the	algorithms	marked	by	“*”.	
Preliminary,	we	identify	good	performing	algorithm	parameters	by	a	grid	search.	Remaining	
results	are	taken	from	(Winkler	et	al.,	2009).	



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   27

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• The test accuracies are mostly located 
between 0.72 and 0.76, independent of 
the changes in the number of CCs. Thus, 
and this is the main observation, the FUR 
architecture shows to a large extent a robust 
test accuracy behavior under reconfigura-
tion for the Pima benchmark.

For the Thyroid benchmark we can make 
the following conclusions:

• The test accuracies drop significantly when 
changing the number of CCs. The drops are 
roughly three to five times larger reaching 

up to 40%. Reducing FUR size, the accu-
racy drops became smallest when remov-
ing “worst“ CCs during reconfigurations, 
followed by schemes selecting random 
and “best“ CCs.

• When increasing the number of CCs, the 
smallest accuracy drops are obtained from 
the random CC duplication scheme, fol-
lowed by schemes duplicating “best“ and 
“worst“ CCs. The difference between the 
random and “best“ duplication scheme 
is, however, small accounting for 0.69%.

• As anticipated by previous results shown 
in Figure 6(c), the test accuracy drops for 

Figure	7.	Gradually	reconfiguring	the	FUR	architecture	using	the	Pima	data	set.	The	left	column	
presents	FUR’s	averaged	classification	behavior	when	 reducing	and	 the	 right	 column	when	
increasing	the	number	of	CCs.	The	diagrams	on	the	bottom	show	the	number	of	CCs	in	 the	
system.	Both	diagrams	on	the	top	show	exemplarily	the	training	behavior	for	the	randomized	
reconfiguration	scheme.	Diagrams	in	the	second,	third	and	fourth	lines	show	test	behavior	for	
the	randomized,	“best”,	and	“worst”	FUR	reconfiguration	schemes,	respectively.



28   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

FUR architecture configurations with very 
few CCs. For instance, a FUR configuration 
with only one CC demonstrates an error 
rate of 7%. This is considerably low as 
the baseline recognition rate lies at 92.5% 
which corresponds to an error rate of 7.5% 
due to a single category amounting for 
6.666 out of 7200 vectors.

• The main result is that given enough 
resources reconfigurations are quickly 
compensated. The limitation in the case 
of the Thyroid benchmark is a minimum 
amount of CCs required to achieve high 
recognition rates.

RADICALLY CHANGING 
FUR’S SIZE

Challenges of an autonomous and adaptable 
embedded system are manifold. It may for in-
stance have to react to periodic events where the 
solution may benefit from additional resources. 
With typically restricted energy the embedded 
system faces sometimes also the challenge 
of balancing resources between multiple ap-
plications. We anticipate resource assignment 
changes in such situations being of a more 
radical nature. To investigate FUR’s behavior in 
such situations, we define a second reconfigu-
ration sequence switching form 10 to 4 to 2 to 
5 and back to 10 CCs. In each reconfiguration 

step we nearly halve or double FUR’s size. 
The results are summarized in Table 4. Almost 
all observations and conclusions made in the 
previous experiment hold also for the current 
experiment. The important differences are:

• The accuracy drops are now mostly two to 
three times as large compared to gradual 
FUR size changes. Despite the dramatic 
numbers, accuracies recover similarly fast.

• Analog to the previous experiment, remov-
ing “worst“ CCs and duplicating “best“ 
CCs reduces the accuracy drops for Pima 
and Thyroid benchmarks. There is, how-
ever, one exception. Lowest test accuracy 
drops when switching from 2 to 5 CCs in 
the Thyroid benchmark are achieved by 
duplicating the “worst“ CC three times.

In summary, for all experiments in this 
section we can conclude that the FUR archi-
tecture is exceptionally fast in recovering from 
architectural reconfigurations, given enough 
resources are provided for learning. Still, the 
proposed schemes of removing “worst“ and 
adding “best“ CCs help to reduce the impact 
on the classification rate after reconfiguration 
of the architecture dimensions. This is both in 
terms of lower magnitudes on the instantaneous 
accuracy drops, as well as a shortened recovery 
time before pre-reconfiguration test accuracies 
are regained.

