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Abstract—Modern technical systems are increasingly composed
of heterogeneous components that are situated in variable en-
vironments. In nature, organisms can temporarily adapt their
behaviour to novel stimuli with behavioural plasticity; this can
be achieved with neuromodulation, a biological process that
modulates synaptic activity in the brain. We explore how neuro-
modulation affects goal-achievement in evolved neural controllers
for artificial agents in variable environments. As variability can
arise from the actions of others, we show that the benefit of
plasticity can increase with variability, as agents can temporarily
change their phenotype within their lifetime. Further, we show
that cooperation can emerge between plastic agents that cannot
perceive one another in highly variable environments.

I. INTRODUCTION

Both humans and animals alike are often situated in dy-
namic environments prone to change. One way that organic
creatures have adapted to survive in variable environments
is with behavioural plasticity; temporarily altering behaviour
depending on environmental stimuli helps to overcome the
unknown [1], [2]. Plasticity can be achieved with neuromod-
ulation, a biological process found within the brain whereby
synaptic activity is regulated in response to changing stim-
uli [3], resulting in short- or long-term changes in behaviour.

Modern technical systems are growing in both size and com-
plexity, and interactions between components are evermore
prevalent [4]; these systems and their components are likely
to encounter unknown situations, which must be dealt with
appropriately for the safety and functionality of the systems
as a whole, and the environments in which they operate [5].

In previous work [6], we showed that plasticity helps
artificial agents with neural controllers to solve different
complexities of task in single- or multi-agent environments. In
this work however, we explore how plasticity can help agents
to achieve goals when others may or may not exist. This differs
to our previous work [6] as we look here at how agents evolve
when the environment differs between and during generations
(henceforth termed ‘environmental variability’), rather than
how agents solve different tasks. The study is conducted using
the River Crossing Dilemma testbed [7], designed to study
how agent evolve to achieve goals in arbitrarily complex tasks.

Komers [2] states that the degree of plasticity increases with
variability in nature. The focus of this paper is thus to explore
whether a relationship between variability and plasticity is
also observed in artificial agents. Specifically, we observe how
neuromodulation may help agents with no capacity to perceive
others to evolve in increasingly variable environments.

II. BACKGROUND AND RELATED WORK

A. Behavioural Plasticity in Nature

Behavioural plasticity, or changing behaviour in response
to novel stimuli, is important for survival in variable envi-
ronments [1]. Plastic behaviour is shown to lower risk of
extinction in birds, than those that cannot respond to change
as effectively [8]. If an organism experiences environmental
changes, ‘activational plasticity’ [1] can facilitate behavioural
changes in a short-term, immediate, and reversible way [2],
rather than long-term learning. In nature, this can be achieved
with neuromodulation – a biological process found within the
brain; strengthening or weakening synapses between neurons
results in synaptic plasticity being regulated based on chemical
modulatory signals, the pre- and post-synaptic activities, and
the stimuli [3], [9]. This causes long-term learning if synaptic
strengths are changed over time, or immediate behavioural
changes if synaptic activity is changed temporarily.

B. Neuromodulation and Variability in Artificial Systems

Neuromodulation has been used in computer science to
facilitate learning and behavioural changes in neural networks
situated in variable environments [10]–[12]. As highlighted
in our previous work [6], plasticity via neuromodulation
occurring within a single neural network has received little
attention. Often, neuromodulation is used to regulate long-term
learning [10], rather than behaviour in the short-term. These
approaches tend to employ a separate network or group of
neurons to regulate learning, or network activity [11], [12],
rather than within a single neural network – like chemical
signals modulating synaptic activity in the brain.

Agents that learn or evolve in variable environments have
been explored in the domains of reinforcement learning [13],



Fig. 1. The River Crossing Dilemma testbed [6]. Agents are allocated two
Resources (black/grey), and can interact with all objects except other agents’
Resources. Bridges can be built with two Stones to cross the river safely.

social learning [14] and robotics [15], to name a few. In nature,
if full information about the environment, the actions of others,
or even the presence of others is not known, evolution can be
negatively affected [2]. This however is becoming increasingly
commonplace in technical systems, as system components may
interact unknowingly [4]. In reality, a wealth of knowledge
about others is an expensive and often unrealistic luxury.
In this study, we explore how agents with no knowledge
of others evolve to achieve goals in variable environments.
Environmental variability can arise from the actions of others,
thus we explore how plasticity via neuromodulation may help
agents to achieve goals when the presence of others can vary.

