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Abstract. Automated design of swarm behaviors with a top-down ap-
proach is a challenging research question that has not yet been fully
addressed in the robotic swarm literature. This paper seeks to explore
the possibility of using an evolutionary algorithm to evolve, rather than
hand code, a wide repertoire of behavior primitives enabling more ef-
fective control of a large group or swarm of unmanned systems. We use
the MAP-elites algorithm to generate a repertoire of controllers with
varying abilities and behaviors allowing the swarm to adapt to user-
defined preferences by selection of a new appropriate controller. To test
the proposed method we examine two example applications: perimeter
surveillance and network creation. Perimeter surveillance require agents
to explore, while network creation requires them to disperse without los-
ing connectivity. These are distinct application that have drastically dif-
ferent requirements on agent behavior, and are a good benchmark for our
swarm controller optimization framework. We show a performance com-
parison between a simple weighted controller and a parametric controller.
Evolving controllers allows for specifying desired behaviors top-down, in
terms of objectives to solve, rather than bottom-up.

Keywords: Swarm UAVs, MAP-elites, Evolutionary Robotics, Multi-function

1 Introduction

In a robotic swarm system, a large number of agents interact in order to conduct
missions and solve specific tasks. Some swarm systems require collaboration, as a
single agent will not be able to complete the task alone [1]. Other swarm systems
might consider agents with competing interests or goals [2]. Yet, others might
consider how heterogeneous teams of agents can collaborate in order to make
use of the strengths of each agent [3].

For swarm systems it is common that the most interesting part of the behav-
ior happens on a macro level, i.e. considering the swarm as one single system. For
example; is the swarm, as a whole, able to solve the given task? Is the swarm
able to optimize agent use for efficiency? This is different from a micro level,
considering the individual behavior of each agent or platform. Swarm behaviors
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require some form of rules or controller for each individual agent. This can be a
neural network [4], or a set of rules [5], or even a hybrid of the two [6].

An unsolved problem in the swarm literature is the top-down design of swarm
behaviors or controllers, or automatic controller synthesis. This is a problem, as
the high-level behavior is very dependent on the low level behavior, but the re-
lation is not easily predictable. Evolutionary robotics attempts to address this
issue by evolving controllers, rather than designing them by hand [7]. We propose
to expand on this idea by evolving not just a single controller, but a set of con-
trollers for controlling a swarm. Previous works have evolved sets or repertoires
of controllers for robotics application [8], but these have been focused on single
robot application. We propose to expand this to swarms of robots, in order to
generate a varied set of primitives for swarm control.

We are also investigating the potential to tackle multiple tasks or applica-
tion simultaneously. Imagine a swarm, not limited to a singular task, but solving
multiple tasks such as perimeter surveillance and communication network. This
could be approached from a resource or task allocation perspective [9], but this
paper chooses to view this as a problem of generating a suitable controller with
an internal notion of priority between the tasks. This is related to multi-modal
learning, multi-task learning and multi-function learning. All of these attempt
to solve multiple tasks at once, but with slight variations. For example, in multi-
modal behavior learning [10,11], the challenge is to evolve a game-playing agent
for multiple sequential tasks. The agent has to learn both how to solve the in-
dividual tasks and when to change from one behavior to another in order to
succeed. This is significantly more challenging, as it also requires handling po-
tentially conflicting knowledge in the controller. Further, this can also be related
to the challenge of learning two related, but potentially conflicting tasks. For
this approach, modularity in the controller has been shown to improve perfor-
mance [12]. In this paper the authors propose to explore whether it is possible
to evolve controllers for multi-functional robotic swarms where the tasks are not
sequential, but rather concurrent goals that all have to be satisfied at the same
time.

Two applications will be considered in this paper: perimeter surveillance
and network creation. The task of perimeter surveillance has been explored in
previous work [13], and so has the use of swarms to maintain communication
networks [14]. The challenge is now to consider both of them at once. Both
perimeter surveillance and network creation have their own specific requirements
in terms of movement and behavior. As such, it is expected that it will be hard
for a single controller to perform well on both tasks.