Table	3.	Averaged	accuracy	drops	in	%	over	96	algorithm	runs.	1+4	ES	is	executed	for	50.000	
generations	between	the	reconfigurations.	During	a	reconfiguration	randomly	selected,	“best“	
or	“worst“	CCs	are	removed	or	duplicated.	Bold	numbers	indicate	best-performing	replace-
ment	strategy.	



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   29

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

CONCLUSION

In this work we propose to leverage the FUR 
classifier architecture for creating evolvable 
hardware systems that can cope with fluctuat-
ing resources. We describe FUR’s architecture 
and experimentally evaluate it on two medical 
benchmarks. In the first experiment we analyze 
FUR’s overfitting behavior and demonstrate that 
FUR performs similar or better than conven-
tional state-of-the-art classification algorithms. 
Then we investigate FUR performance during 
architectural reconfigurations. This is done by 
reducing or increasing the available resources 
and measuring the accuracy behavior during the 
transitions. To reduce the impact of reconfigu-
ration on the accuracy rate, we also introduce 
two reconfiguration schemes for adding and 
removing Functional Unit rows to an existing 
FUR architecture. We demonstrate that the 
generalization performance of FUR is very 
robust to changes in the available resources 
as long as a certain amount of CCs is present 
in the system. While for the Pima benchmark 
the differences between the reconfiguration 
schemes and also the absolute accuracy drops 
are small, for the Thyroid benchmark we can 
substantially improve the behavior of FUR 
during a reconfiguration.

In future we will continue our work on 
run-time reconfiguration support for an FPGA-
based hardware prototype of the system, and 

will benchmark the performance with regard to 
training and reconfiguration time. In addition, 
we will extend the benchmarking scenarios 
for resource fluctuations to reflect real-world 
situations in embedded systems.

REFERENCES

Asuncion, A., & Newman, D. (2007). UCI	machine	
learning	repository.	Irvine,	CA:	University	of	Cali-
fornia. Irvine: School of Information and Computer 
Sciences.

de Garis, H. (1993). Evolvable hardware: Genetic 
programming of a Darwin Machine. In Proceedings	
of	the	International	Conference	on	Artificial	Neural	
Nets	and	Genetic	Algorithms (pp. 441-449).

Glette, K., Gruber, T., Kaufmann, P., Torresen, J., 
Sick, B., & Platzner, M. (2008). Comparing evolvable 
hardware to conventional classifiers for electromyo-
graphic prosthetic hand control. In Proceedings	of	
the	Conference	on	Adaptive	Hardware	and	Systems 
(pp. 32-39).

Glette, K., Torresen, J., & Yasunaga, M. (2007a). 
An online EHW pattern recognition system applied 
to face image recognition. In M. Giacobini (Ed.), 
Proceedings	 of	 the	 Workshop	 on	 Applications	 of	
Evolutionary	Computing (LNCS 4448, pp. 271-280).

Glette, K., Torresen, J., & Yasunaga, M. (2007b). 
Online evolution for a high-speed image recognition 
system implemented on a Virtex-II Pro FPGA. In 
Proceedings	of	the	Conference	on	Adaptive	Hardware	
and	Systems (pp. 463-470).

Table	4.	Averaged	accuracy	drops	in	%	over	32	algorithm	runs.	1+4	ES	is	executed	for	50.000	
generations	between	the	reconfigurations.	During	a	reconfiguration	randomly	selected,	“best“	
or	“worst“	CCs	are	removed	or	duplicated.	Bold	numbers	indicate	best-performing	replace-
ment	strategy.



30   International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Glette, K., Torresen, J., Yasunaga, M., & Yamaguchi, 
Y. (2006). On-chip evolution using a soft processor 
core applied to image recognition. In Proceedings	of	
the	Conference	on	Adaptive	Hardware	and	Systems 
(pp. 373-380).

Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, 
H., & Furuya, T. (1993). Evolving hardware with ge-
netic learning: A first step towards building a Darwin 
Machine. In Cliff, D., Husbands, P., Meyer, J.-A., & 
Wilson, S. W. (Eds.), From	animals	to	animats (pp. 
417–424). Cambridge, MA: MIT Press.

Kaufmann, P., Plessl, C., & Platzner, M. (2009). 
EvoCaches: Application-specific adaptation of 
cache mappings. In Proceedings	of	the	Conference	
on	Adaptive	Hardware	and	Systems (pp. 11-18).

Koza, J., Keane, M., & Streeter, M. (2004). Routine 
high-return human-competitive evolvable hardware. 
In Proceedings	 of	 the	NASA/DoD	Conference	 on	
Evolvable	Hardware (pp. 3-17).

Lohn, J., Hornby, G., & Linden, D. (2004). Evolu-
tionary antenna design for a NASA spacecraft. In 
O’Reilly, U. M., Yu, T., Riolo, R. L., & Worzel, B. 
(Eds.), Genetic	programming	theory	and	practice	II 
(pp. 301–315). New York, NY: Springer.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, 
M., & Euler, T. (2006). YALE: Rapid prototyping 
for complex data mining tasks. In Proceedings	of	the	
International	Conference	on	Knowledge	Discovery	
and	Data	Mining (pp. 935-940).

Miller, J., & Thomson, P. (2000). Cartesian genetic 
programming. In Proceedings	of	the	European	Con-
ference	on	Genetic	Programming (pp. 121-132).

Sekaina, L., & Ruzicka, R. (2000). Design of the 
special fast reconfigurable chip using common 
FPGA. In Proceedings	of	the	Conference	on	Design	
and	Diagnostics	of	Electronic	Circuits	and	Systems 
(pp. 161-168).

Sekanina, L. (2004). Evolutionary design space 
exploration for median circuits. In G. R. Raidl, S. 
Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. 
Jin, et al. (Eds.), Proceedings	of	the	Workshop	on	
Applications	 of	 Evolutionary	 Computing (LNCS 
3005, pp. 240-249).

Tanaka, M., Sakanashi, H., Salami, M., Iwata, M., 
Kurita, T., & Higuchi, T. (1998). Data compression 
for digital color electrophotographic printer with 
evolvable hardware. In M. Sipper, D. Mange, & A. 
Pérez-Uribe (Eds.), Proceedings	of	the	International	
Conference	on	Evolvable	Systems (LNCS 1478, pp. 
106-114).

Torresen, J., Senland, G., & Glette, K. (2008). Par-
tial reconfiguration applied in an on-line evolvable 
pattern recognition system. In Proceedings	of	 the	
Conference	on	Nordic	Microelectronics (pp. 61-64).

Winkler, S. M., Affenzeller, M., & Wagner, S. (2009). 
Using enhanced genetic programming techniques for 
evolving classifiers in the context of medical diagno-
sis. Genetic	Programming	and	Evolvable	Machines, 
10(2), 111–140. doi:10.1007/s10710-008-9076-8

Paul	Kaufmann	received	diplomas	in	computer	science	and	mathematics	from	the	University	
of	Paderborn,	Germany,	in	2005.	Currently,	he	is	working	towards	a	PhD	degree	in	computer	
science	at	the	Faculty	for	Electrical	Engineering,	Computer	Science	and	Mathematics	of	the	
University	of	Paderborn.	There,	he	 is	 conducting	 research	and	development	 in	 the	areas	of	
automatic	digital	circuit	design,	evolutionary	multi-objective	optimization	and	optimization	of	
adaptable	systems	with	applications	in	processor	design,	adaptable	controller	evolution	and	
recognition	of	electromyographic	signals.