III. TESTBED AND AGENT DESIGN

This study is designed to explore how neuromodulation and
variability affect agent evolution and goal-achievement.

A. The River Crossing Dilemma Testbed

The River Crossing Dilemma (RCD) testbed, introduced by
Barnes et al. [7] is a 19× 19 grid-world used to study social
phenomena when agents have no a priori knowledge of others
(Figure 1). This is one instance in a family of River Crossing
testbeds, first introduced by Robinson et al. [16]. The RCD has
a river of Water in the centre, with four Stones on either side;
all other cells are Grass. An agent’s goal is to collect its two
allocated Resources from either side of the river, rewarding it
with a highly positive fitness; stepping into the river gives a
highly negative fitness. To achieve this goal, agents must learn
how to cross the river safely by building a bridge with Stones.

B. Gamification of the RCD

The RCD is gamified with an increasing, personal cost for
Stones placed in the river (e.g. first Stone costs 0.1, second
costs 0.2, etc.). Bridges are built with two Stones as the river
is two cells deep. Agents may cooperate to share the cost,
exploit the other to avoid a cost, or build a bridge alone to
endure the full cost. This cost means less incentive to discover
bridge-building behaviour. An agent i’s fitness pi is calculated
based on its own behaviour with Equation 1:

pi =
ri
N
−

[
C × si

2

(
1 + si

) ]
− f (1)
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Fig. 2. Modulatory neurons modulate outgoing activity when incoming signals
to the neuron are negative; when the incoming signal to x5 is negative, signals
of 0 are sent along each of its own outgoing connections (in this case to y3 and
y4) which effectively ‘turns off’ outgoing signals. When the incoming signal
to a modulatory neuron is positive, such as in x2, activity propagates like
in a standard non-modulatory neuron. Agents can thus express behavioural
plasticity, as behaviour can temporarily change depending on the network
inputs/stimuli – and importantly, without permanently modifying the network.

where ri is how many Resources collected by agent i, si is
how many Stones agent i has put in the river, and f = 1 if
agent i drowns – or 0 if not. N = 2 and C = 0.1 are constants
for how many Resources are allocated to each agent, and the
cost of placing Stones in Water respectively. Fitness is 1.0 if
exploiting another agent (no cost incurred), 0.7 if achieved
independently, and 0.9 if cooperating to share the cost.

C. Agent Design

Agents make decisions using a two-tiered architecture intro-
duced by Barnes et al. [6], and inspired by the original River
Crossing task [16]. The first tier, the deliberative network,
generates sub-goals based on the current state of the agent; this
has three layers of eight, six and four hidden neurons, six input
neurons, and three output neurons. Input neurons represent the
agent’s state: on Grass, Resource, Water, or Stone, carrying a
Stone, and whether a Bridge is partially built (1 if true, 0 if
false). Outputs are the sub-goals: what the agent is attracted to,
will avoid, or will be neutral about (1, −1 and 0 respectively).

The second tier, the reactive network, uses the sub-goals
from the previous tier to generate activity landscapes, enabling
them to hill-climb towards these sub-goals. This network does
not evolve, rather the activity of each neuron updates at each
timestep. Details of how this works can be found in [6].

D. Operationalising Activity-Gating Neuromodulation

Neuromodulation occurs by gating activity in the delibera-
tive network itself [6]; modulatory agents can thus temporarily
change behaviour. Each neuron outputs the sum of each input
signal multiplied by connection weight, passed through a tanh
activation function; this is then passed along the outgoing
connections. In modulatory neurons however, if the incoming
signal is negative, a signal of 0 is instead output along each
of its own outgoing connections to the next layer. (Figure 2).
One genotype (deliberative network) can thus represent many
phenotypes depending on the network inputs (environmental
stimuli), without changing the network. Neurons in the deliber-
ative network may evolve to be non-modulatory or modulatory.