For this paper, on the evolution of multi-function swarms, we propose two
controller types: a weight-based controller and a parametric controller. The
weight based controller is, as the name suggests, a simple weighting of input
components or forces. A simple weighting of input forces is similar to the motor
schema [15]. The parametric controller has a more complicated and powerful
controller description, capable of describing a wider array of controller behav-
iors. Our controllers were inspired by the use of artificial potential fields and



artificial physics [16]. Artificial potential fields have previously been employed in
collision avoidance [17–19]. Using artificial potential fields for collision avoidance
can be viewed as a problem of weighting a number of independent forces from
objects of potential collision risk. Essentially, this becomes a weighted forces
problem where the net force from all the potential collision risks should point
in a collision-free direction. In many cases this works well, assuming the envi-
ronment is not too cluttered or the collision risks too many. For the controllers
examined in this paper, we propose a similar approach, using several contribu-
tions from interesting objects and weighting these to provide a controller for a
robotic swarm. In essence, each application provides some input to the controller
and have certain requirements on the behavior or movement of the platform for
optimal performance. Concurrently handling requirements from multiple appli-
cations is a challenging problem - one not yet fully explored in the literature.

Using a single controller for multiple tasks could allow for development of
more complex behaviors. A hand-coded strategy may be able to solve either of
the given tasks alone, but describing how to handle complex interaction between
the tasks and the requirements that each task brings to the behavior may be too
hard for conventional methods. For this reason, we chose to explore the option of
evolving controllers using the MAP-elites algorithm [8, 20]. It is also important
to realize that this is different from the work on hybrid controllers, as we chose
to approach the controller design as a single monolithic problem rather than
trying to solve it through decomposition [6,21,22]. Using MAP-elites will lessen
the need for bootstrapping or incremental evolution, which is often required in
evolutionary robotics [23,24].

Both the weighted and parametric swarm controllers are optimized on the
tasks of perimeter surveillance and communication network creation, using MAP-
elites to generate a large repertoire of possible solution candidates. This is related
to multi-objective optimization where, rather than a single best solution, a good
approximation of a Pareto front is sought. The advantage of this approach is
that not only one, but many interesting solutions may be examined. This may
also provide a better insight into the problem and contributing factors to the
generated solutions by illuminating the search space [20]. Both the weighted and
parametric swarm controllers can be considered direct controller architectures,
which have been shown to have higher performance than indirect encodings [25].

2 Simulator Setup and Swarm Model

Each platform or agent is modeled as a point mass with independent limits
on acceleration and velocity. This makes it possible to simulate a wide variety
of platform types including non-holonomic ground and aerial vehicles. While
modeling platforms as a point mass is a major simplification, compared to real-
world dynamics, it is suitable for these experiments. Here, we wish to examine
the dynamics of the swarm as a whole, and the high-level behaviors generated.
We are less interested in the exact motion of individual agents; as such, this
is a viable model for the swarm. The bounds on acceleration and velocity for



these experiments are 1m/s2 and 10m/s respectively. The agents operate in a
1000x1000m area. Each platform is controlled by setting a velocity setpoint vsp,
this can be considered the outer control loop. The goal of the inner-loop controller
is to change the acceleration to match the velocity setpoint, i.e minimize the
norm ||v−vsp||. This is done by a simple proportional controller. The cascaded
control architecture allows setting a position setpoint as well, which is then be
transferred to a velocity setpoint. For interaction between platforms or agents we
assume that each agent is able to localize itself in a global and shared coordinate
frame. Our controller require the agents to be able to communicate their position
to neighbors. This effectively gives each agent accurate direction and heading to
neighboring agents within communication range.

The details can be found in the full source code available online 4

3 Velocity Setpoint Controllers

Our two proposed velocity setpoint controllers receive 4 inputs, from which a
single controller output is generated. The controller inputs are:

1. Direction and distance to closest neighbor

2. Direction and distance to second closest neighbor

3. Direction and distance to third closest neighbor

4. Direction to the least-visited neighboring field (square)

To find the least visited square surrounding the agent, a histogram over
visits to each area is collected amongst the agents. This is based on a Moore
neighborhood model, i.e least of the eight surrounding squares. If two or more
squares have the same visitation count, one is chosen at random. The current
implementation uses a shared blackboard structure, but in principle, there is
nothing that requires this information to be globally known to all agents. A
local history of visitations could be used in place of this structure.