International Journal of Adaptive, Resilient and Autonomic Systems, 3(4), 17-31, October-December 2012   31

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Kyrre	Glette	received	his	MSc	in	Computer	Engineering	(2004)	from	the	Norwegian	University	
of	Science	and	Technology,	Norway,	and	his	PhD	in	Evolvable	Hardware	(2008)	from	the	Uni-
versity	of	Oslo,	Norway,	with	stays	at	the	French	Space	Agency	(CNES)	in	Toulouse,	France,	
and	the	University	of	Tsukuba	in	Japan.	He	is	currently	employed	at	the	University	of	Oslo	as	a	
Postdoctoral	Research	Fellow.	His	research	interests	are	artificial	intelligence	and	biologically-
inspired	systems,	with	a	special	focus	on	embedded	and	runtime	evolvable	hardware	systems.	
A	second	research	interest	is	evolutionary	robotics	with	an	emphasis	on	design	and	prototyping	
of	biologically	inspired	robots.

Marco	Platzner	is	Professor	for	Computer	Engineering	at	the	University	of	Paderborn.	Previ-
ously,	he	held	research	positions	at	the	Computer	Engineering	and	Networks	Lab	at	ETH	Zurich,	
Switzerland,	the	Computer	Systems	Lab	at	Stanford	University,	USA,	the	GMD	-	Research	Center	
for	Information	Technology	(now	Fraunhofer	IAIS)	in	Sankt	Augustin,	Germany,	and	the	Graz	
University	of	Technology,	Austria.	Marco	Platzner	holds	diploma	and	PhD	degrees	in	Telemat-
ics	(Graz	University	of	Technology,	1991	and	1996),	and	a	“Habilitation”	degree	for	the	area	
hardware-software	codesign	(ETH	Zurich,	2002).	His	research	interests	include	reconfigurable	
computing,	hardware-software	codesign,	and	parallel	architectures.	He	is	a	senior	member	of	
the	IEEE,	a	member	of	the	ACM,	serves	on	the	program	committees	of	several	international	
conferences	(e.g.,	FPL,	FPT,	RAW,	ERSA,	DATE),	and	is	an	associate	editor	of	the	International 
Journal of Reconfigurable Computing,	the	EURASIP Journal on Embedded Systems,	and	the	
Journal of Electrical and Computer Engineering.	Marco	Platzner	is	member	of	the	board	of	the	
Paderborn	Center	 for	Parallel	Computing	and	served	on	 the	board	of	 the	Advanced	System	
Engineering	Center	of	the	University	of	Paderborn.	He	is	faculty	member	of	the	International	
Graduate	School	Dynamic	Intelligent	Systems	of	the	University	of	Paderborn,	and	of	the	Advanced	
Learning	and	Research	Institute	(ALaRI)	at	Universita'	della	Svizzera	Italiana	(USI),	in	Lugano.

Jim	Torresen	received	his	MSc	and	PhD	degrees	in	computer	architecture	and	design	from	the	
Norwegian	University	of	Science	and	Technology,	University	of	Trondheim	in	1991	and	1996,	
respectively.	He	has	been	employed	as	a	senior	hardware	designer	at	NERA	Telecommunications	
(1996-1998)	and	at	Navia	Aviation	(1998-1999).	Since	1999,	he	has	been	a	professor	at	the	De-
partment	of	Informatics	at	the	University	of	Oslo	(associate	professor	1999-2005).	Jim	Torresen	
has	been	a	visiting	researcher	at	Kyoto	University,	Japan	for	one	year	(1993-1994)	and	four	
months	at	Electrotechnical	laboratory,	Tsukuba,	Japan	(1997	and	2000).	His	research	interests	
at	 the	moment	 include	 reconfigurable	 hardware,	machine	 learning,	 bio-inspired	 computing,	
robotics	and	applying	this	to	complex	real-world	applications.	Several	novel	methods	have	been	
proposed.	He	has	published	a	number	of	scientific	papers	in	international	journals,	books	and	
conference	proceedings.	10	tutorials	and	several	invited	talks	have	been	given	at	international	
conferences.	He	is	in	the	program	committee	of	more	than	ten	different	international	conferences	
as	well	as	a	regular	reviewer	of	a	number	of	international	journals	(mainly	published	by	IEEE	
and	IET).	He	has	also	acted	as	an	evaluator	for	proposals	in	EU	FP7.	A	list	and	collection	of	
publications	can	be	found	at	the	following	URL:	http://www.ifi.uio.no/~jimtoer/papers.html