E. Evolutionary Algorithm

Experiments are conducted using the RCD testbed with the
following setup, inspired by Barnes et al. [6]. A Steady State



Genetic Algorithm [17] is used to evolve a population of
25 randomly initialised agents in each experiment. At each
generation, a tournament of three randomly selected agents
are evaluated for 500 timesteps. The worst-performer in the
tournament is replaced with the offspring of the best two. This
offspring has a probability of Pone = 0.95 to inherit each
chromosome (layer of weights in the deliberative network)
from a random parent, otherwise single-point crossover is
used; each weight w is then mutated by a random value from
a Gaussian distribution with µ = w and σ = 0.01.

Modulatory agents are initialised with only non-modulatory
neurons in the deliberative network, but evolve the types of
hidden neurons (non-/modulatory). At each generation, the
offspring inherits the deliberative network configuration from
a random parent; further, there is a probability of Pmut = 0.15
that one randomly chosen neuron in one of the three hidden
layers of the deliberative network will be mutated from non-
modulatory to modulatory, or vice versa. Non-modulatory
agents do not evolve the neurons in their deliberative network.

IV. EXPERIMENTAL DESIGN

Each experiment is repeated 100 times; randomly initialised
agents are evolved with or without neuromodulation for
500,000 generations in the RCD testbed. Agents do not ‘learn’
in their lifetime, only in the breeding process; an agent’s
genetic code (deliberative network weights and configuration)
remains unchanged in each generation. Agents are evaluated
on one, two, or four environments at every generation to
observe how they evolve in variable environments. The ex-
periments below are repeated twice, where agents evolve with
either coevolved, or random partners at each generation. The
actions of random agents are unpredictable and thus increase
variability compared to a coevolved partner.

The first experiments explore how plasticity affects agent
evolution in a shared environment with one other agent.

The second experiments explore how agents may retain
goal-achieving behaviour when the environment can be shared
or solitary; here, agents are evaluated on two consecutive envi-
ronments at every generation (firstly alone, then with another).
By evolving agents in both a single-agent and a multi-agent
environment at each generation, they have the opportunity to
evolve appropriate behaviours that are successful whenever
they are alone or with a partner; this could lead to more
generalised behaviour being observed.

The final experiments evaluate agents on four consecutive
environments at each generation, exposing them to more vari-
ability. Agents exist alone in the first and third environments,
and share the second and fourth environments with another
agent. The partners in shared environments are different to
one another, to increase variability further. Evaluating agents in
two environments where they exist alone may seem redundant,
however agent movement is stochastic so they would experi-
ence more variability in four compared to three environments.

An agent’s fitness at each generation is the sum of fitnesses
achieved in each individual environment it is evaluated on
(Equation 1); the maximum fitness for agents evolving in one,

two and four environments is thus 1.0, 1.7 and 3.4, since
agents can only receive a maximum fitness of 0.7 when alone.

V. RESULTS

A. Evolving with a Coevolved Partner

Here, the impact that sharing an environment with another
agent can have on evolution is explored. As these agents coe-
volve in tandem, they face the least variability during evolution
as partners become predictable. Figure 3a shows the mean
best-in-population fitness of agents evolving with and without
neuromodulation. Modulatory agents have a higher mean best-
in-population fitness than non-modulatory agents throughout
evolution. Further, 68% of non-modulatory agents receive a
goal-achieving fitness at the end of evolution compared to 94%
of modulatory agents, when they coevolve in one environment
(Table I). This indicates that more agents are able to achieve
their goal with neuromodulation than without.

B. Evolving with Random Partners

These experiments explore how evolving with random part-
ners can affect agent evolution. Each random partner can
potentially affect the environment in an unpredictable way,
resulting in more variable conditions. The mean best-in-
population fitness of agents, with and without neuromodula-
tion, is presented in Figure 3b. Only 60% of non-modulatory
agents achieve their goal after evolving with random partners,
compared to 86% of modulatory agents (Table I). Plasticity is
thus observed to be beneficial to agents that experience more
variability when evolving with unpredictable partners.

