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Abstract. Locating [Radio Frequency (RF)| emitters can be done with
a number of methods, but cheap and widely available sensors make the
[Power Difference of Arrival (PDOA )| technique a prominent choice. Pre-
dicting the location of an unknown [RF] emitter can be seen as a con-
tinuous optimization problem, minimizing the error w.r.t. the sensor
measurements gathered. Most instances of this problem feature multi-
modality, making these challenging to solve. This paper presents an anal-
ysis of the performance of evolutionary computation and other meta-
heuristic methods on this real-world problem. We applied the [Nelder]
[Mead] method, [Genetic Algorithm)| [Covariance Matrix Adaptation Evo-
lutionary Strategies) |Particle Swarm Optimization| and [Differential Evo-
Tution] The use of meta-heuristics solved the minimization problem more
efficiently and precisely, compared to brute force search, potentially al-
lowing for a more widespread use of the m method. To compare al-
gorithms two different metrics were proposed: average distance miss and
median distance miss, giving insight into the algorithms’ performance.
Finally, the use of an adaptive mutation step proved important.
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1 Introduction

[Radio Frequency (RF)|emitters are becoming increasingly common in everyday
use. Most people carry at least one [RF] emitter on them at any given time, for
example a cellphone or smart watch. In the case of an emergency, the ability
to locate people trapped in an avalanche or in distress, would greatly relieve
the search effort and possibly save lives. Locating [RF] emitters can, for instance,
be done using a number of inexpensive quadcopter sampling the signal at
different points in space. Figure [[] shows 10 quadcopters sampling an [RF| signal
at multiple points in space.

There are many different methods for locating or geolocating [RF] signals
based on sampling of signal properties [II4JTOII5ITT], including: Angle of arrival,
Time difference of arrival, Power difference of arrival, and Frequency Difference
of arrival. Most methods for geolocation require the [RE] signal to be sampled
at multiple distinct locations in order to achieve a prediction of the emitter
location. The different methods all have their strengths and weaknesses, in prac-
tical applications it is likely that multiple methods or a combination of methods




200 400 600 800 1000

Fig.2. An example search
landscape; lower @ values are
better. The example shown is
for 10 spatially different mea-
surements with noise.

Fig. 1. Illustration of predicting the location
(crosses) of an emitter (diamond) using 10
quadcopters/sampling locations (stars). Lighter
areas have stronger signal.

will be applied [17]. Regardless of the method applied, it is important for an
implementation to be as efficient as possible.

One method of locating an [RF]emitter is based on [Received Signal Strength|
|(RSS)}, or [Power Difference of Arrival (PDOA)| [4JI0]. This method can be im-
plemented using cheap and readily available sensors, based on simple power
measurements. An issue with this method is the high amount of computation
required in order to make a prediction of the emitter location. The computa-
tional requirements includes the brute force minimization of a function over a
discrete grid. This minimization can be implemented on a hardware accelerated
system []. For many applications, where locating emitter would be useful,
the use of hardware acceleration may be impossible due to energy constraints or
inability to carry a specialized computing unit for this purpose.

The goal of this work is to reduce the computational requirements of PDOA]
geolocation in order to facilitate implementation, on simple and energy restricted
platforms. By reducing the required computational resources it would be pos-
sible to implement this using minimal hardware, for instance on a small board
computer. Evolutionary computation methods or numerical methods may assist
in solving the minimization problem faster and more efficiently. The use of evolu-
tionary computation methods would also allow for potentially infinite resolution,
compared to a brute force solver.

In this work, a few of the most common heuristics for continuous optimiza-
tion are compared for performance on this [RF| emitter localization problem.
These were chosen for being common and frequently used algorithms in the lit-
erature, and were used without significant modification or customization. The
algorithms chosen are examples of hill-climber methods, population based meth-
ods and higher-order search algorithms. The tested heuristics are: Random sam-
pler, Nelder-Mead (NM)] [12], Preselect [NM] [Genetic Algorithm (GA)] [3/6], [Co-
variance Matrix Adaptation Evolutionary Strategies (CMA-ES :l [7U8], [Particle
Swarm Optimization (PSO)|[2], and Differential Evolution (DE)| [16].