The 4 controller inputs are coded as a difference vector Fi (i = 1, 2, 3, 4),
or relative vector to the agent’s current position. For example; if the input is
directly returned as the output, the net result is that the agent moves towards
the neighboring agent or the least visited field surrounding it. This is different
from other similar works, where sensors are directional, covering a slice of the
agents total view.

Each of the inputs are weighted - a process which vary depending on the type
of controller, and accumulated/summed to generate a single output direction.
This direction can also be is the velocity setpoint for the agent. As such, the
weights directly influence the speed of the agent at any given time.

4 https://github.com/ForsvaretsForskningsinstitutt/

Paper-towards-multi-function-swarm
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3.1 Weighted controllers

Using the forces defined in Section 3, a simple controller could be generated by
defining the controller output as a weighted sum of the inputs. This is inspired
by artificial potential fields [17–19]. This allows the generation of a varied set
of behaviors such as clustering, avoidance, gather all, and more. This requires a
single weight parameter for each given force resulting in a total of 4 parameters
for a single controller.

vsp =
1

4

N∑
i

Fi

||Fi||
∗ wi (1)

Fi is a relative vector between the agent and the sensed object or the force
direction. wi is the weight for a given force vector. vsp is the combined controller
output, given all the input forces, which is fed to the inner-loop controller. As
can be seen from Eq. 1, this controller does not use the distance-part of the
input, and relies solely on the input directions. As such, the weights wi directly
influences the velocity of an agent at any given time.

Exploration Repulsion Clustering

Fig. 1. Example of hand designed controllers using the weighted controller structure.
Darker squares have been more frequently visited. From left to right, exploration,
repulsion and clustering type behavior. Based on manual manipulation of the weight
controller, it is hard to get the right tradeoffs to get controllers balancing these traits.
Videos of these behaviors can be found at https://www.youtube.com/playlist?list=
PL18bqX3rX5tQN2HKdHSCna8ysbX9lUeSM

The weighted controller is able to define simple behaviors such as attraction
and repulsion. Hand coded examples of this can be seen in Fig. 1. The weights
used to generate these behaviors are [-0.5,0,0,1] for exploration, [-1,0,0,0] for
repulsion and [0,0,1,0] for clustering. The first three of the weights are used to
weigh the contribution from the three nearest neighbors, in order of distance.
The final weight is used to specify the attraction or repulsion towards the least

https://www.youtube.com/watch?v=I15D1hBVt1U
https://www.youtube.com/watch?v=8-oNHxE3XqQ
https://www.youtube.com/watch?v=4YMGSz2Pk44
https://www.youtube.com/playlist?list=PL18bqX3rX5tQN2HKdHSCna8ysbX9lUeSM
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frequently visited square of the eight that surrounds the agent. The exploration
controller with weights [-0.5,0,0,1] attempts to move towards the least visited
area, while keeping the closest neighbor agent away.

3.2 Parametric controllers

A potential issue with a simple weighted controller is the inability to describe
a behavior keeping a given distance from another agent. This type of behavior
might be very useful, e.g. when robots are to created and maintain a stationary
grid. To address this problem we propose to use a parametric function instead
of a simple weight.

gi(di) = −ti ∗ 2 ∗ (di − ci) ∗ e−(di−ci)2/σ2
i (2)

ai(di) = ki ∗

(
2

1 + e−(di−ci)/σi
− 1

)
(3)

wp,i(di) = ai(di) + gi(di) (4)

vsp =
1

4

4∑
i

Fi

||Fi||
∗ wp(di) (5)

The parametric weight function wp,i(di) consists of two components, ai(di)
and gi(di). This function gives a weight that depends on the distance di to the
sensed object. In other words, the contribution of the force to the velocity of the
agent can be made to vary with the distance to the sensed object. ai(di) is re-
sponsible for static repulsion/attraction forces, while gi(di) account for distance
holding at a predefined distance. Fig. 2 is an example plot of wp(di).

gi(di) or the gravity well enables holding a distance ci to an object. This is
based on a normal distribution with a mean of ci. The outputs to the platform
consists of a velocity setpoint, rather than a position setpoint; as such we use the
derivative of the normal distribution as part of our parametric function. In order
to approach a distance and stop, we need a function with a variable zero crossing
point, which is accomplished through ci. In addition, the parameters σi and ti
allow for the adjustment of the width or range of the force, and the strength
of the force respectively. ti allows for both repulsive and attractive behaviors
around center ci by inverting the sign of the function.

ai(di) contributes a fixed attractive or repulsive force across a greater area.
This allows for pure attraction or repulsion behaviors, which can be useful for
collision avoidance or exploration. This component is based on a Sigmoid acti-
vation function and exhibits a jump from −ki to ki around the center-point ci.
The transition between the two values is smooth, which is important for stability
once the agent is close to the center point ci.