The predictability of another agent’s actions can dramati-
cally affect the evolution and fitness of agents. The line graph
in Figure 3b indicates that the actions of random partners
create high levels of variability. The fitness fluctuates often in
each individual run, which means the overall mean fitness can
vary by large amounts between generations. Despite this, the
mean best-in-population fitness is higher earlier on in evolution
when agents evolve with random partners, than when agents
coevolve. Interestingly, this is not a result of more agents
achieving their goal when evolving with random partners
compared to coevolved partners – in fact, the opposite is true
when looking at the data in Table I. There is however a shift
from agents that tend to exploit the other or achieve their
goals alone when coevolving, to those that cooperate with
random partners. Exploitation is more risky when partners are
random, as not all partners may perform behaviour that can
be exploited; this would leave the agent unable to achieve
its goal. Evolving with random partners seems to incentivise
agents to evolve goal-achieving behaviour that involves either
cooperation or exploitation. This is an interesting observation,
as the agents have no capacity to perceive others.

C. Evolving in Two Environments with a Coevolved Partner

Here, agents are evaluated on two RCD instances at each
generation. Agents thus experience more variability than pre-
vious experiments due to evolving in both single- and multi-
agent environments. The mean best-in-population fitness is
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(a) One Environment with a Coevolved Partner
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(b) Evolving in One Environment with Random Partners
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(c) Two Environments with a Coevolved Partner
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(d) Two Environments with Random Partners
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(e) Four Environments with Coevolved Partners
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(f) Four Environments with Random Partners

Fig. 3. The mean best-in-population fitnesses of agents in the RCD evolving for 500,000 generations, with and without neuromodulation (NM). At each
generation, agents are evaluated on: one ((a) and (b)), two ((c) and (d), or four ((e) and (f)) environments, with coevolved ((a), (c) and (e)) or random ((b),
(d) and (f)) partners. For (a) and (b), agents share one environment so the maximum fitness is 1.0. For (c) and (d), agents evolve alone, then in a shared
environment; the maximum fitness is 1.7. For (e) and (f), agents evolve in an environment: alone, shared, alone, then shared; the maximum fitness is 3.4. A
fitness of: 0.7 indicates the goal is achieved individually; 0.9 is cooperation; 1.0 is exploitation; ≥ 0.7 is a goal-achieving fitness (Equation 1). Note: y-axis
scales between Figures 3a and 3b, 3c and 3d, and 3e and 3f are comparable, but are not comparable otherwise as agents are evaluated on different numbers
of environments and thus have different maximum fitnesses. Also note the data for (b), (d) and (f) are downsampled by a factor of 10.

higher in modulatory agents than in non-modulatory agents
(Figure 3c). Further, 37% of non-modulatory agents achieve
their goal in both environments, increasing to 66% in modula-
tory agents (Table I). 37% of non-modulatory agents achieve
their goal in the first environment when alone compared to
66% of modulatory agents; in the second, shared environment,
this rises to 65% and 96% respectively. Agents are more
successful in shared environments as they can capitalise on
the actions of others to receive a higher fitness. Ultimately,
this shows plasticity has a positive effect on the success rate
of agents that both exist alone, and coevolve with another.

D. Evolving in Two Environments with Random Partners

Here, agents are evaluated firstly in an environment alone,
then in an environment shared with random partners; the
unpredictable actions of the partners increases variability. The
line graph depicting the mean best-in-population is erratic
as fitness fluctuates often during evolution (Figure 3d); this
indicates that evolving successful behaviour both when alone
and with random partners is hard, as each partner behaves
differently. The mean best-in-population fitness is greater in
modulatory agents than in non-modulatory agents. Further,
only 28% of non-modulatory agents achieve their goal in both



TABLE I
PERCENTAGE OF AGENTS THAT DO AND DO NOT USE NEUROMODULATION

(NM) ACROSS 100 RUNS THAT ACHIEVED THEIR GOAL WITH COMMON
FITNESSES IN EACH EXPERIMENT (EXP). PARTNERS ARE COEVOLVED (C)
OR RANDOM (R). AGENTS ARE EVALUATED ON (1) ONE, (2) TWO, OR (3)

FOUR ENVIRONMENTS (ENV) AT EACH GENERATION. COMMON FITNESSES
ARE: 0.7 FOR ACHIEVING THE GOAL ALONE; 0.9 FOR COOPERATION; 1.0

FOR EXPLOITATION; ≥ 0.7 FOR A GOAL-ACHIEVING FITNESS.