This is the first paper to our knowledge describing the application of search
heuristics in an effort to make the minimization of the error function more ef-




fective. Several papers exists on the topic of locating emitters [IITOT5I7].
Contrary to previous work, we apply evolutionary computation methods, instead
of a brute force optimization, in order to increase the speed and precision of the
emitter location predictions. A [GA]have previously been applied to optimize the
location of the sampling points, both for the static and dynamic cases [4]. Using
[RSS] to locate [RF] emitters have also been attempted in the context of a swarm
system [I3]. However, in this paper the focus is shifted from optimizing the be-
havior and positioning of the sample locations, to increasing the efficiency of the
location prediction algorithm itself using meta-heuristics instead of a brute force
optimization.

Section 2 describes the problem of locating RF emitters and defines a bench-
mark. Section 3 defines the heuristics used for this optimization problem. Section
4 describes the test cases used and the extensive parameter variation required for
optimal algorithm performance. Sections 5 and 6 features results, with multiple
metrics for comparison, and discussion. Finally, Section 7 concludes the paper.

2 RF Emitter Localization

In locating objects in space, there are three common exploitable methods: tri-
angulation, trilateration and multilateration [IIT5]. Triangulation estimates the
location of an unknown object by measuring the angle towards the object from
multiple directions. This gives an intersection where the object is estimated to
be located. Trilateration uses the distance from at least three points to find an
intersection between circles (in 2D) to locate an object. Multilateration combines
measurements of the differences in distances, at multiple known points, in order
to estimate the location of the object. These fundamental geolocation methods
makes up the basis of the search for an [RF] emitter. There are multiple ways of
locating an emitter [TAT0/T5], including:

1. Angle of arrival (triangulation)

2. (trilateration) (multilateration)

3. Frequency difference of arrival (triangulation)

4. Time of arrival (trilateration)/Time difference of arrival (multilateration)

Using a simple [RSS| method is problematic as it is fairly common that the
power of the emitter is not known. Many transceivers (radio transmitters and re-
ceivers) today implement power saving schemes, where they vary emitted power.
By varying the emitted signal strength, using only for geolocation (with tri-
lateration) becomes impossible. However by combining multiple measure-
ments and using [PDOA] it is possible to remove the unknown emitted effect at
the cost of additional complexity.

2.1 Power Difference Of Arrival

[PDOA] compares the [RSS| at multiple distinct locations in order to get an es-
timate for the emitter location. This is based on an estimation of the loss in
signal strength at a given distance. A common model for propagation loss of an



L(r):Lf(ro)—IOOclogm% (1) P(r) = L(r) + N(0,0)  (2)

signal is the path loss model [TOJTTT4]. This model gives the L at a
distance r and can be expressed as follows:

L¢(ro) is signal strength ”a short distance” from the emitter; this is typically
determined experimentally and is a fixed value. For these experiments the dis-
tance o was set to 1. P(r) is a sample, with added noise, a distance r from the
emitter. By attaining a number of samples P(r) of the at multiple different
points in space it is possible to estimate the location of an[RF]emitter. The exact
constant value of Ls(rg) is irrelevant, as it is canceled out when calculating the
difference between pairs of samples.

Simulated samples are generated by adding white noise to the estimated
signal strength L(r), where o is the standard deviation of the white noise. « is
the path loss factor, depending on the environment this constant may vary from
2 to 6. Free space/line-of-sight gives an « of 2.0.