Together, ai(di) and gi(di) make the weight wp,i(di) for a given input i in the
parametric controller - we call this the Sigmoid-well function (Fig. 2). It con-
sists of two parts; a Sigmoid for general attraction/repulsion from objects and a
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Fig. 2. The Sigmoid-well function (Eq. 4) is shown in the left part of the figure. The
green line represents the Sigmoid component ai(di). The red line is the gravity well
component gi(di). Added together they form the blue line: the Sigmoid-well function
wp,i(di). The right part of the figure depicts the integral of the Sigmoid-well function
wp,i(di), which has a clear strong attraction (minimum) around a center ci = 500.0
The remaining parameters are ti = −0.1, ki = 5.0 and σi = 100.0.

gravity well component gi(di) for keeping a given distance. This function com-
bines the weights from the simple controller, through the scaling of the Sigmoid
function (parameter ki) and the ability to describe hold at a distance ci through
a gravity well component. Furthermore, it is easily optimizable and described by
4 real-coded values for each force contribution, or 16 for our complete controller
with 4 input forces. Fig. 2 show the individual contributions given distance, and
the combined resulting weighting wp,i(di)

Table 1. Parameters for hand coded parametric example controllers

ki ci σi ti
Exploration [-2,0,0,3] [150,150,150,1000] [100, 100, 100, 100] [0,0,0,0]
Combination [-2,1,0,3] [150,150,150,1000] [100, 100, 100, 100] [-0.1,-0.1,-0.1,0]

Network [-1,1,0,0] [150,150,150,1000] [100, 100, 100, 100] [-0.1,-0.1,-0.1,0]

This controller allows for defining a ”hold at a distance” behavior (Fig. 3). Pa-
rameters for controllers in Fig. 3, can be seen in Tab. 1. Both the network focused
behavior and the controller featuring a combination of network and exploration
focus exhibit clear lattice structure. This is made possible by the parametric
controller architecture. Onwards we consider ki, ti, ci and σi as vectors k, t, c
and σ - each a vector of 4 real-coded values.



Exploration Combination Network

Fig. 3. Example hand designed controllers using the parametric controller structure.
From left to right are examples of exploration focus (left), combination of exploration
and network creation (middle) and a controller that results in a static network (right).
Videos of these behaviors can be found at https://www.youtube.com/playlist?list=
PL18bqX3rX5tQN2HKdHSCna8ysbX9lUeSM

4 Methods

4.1 Fitness and characteristics

For these experiments, two behavioral characteristics were used: exploration me-
dian and network coverage. First, exploration median is calculated by accumulat-
ing all distinct visitations to each square/bin in the area during the simulation.
Then the median across all the bins in the search area is calculated. The median
is normalized for agent count, speed and size of the grid. This gives a measure
that is independent of the number of agents and the simulator setup. This can
also be considered a percentage of the maximal median possible to achieve, given
a number of agents.

The second metric, network coverage, is calculated by first finding the largest
group of connected agents. In this context, connectivity is defined by a simple
range test, which for these experiments was defined as within a fixed range of
200m. The behaviors adapt to this distance through the evolution of the con-
troller, as such the controllers evolved are specific to this connectivity distance.
Once the largest set of connected agents is determined, the area their commu-
nication radius cover is used as a characteristic dimension. This number is also
normalized for the greatest possible coverage a swarm of agents can achieve.
Since some of the agents will cover overlapping areas, the maximum area possi-
ble to cover is scaled by a factor of 0.5.

Finally, fitness is a metric related to the movement or energy use for the
swarm as a whole. Fitness is defined as:

fitness =
2

1 + b
(6)

https://www.youtube.com/watch?v=1UK5o4lQeKo
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https://www.youtube.com/playlist?list=PL18bqX3rX5tQN2HKdHSCna8ysbX9lUeSM


Where b is proportional to an average agent’s speed during a simulation
run. Without loss of generality, this quantity can be approximated determinis-
tically based on the parameters for the controller. Specifically, for the weighted
controller b is the norm of the weight vector (||w||), and for the parametric
controller b is the sum of norm ti and norm ki (||k||+ ||t||).