Exp NM Env Fitness (% of Runs) Goals Achieved

0.7 0.9 1.0 ≥ 0.7 0 1 2 3 4

1C No 1 27 5 36 68 32 68 – – –
Yes 1 44 0 50 94 6 94 – – –

1R No 1 2 29 29 60 40 60 – – –
Yes 1 3 59 24 86 14 86 – – –

2C
No 1 37 0 0 37 35 28 37 – –2 37 2 26 65

Yes 1 66 0 0 66 4 30 66 – –2 66 0 30 96

2R
No 1 33 0 0 33 65 7 28 – –2 5 25 0 30

Yes 1 77 0 0 77 23 10 67 – –2 10 57 0 67

3C

No

1 26 0 0 26

25 31 18 0 262 26 3 33 62
3 26 0 0 26
4 26 3 28 57

Yes

1 66 0 0 66

2 8 24 0 662 65 1 26 92
3 66 0 0 66
4 66 0 30 96

3R

No

1 31 0 0 31

64 2 3 4 272 7 24 0 31
3 32 0 0 32
4 21 13 0 34

Yes

1 86 0 0 86

13 1 1 6 792 12 68 0 80
3 85 0 0 85
4 63 23 0 86

environments after evolution, compared to 67% of modula-
tory agents (Table I). In the first environment, 33% of non-
modulatory agents were successful compared to 77% of mod-
ulatory agents. In the second environment shared with random
partners, only 30% of non-modulatory agents were successful
compared to 67% of modulatory agents. More modulatory
agents were successful in each individual environment than
non-modulatory agents, and more agents were successful in the
first environment than the second environment; this shows that
evolving successful behaviour that generalises across multiple
environments and partners is difficult.

E. Evolving in Four Environments with Coevolved Partners

Here, agents are evaluated on four environments at each
generation. Figure 3e shows the mean best-in-population fit-
ness over time is higher in modulatory agents than non-
modulatory agents. 75% of non-modulatory agents were
successful in at least one environment, however only 26%
achieved their goal in all four environments (Table I). In

comparison, 98% of modulatory agents were successful in at
least one environment, but only 66% were successful in all
four. Modulatory agents can therefore be expected to achieve
their goal in more environments than non-modulatory agents,
and are also more likely to succeed in all four environments.

F. Evolving in Four Environments with Random Partners

Here, agents are evaluated on four environments at each
generation with random partners. The variability arising from
the unpredictable actions of random partners causes the mean
best-in-population fitness to fluctuate often (Figure 3f). Only
36% of non-modulatory agents were successful in at least one
environment, and 27% in all four; this is compared to 87% of
modulatory agents and 79% respectively (Table I). Modulatory
agents more likely to achieve their goal not only in each
individual environment, but in all four. Agent fitness fluctuates
more, but is higher overall, when agents face high variability
caused by random partners (Figures 3e and 3f); this is also true
when agents are evaluated on one, two, or four environments
at each generation. This shows that the increased variability
that comes with evolving with random partners helps agents
to evolve behaviour that is useful in a range of environments.

G. Discussion and Further Analysis

Table I shows a qualitative shift in evolved goal-achieving
behaviour between agents that evolve with random or coe-
volved partners. Specifically, exploitation is more prevalent
when the actions of an unknown, coevolving partner causes
the environment to become more predictable. However, when
variability arises through evolving with random partners, co-
operation is favoured. Agents evolving random partners are
shown to increase their fitness whenever possible, by cooper-
ating with other agents unintentionally. This shows that agents
in highly variable environments are likely to evolve behaviour
that enables them to achieve higher fitnesses, without affecting
their ability to succeed when conditions inevitably change.