There are several methods of using the attained power measurement to obtain
a prediction of the emitter location [I0]. Some examples are: [Non-Linear Least)|
[Squares (NLLS)| maximum likelihood, and discrete probability density. All of
these methods are fairly computationally expensive, in the order of O(I-.J-M?).
I - J is given by the grid resolution and M is the number of measurements.
The physical sensors used for [PDOA] are capable of gathering several hundred
samples per second. Using all the information available will result in a large M,
making the optimization slow.

|N]:_U5| can be expressed as an optimization to minimize the error, given a set
of measurements. By comparing the measured difference in [RSS|to the expected
signal strength, an expression for the error can be formulated [10] as:

Py = P, — P (3)

_ _salo (x —2)* + (y —w)®
Q(:Evy) - Zk<l[Pk?l Sarl g( (x . xk)Q + (y . yk)2>}2 (4)

The proposed location of the emitter is (z,y). k and [ denotes indexes into the
list of samples. Predicting, or finding, the most likely emitter location can be done
by minimizing the function Q(x,y) over the desired area. Analytic methods are
problematic for this expression due to the non-linearity found in the expression.
Figure[2|is an example of the search landscape as defined by Q(z,y). The search
landscape is smooth and can be highly multi-modal.

The conventional way of solving this problem would be to use regular grid,
over which the function is evaluated and the smallest value located. Using a
grid suffers from a number of undesirable features; such as finite resolution and
high computational cost. Practical implementations may even have problems
defining the grid boundaries, over which to minimize the function, as this makes
an assumption about the emitter location before any predictions have been made.
It is also impossible to predict a location outside of the grid.



2.2 Error Metric

In order to evaluate the performance of each algorithm, a suitable benchmark
metric has to be defined. All of the search and optimization algorithms will
return a single best solution found through the search, the position in which
Q(z,y) takes on the least value seen. This solution is used to calculate an error
measurement (€eayvg), given as follows:

(6)

di, if Qi > Qret
b= — Sl (3) o {

0, otherwise

S; is the best found solution (by the search algorithm) and Sye the solution
calculated by brute force using 40.000 evaluations (a fine grid of 200 by 200
cells). Both of these are two-dimensional coordinates. The Euclidean distance
between the two solutions is d;, for a single run of the optimization algorithm.
An error e; is calculated, only penalizing those solutions that have worse fitness
value @Q; compare to the reference Q.of. All of the errors are aggregated and an
average is calculated, indicating the performance of the given algorithm on the
given case. For the same set of values e;, median and standard deviation is also
calculated.

It is important to note that the true emitter location, where the emitter was
placed during simulation, may not be the location of the global optimum. Due
to the noise added to the samples (Equation , the global optimum may shift
away from the true emitter location. For this reason, the global optimum has to
be located using a brute force search.

2.3 Error Bound for Brute Force Search

Brute force divides the grid into a number of cells, this limits the maximal error
e; by the size of the grid cell. Similarly, it is possible to estimate the expected er-
ror assuming a uniform distribution of global optima. Two independent uniform
distributions X and Y give the x and y coordinates, respectively. The exhaustive
grid search (brute force) will divide the area of interest into bins of equal dimen-
sions. Since all the bins are equal, we only need to consider the case of a single
bin to find the expected miss distance. A 2D-grid of size (G5, G,) is divided
equally into bins of size (B, B,). We can then define the uniform distributions
of X and Y as follows:

1 1
X = Uniform(fiBm, iBm) (7)

1 1
Y = Uniform(fiBy, §By) (8)

D=+VX2+Y? (9)

Monte-Carlo simulations were used to determine the expected average miss
distance E(D).



Table 1. Metrics (B, = By = 100)

Miss dist.‘Estimated‘Expr. Nt — G2 B 0.15G2 10
Avg. 38.3 0.383B., el = B2 T D2 (10)
Median |39.9 0.3998;

avg

The expression, in Table[l] for average expected miss distance was determined
numerically, using regression on a number of different values for B, and B,,. Using
this expression it is possible to devise the resolution required (using a discrete
grid optimization) to achieve any desired maximal error.