Statistical tests were conducted to compare the best-in-
population fitnesses achieved after evolution by modulatory
and non-modulatory agents. A Shapiro-Wilk test for normality
was conducted for each experiment, since it is powerful for
a range of distributions [18]. These results were significant
as p < 0.05 for each distribution, indicating non-normality.
Consequently, one two-tailed and two one-tailed Wilcoxon
Signed Rank statistical tests were conducted for each ex-
periment to ascertain whether plasticity has any effect on
agent fitness (Table II). The median best-in-population agent
fitness after evolution of non-modulatory agents is significantly
lower than modulatory agents in each experiment (p < 0.05,
mn < mm). Behavioural plasticity thus positively affects the
fitness that agents receive – especially when they are evaluated
on increasing numbers of environments.

The effect size estimate r can measure the magnitude
of such an effect, and relationship between two variables
(Table II); this is calculated with r = Z√

N
, where Z is the

z-score and N = 100 for the number of observations. As r is



TABLE II
WILCOXON SIGNED RANK TESTS COMPARING THE BEST-IN-POPULATION

FITNESSES OF NON-MODULATORY (mn) AND MODULATORY (mm)
AGENTS AFTER 500,000 GENERATIONS; AGENTS ARE EVALUATED ON: (1)
ONE, (2) TWO OR (3) FOUR ENVIRONMENTS IN EACH EXPERIMENT (EXP),

WITH COEVOLVED (C) OR RANDOM (R) PARTNERS. AN ASTERISK (*)
MARKS p < 0.05. p-VALUES AND THE EFFECT SIZES r ARE TO 4 S.F.

Exp Statistical Test Alternative Hypothesis
r

mn 6= mm mn < mm mn > mm

1C 1.594× 10−2 ∗ 7.970× 10−3 ∗ 0.9922 −0.2413
1R 1.871× 10−3 ∗ 9.355× 10−4 ∗ 0.9991 −0.3112
2C 2.331× 10−6 ∗ 1.165× 10−6 ∗ 1 −0.4725
2R 1.248× 10−6 ∗ 6.239× 10−7 ∗ 1 −0.4851
3C 4.243× 10−9 ∗ 2.121× 10−9 ∗ 1 −0.5877
3R 1.951× 10−11∗ 9.757× 10−12∗ 1 −0.6712

negative, modulatory agents receive higher fitnesses than non-
modulatory agents; this effect is stronger when agents evolve
with random partners, and evaluated on more environments, as
variability increases. The effect that plasticity has on agent fit-
ness increases with variability; r = −0.2413 and r = −0.6712
in the least and most variable environments respectively. This
shows a correlation between plasticity and variability, where
the benefit of neuromodulation increases with variability. This
benefit is felt more strongly by agents evolving with random
partners, as the actions of these partners increase variability.

We show that regulating behaviour is beneficial to agents
in variable environments, as agents can change their pheno-
type (behaviour) without affecting their genotype (deliberative
network); behavioural changes are short-lived.

VI. CONCLUSION

In nature, behavioural plasticity is one example of how
animals can survive in variable environments [1]. In this paper,
we explore the effect of plasticity on agent evolution and goal-
achievement in the River Crossing Dilemma testbed, when
agents cannot perceive others. Here, variability can arise from
the actions or presence of other agents. It is harder for agents
to maintain goal-achieving behaviour when other agents are
unpredictable. Whilst evolving in highly variable environments
is challenging, we show that plasticity can increase agent
fitness across the study. Further, cooperation is more prevalent
when agents experience more variability, and exploitation with
less variability. These findings are important considering that
technical systems are increasing in size and complexity, and
thus variability. We show that the benefit of plasticity increases
with variability – even when other agents are unknown.

This study demonstrates the importance of considering how
systems may overcome unforeseen interactions or situations.
Technical systems comprise many interrelated components;
a limitation of this study is that the abstracted agent-based
model studies how only a maximum of two agents interact.
Future studies will explore how many agents achieve goals
in highly variable environments, and how the consequences
of increased unintended interactions can be mitigated. We use
neuromodulation here to increase plasticity in agents, meaning

they can temporarily change their sub-goals if network activity
is modulated; agents may, for example, become attracted to
Stones – crucial for achieving the goal – without explic-
itly learning the importance of doing so. These behavioural
switches will be explored qualitatively in the future.
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