In Equation Noyal is the number of evaluations required to achieve an
average prediction error of D,ys. For example, if the desired average miss should
be less than 20m, at least 375 evaluations would be required. The area of interest
(Gz, Gy) was set to (1000, 1000), as used for the test cases.

This is a tight and optimistic bound for the average error. Most algorithms
will not be able to attain this bound. Experiments found that even with a rea-
sonably fine grid, the global optimum would not be sampled close enough. This
resulted in choosing a local optimum instead, with a better fitness value. Miss-
ing the global optimum, and instead choosing a local optimum, gives a severe
penalty to the average distance miss. The local optima are often located far away
from the global optimum (See Figure [2)).

3 Optimization Heuristics

Seven different common optimization heuristics were implemented in this paper:
Random sampling, Preselect [NM] [GA] [CMA-ES] [PSO| and [DE] For all
of the heuristics tested, the solutions are encoded as a 2D real-valued vector.
Some of these algorithms had standard implementations found in the DEAP
framework [B]. The full source code can be found here ﬂ

For comparison, a basic random sampler was implemented. This uses a uni-
form distribution in x and y dimensions to generate a random sampling of so-
lutions within the area of interest. The best solution, of the random selection,
is returned by this method. This is similar to the brute force method, but does
not restrict the solutions to a regular grid.

The algorithm [12] is a continuous numerical optimization algorithm,
that does not require gradient information in the fitness space. The initial step
of the algorithm requires a simplex to be defined. A simplex is a set of three
points, for a two dimensional search landscape. Further iterations will manipulate
the simplex through reflection, expansion and contraction, eventually converging
to a small area of the search landscape. [NM| has four parameters governing the
rate of contraction and simplex permutation; Alpha, Gamma, Sigma, and Phi.
In the case of multiple minima, [NM] can get stuck or fail to converge to a single
solution. For the problem as described, the fitness landscape may have more

3 https://github.com/ForsvaretsForskningsinstitutt/Paper-NLLS-speedup


https://github.com/ForsvaretsForskningsinstitutt/Paper-NLLS-speedup

than one minimum. This makes the [NM] algorithm a poor choice by itself, but
is included for comparison.

[NM] will typically struggle on non-smooth landscapes, or in cases where there
are multiple optima. If the [NM] algorithm could be initialized in a way as to
exclude these two problems, this algorithm could be a prime contender due to
very fast convergence to a single solution. Choosing the simplex carefully it
may be possible to reduce or even eliminate the adverse properties of the [NM]
method alone. The Preselect method samples a (large) number of points
in the search space before applying the method. These points are used to
select the initial simplex for the algorithm. From the points sampled, the
three best solutions (according to Q(x,y) values) are chosen and given to the
method. This allows the algorithm to start closer to the global optimum
and may assist in reducing the chance of getting stuck in local optima.

In this paper, the [613] is applied as a search heuristic in the two-
dimensional optimization problem defined in the previous sections. A direct real
encoding is used, and the fitness function is Q(z,y) as defined in the problem
description. Furthermore, to apply a[GA] to this problem a suitable mutation,
crossover and selection operator has to be chosen. Tournament selection is used
as a selection operator. The mutation operator is implemented as a simple Gaus-
sian additive mutation, which requires a sigma to be specified. The crossover op-
erator takes two parent solutions and creates two children by selecting two new
random solutions on the line segment joining the two parent solutions. In total,
the [GA] requires five parameters to be specified: Mutation probability, Mutation
sigma, Crossover probability, number of elites, and finally, a population size.

CMA-ES| [7I8] is described as a second degree method building on Evolution-
ary Strategies [9]. As opposed to the this method does not use a crossover
operator, only a mutation operator and selection. The [CMA-ES| algorithm will
attempt to adapt the mutation step size dynamically (from an initial guess),
maximizing the likelihood that favorable solutions are generated by the muta-
tions. This is an important feature, as it allows for rapid convergence once an area
of solutions with good fitness has been found. The main drawback of this method
is the use of a population size of 1 (in the standard implementation). Having
only a single individual makes the algorithm prone to getting stuck in local
optima, converging prematurely. The same properties that make the algorithm
exceptional at quickly converging and find a good solution are a disadvantage in
respect to robustness when faced with multi-modal fitness landscapes[CMA-ES|
requires two parameters: a population size and an initial permutation standard
deviation.

The concept of the [2] is to have a number of particles moving in the
N-dimensional space and being attracted to the various optima that both the
particle itself finds, and the global optimum as found by all the particles. This
algorithm required minimal modification to suit the described problem, but has
a number of parameters that will significantly impact the performance of the
algorithm. The parameters are: population size (number of particles), attraction



weight toward local best (¢1), attraction weight toward global best (¢2) and a
maximum particle speed.

[16] is a variation of an evolutionary optimization method. The main
difference is the use of a differential operator as a mutation operator. In short,
the mutation step used by [DE]is defined by the difference between two solution
vectors. This allows the mutation step size to adapt and converge as the solutions
in the population converge to a single optimum. uses three parameters: F a
scaling factor for the mutation size, CR for controlling the chance of a mutation,
and the population size.

4 Testing Methodology

50 cases were randomly generated, in order to make sure that algorithms ex-
celling at a single problem instance were not preferred. Each case consists of 10
distinet randomly located simulated PDOA] samples with randomly generated
noise (Equation. In this work free space/line-of-sight was assumed, « of 2 and
o of 3.0. The optimization area (G, Gy) is (1000, 1000). For all of the test cases
the true emitter location is in the middle of the search area, but the location of
the global optimum will vary depending on the noise added. In a real-world im-
plemention of PDOA] averaging may be used to reduce the percieved standard
deviation of the noise (¢). Varying the position of samples and measured
will drastically alter the fitness landscape. All the algorithms are benchmarked
on the exact same cases. Due to the non-determinism found in several of the
heuristics, each algorithm was tested 50 times on each case, using a new random
seed for each trial. For all experiments algorithms were given a limited number of
function evaluations, effectively limiting the number of iterations. The number
of test cases and samples per case was limited by the computational resources
available.

4.1 Heuristics Parameters

Most of the analyzed algorithms require one or more parameters to be defined.
Common for all the population based methods is a population size, which in-
evitably affects the number of iterations, as each algorithm is limited in the
number of function evaluations. Deciding the best set of parameters for each al-
gorithm is non-trivial and may require expert knowledge about both the fitness
landscape and the properties of the search algorithm. In this paper, a fairly ex-
tensive set of parameter combinations were tested for each algorithm. The best
set of parameters, for any given algorithm, depends heavily on the metric used
for comparison. The optimal set of parameters may also vary depending on the
limit on function evaluations.

Based around recommended settings, the parameters seen in Table [2[ were
used for the different algorithms. Experiments were conducted for all the possi-
ble combinations of parameter settings. This resulted in each algorithm having
around 32 different sets of parameters to test. The exception to this was the [NM]



Table 2. Parameters for all experiments and algorithms

Algorithm Parameters

NM Alpha 1.0, Gamma 2.0, Sigma 0.5, Phi -0.5
Preselect evals. 10%, Alpha 1.0, Gamma 2.0, Sigma 0.5, Phi -0.5
GA Pop. size [200 160 100 80 50 40 20 10], Mut. sigma [25.0 50.0], Mut. prob.

‘ [0.1 0.2], Crossover prob. [0.4 0.6], Elites max(2, 5%), Tournament N=2
CMA-ES Pop. size [200 160 100 80 50 40 20 10], Sigma [100.0 125.0 150.0 200.0]

FSO) Pop. size [200 160 100 80 50 40 20 10], ¢ [1.0 2.0], ¢ [1.0 2.0], Speed
max [20.0 50.0]
E Pop. size [200 160 100 80 50 40 20 10], Crs [0.25 0.50], Fr [0.5 1.0]

algorithm, which was only run with the single parameter set recommended for
the algorithm. The default parameters were found to work well for this problem.

All algorithms were compared on the 50 test cases. As a baseline; a brute
force optimizer, i.e. grid search, was also implemented. The brute force optimizer
used an additional 450 randomly generated test instances (in addition to the 50
used for the other algorithms). Without the additional cases, brute force would
only have 50 sample points (compared to 2500 for each of the other algorithms),
as it is a fully deterministic algorithm.

In addition, the effect of the function evaluation limit was tested. Tests were
run for 100, 200, 400, 800, and 1600 evaluations per optimization run. The
performance of each algorithm will vary depending on the number of evaluations
allowed to solve the problem. In total approx. 500.000 optimization runs were
conducted, evaluating 300 million solutions in the search space.

5 Results

One of the main challenges for this problem, is to determine the optimal param-
eters for each algorithm. These parameters may change depending on evaluation
budget size. In order to address this problem, extensive parameter variation tests
was conducted based on values given in Table [2] Initially, the case of a fixed eval-
uation budget of 400 evaluations will be examined, before extending the same
methods and analysis to a set of different and variable evaluation budgets.

5.1 Fixed Evaluation Budget Size

A histogram over error values (e;) can be made for each algorithm and parameter
set tested using a fixed evaluation budget size. An example of this can be seen in
Figure 3] for the random sampler using 400 evaluations. For most trials, a simple
random sampling will succeed in finding a good solution to the problem instance.
Most of the weight of the distribution is found at less than 100m away from the
reference solution Sir. In some cases, a random sampling will miss the global
optimum and instead choose a local optimum. This can be seen at a distance
750m in Figure [3
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Fig. 3. Random sampling - Error distribution for 2500 tests using 400 evaluations

Left part of Figure ] shows an example of the error distribution for the [GA]
for a single set of parameters. The [GA] has a similar distribution as the random
sampling, but is more likely to get stuck and converge prematurely in the given
example. This can be seen by the long and heavy tail of the distribution.

[DE] outperforms both a random sampling and the [GA] and has more consis-
tent performance. Right part of Figure [ shows an example where the [DE] often
is able to converge to the global optimum as defined by Spef. This distribution
does not have the same tail as the random sampling and the [GA] indicating that
it is less likely to get stuck in local optima.

However, none of the histogram plots are symmetric distributions. This leads
to problems when attempting to rank the methods and generate useful statistics.
In particular, the average miss of each algorithm will be significantly skewed by
the outliers, favoring reliable algorithms. By using the median as a measure for
comparison, this is mitigated, but it also hides some of the issues when using
search heuristics on the problem. For some applications, the loss of reliability
may be acceptable, but not in others. Table [§|shows performance on the metrics
median, average and standard deviation for selected parameter combinations.
The parameters associated can be found in Table [3| This is based on Euclidean
distance, as defined in Equation [} The selected subset of combinations was
chosen based on its performance on the median metric. Normally, the average
metric would give a better indication of performance, but in this case, the average
metric is insufficient.

The search landscape is smooth (an example can be seen in Figure , but
still poses a challenge for search algorithms. Multi-modality makes these problem
instances hard, and often makes the search heuristic converge prematurely, or
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Table 3. Results overview - 400 evaluations

Med| Avg |Stddev
Brute force [19.7]25.9| 53.9
Random [26.1]43.9 | 100.8

0.0 |164.7| 290.4

Preselect NM] 0.0 | 17.1 | 103.6

16.8(148.0| 240.9
0.0 | 84.0 | 222.7

15.7| 67.8 | 173.5
0.0 | 35.8 | 140.6

Algorithm|Params

GA Population 10, Elites 2, Mut. prob.
0.2, Mut. Sigma 50.0, Crossover
prob. 0.6

|CMA—ES| Population 20, Sigma 200.0

PSO[ |Population 10, Phil 1.0 , Phi2 1.0,
Smax 20.0

@ Population 10, Cr 0.5, F 0.5

get stuck in local optima. For this problem, the average metric is indicative of the
likelihood for getting stuck. A single miss (on the global optimum) gives a severe
penalty to the average. If the average was used to select the best parameter for
each algorithm, a single generation/iteration with the maximum possible number
of evaluations would be preferred for many algorithms. With such parameter
settings, any heuristic becomes a random search.

An alternative to focusing on a single metric, such as median or average,
could be to use a combination of metrics, as commonly done in multi-objective
optimization. The metrics are defined as follows:

1. Probability of getting stuck in a local minimum
2. Average Euclidean distance error, given that the global minimum was found

The first of these two metrics acts a filter, effectively removing the outliers
seen in the histogram plots. In order to quantify the chance of getting stuck, a
solution has to be classified as either a part of a local optimum or the global op-
timum. While classifying the solutions like this is non-trivial, a simple approach
would be to define some radius around the global minimum, and use this as a
selection threshold. Based on the clustering of solutions seen in the experiments
(Figure [3] and [, a radius of 100m was selected. This is a relaxed limit and



includes most, if not all, solutions that were in the basin of attraction of the
global optimum.
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Fig. 5. Algorithm comparison using two alternative metrics. Each dot represent a pa-
rameter configuration. Clustered dots from the same algorithm typically share param-
eters significantly affecting performance.

Figure [5| shows the different algorithms-parameter combinations and how
they perform on the two objectives. Preselect is able to approach the origin,
i.e reference solution. [CMA-ES| shows excellent ability to find equal or better
solutions as the reference solution, but lacks in reliability; as seen by a fairly
high chance of missing the global optimum completely. [DE] is the opposite of
[CMA-ES] and is very reliable, but lacks somewhat in its ability to converge to
solutions equal or better than the reference.

5.2 Variable Evaluation Budget Size

Another interesting view of this problem would be to examine the performance
of each algorithm across evaluation budget sizes. All the algorithms were tested
with 100, 200, 400, 800 and 1600 evaluations, and the number of evaluations are
likely to affect the performance of the algorithm. Figure [f] shows a comparison
across evaluations using the average metric. In this figure, the parameters for
each algorithm were selected based on average metric.

Only [DE| and Preselect manage to compete with brute force search on
the average metric. The rest of the heuristics were found on or above the line for
random sampler and are excluded from the plot for readability. Preselect [NM]
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Fig. 6. Comparison of algorithms across number of evaluations using average metric.
Plus signs indicate statistical significant difference between Preselect NM and Brute
force algorithms for the given number of evaluations.

performs well across all numbers of evaluations; particularly in the area of 200
to 800 evaluations, where it is comparable to using twice as many evaluations
on a brute force search. In other words, applying the Preselect [NM] algorithm
resulted in a speed-up of at least 2x on this real-world problem.

In Figure |§| a plus (+) signs indicate the positive result of a Wilcoxon Rank
and Sum test, testing the Brute force algorithm against Preselect NM using
comparable number of evaluations. This test was applied for each number of
evaluations as indicated in the figure. The distribution of errors, between Pres-
elect NM and the Brute force algorithm, was found to be significantly different
at the level of 0.01 for all tests applied. The results are the same for the median
plot because the underlying dataset is the same.

The challenge of this real-world problem is not to find a good solution, but
to find the best solution. For several of the heuristics this is problematic, as
they readily will converge to local optima. Yet, the problem may greatly benefit
from a heuristic in converging to the global optimum from nearby areas in the
solution space.

Using a median metric shows another view of the algorithms performance
(Figure . This plot highlights the benefit of using a search heuristics in provid-
ing solutions that often are better than the reference solution found by a brute
force optimization using 40.000 evaluations. Parameters were here chosen based
on median. [DE] and Preselect [NM] are repeatedly able to find solutions that
outperform a brute force optimization with an equal number of evaluations.
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Fig. 7. Comparison of algorithms across number of evaluations using median metric.

Finally, considering the the effect of increasing the number of evaluations
for Figure [f] is a gradual tendency for all points in the plot to converge on
the origin. As more evaluations are allowed, most algorithms and parameter
combinations perform better (i.e. provide better solutions). Decreasing the limit
has the opposite effect.

6 Discussion

For this particular real-world problem, finding a suitable metric for comparing
algorithms and parameter combinations proved challenging. With the average
miss as the metric, many of the search heuristics had problems caused by their
unreliability to find the global optimum. Using the median metric instead allows
for a partial solution to this problem, but will camouflage how unreliable each
algorithm is to a certain degree.

Many of the heuristics are able to often find solutions that outperform those
found by a brute force search using several orders of magnitude more resources.
In particular, [DE] Preselect [NM] and [CMA-ES]| proved to excel at this. What
differentiates these algorithms from the remaining and is the use of
adaptive step lengths when converging on an optimum. In order to maximize
the solution performance, this proved an important trait. It becomes clear that
there is a trade-off between the reliability of an algorithm and the ability to
narrow in on an optimum. With a limited evaluation budget a heuristics cannot
do both, and depending on parameters, may focus on one or the other.

One of the main premises for using search heuristics is that there is no guar-
antee that the optimal solution will be found. For some problems this may be
acceptable, and not for others. In this case, it depends on the application sce-
nario of the method. In presenting a prediction of the location of an [RF]emitter




to a user, there is an expectation of reliability and predictability. Automated
systems may to a greater degree be able to accept the chance that, in certain
cases, a prediction might miss, as long as the miss is not too great or too fre-
quent. In future work it would be interesting to investigate the use of a search
heuristic, as described in this paper, in a context of swarm system. Commonly,
swarm systems rely on simple and cheap units with limited capabilities. In such
a context, the acceptance of suboptimal performance (a chance to miss) may be
unavoidable and must be dealt with on a higher algorithmic level.

In the case of a miss being unacceptable and absolute reliability required, sig-
nificant performance increase is still possible using a search heuristic. As shown
for Preselect [NM] a no-cost speed-up can be achieved, effectively giving double
the performance on limited resources. As described previously, the issue of a
suitable metric camouflages some of the characteristics of the search heuristic.
For this particular case, the use of a hill-climber allows a system implementing
this to be at least as reliable as a system using twice the amount of resources on
a brute force search. In addition, the system gains an infinite resolution. What
previously was limited to the resolution of the brute force grid is only limited
by the resolution of the number representation, and how quickly the hill-climber
can converge. This is an important result of this work.

7 Conclusions

This paper shows the viability of using search heuristics on the problem of geolo-
cating[RF]emitters. By using a search heuristic, multiple favorable attributes can
be achieved, such as: infinite resolution, reduced and flexible computational cost,
and greater robustness against deceptive objective functions when restricted in
computational resources. Comparing a number of common search algorithms,
such as [GA] [PSO] and [CMA-ES] it is clear that these strategies may not al-
ways be the best option given a limited computational budget. The challenge for
these algorithms is to converge quickly enough while at the same time avoiding
local optima. If the search space is reasonably small, applying the [NM]algorithm
with a preselect may be an option resulting in high performance even with little
resources.

One of the biggest issues in this particular problem was the multi-modality
of the fitness landscape. Multiple local optima made this a deceptive problem
and required algorithms that were robust and had an exploratory behavior.

This work may not only allow for a practical real-world implementation of a
system locating [RF] emitters, but also a wider range of concepts to be explored.
The ability to locate an [RF] emitter can also be used as part of a higher level
simulation, investigating into the behaviors or how multiple agents should in-
teract. One intriguing idea is a swarm of flying platforms able to autonomously
locate [RE] emitters. This is a topic for future research.
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