Evolution master

Celery task framework

Redis message broker

...

Fig. 4. Overview of our evolutionary framework in Python using Celery and Redis
message broker. The evolution master generates the candidate controllers to be tested
and maintains the repertoire of controllers, and the worker threads evaluate candidate
solutions and return a log of the experiment for review by the master.

4.2 MAP-elites

Both controllers are defined as a finite sequence of real-coded values. For the
weighted controller, a vector of 4 real-coded values is used. For the parametric
controller, a vector of 16 real-coded values is used. MAP-elites uses only a muta-
tion operator for permutation of individuals; this is implemented as an additive
Gaussian variation with mean of 0 for all parameters. The standard deviation of
the Gaussian mutation is 10.0 for the weighted controller, and the weights are
clamped between -100.0 and 100.0.

For the parametric controller, the real-coded genome has a different inter-
pretation. We have 16 real-coded values. For each input force there is a scaling
weight for the Sigmoid function (ki), scaling weight for the gravity well strength
(ti), center distance for the gravity well (ci) and spread or range for the gravity
well (σi). These form the vectors k, t, c and σ - each a vector of 4 real-coded
values. The range and mutation used for the individual elements of these vectors
can be found in Tab. 2

This research utilizes a parallel version of MAP-elites. The original MAP-
elites algorithm specifies that, at each iteration a single individual is selected,
mutated, evaluated and then placed back in the appropriate cell. The parallel
version is similar, but works on a batch of individuals, selecting 200 individuals
at a time, mutating, evaluating and placing them back in their cells. Each in-
dividual in the repertoire is one potential controller. The controller is evaluated
by simulating a swarm, where each agent is controlled by the given controller.



Table 2. Range and mutation parameters for the parametric controller

Param. Min Max Mut. std. dev.

k -100. 100. 10.0
t -1.0 1.0 0.1
c 100.0 1000.0 100.0
σ 0.0 100.0 10.0

Our experiments use an initial population (generated randomly) of 200 indi-
viduals and up to 200 generations or batches of 200 individuals per experiment.
This evaluates some 40200 possible solutions. We run our experiments using task
parallelism, this is briefly outlined in Fig. 4.

5 Results

5.1 Weighted controller experiments

Preliminary experiments used only a single simulation per controller; which was
insufficient and caused significant noise in the final repertoire. For this reason we
simulate each controller five times, varying the starting positions and random
seed, in order to get a better estimate of the controller performance. Fig. 5 shows
the resulting repertoire after 1, 10, 100 and 200 epochs (batches of evaluations).
In this figure, the resultant exploration-median values are placed in 10 bins
(shown along the vertical axis), and network-coverage values - in 100 bins (shown
along the horizontal axis). Bins for which MAP-elites found a controller has a
gradient color from white to dark blue, where dark blue indicates a high fitness
value. Bins for which no solution was found are black.

Some of the evolved behaviors from the evolution are shown in Fig. 6. Evolved
behaviors that explore a lot, without providing a large network coverage, typi-
cally cluster most or all the agents into groups that traverse the area. This can
be seen in the left part of the figure. Behaviors that are more balanced between
the applications, keep the agents further apart while exploring a small part of
their surroundings. The controllers with the greatest network coverage accom-
plish this by standing still and balancing clustering and repulsion. It should be
noted that this latter swarm behavior poses quite a challenge for the weighted
controller, as there is no explicit support for holding a distance to another agent.

5.2 Parametric controller experiments

The result for the same set of experiment for the parametric controller are shown
in Fig. 7. Compared to Fig. 5 there is less noise (almost none) and a more clearly
defined structure to this repertoire. This is due to the fact that the parametric
controller is more reliable and consistent, compared to the weighted controller.

Similar to Fig. 6, Fig. 8 shows some examples of parametric controllers gen-
erated by our approach. These are more structured, compared to the weighted
controllers and feature partial lattice patterns. It is important to note that the
controller has no incentive to generate stable or highly structured behaviors. A
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Fig. 5. Evolving a weighted controller. Fig. shows epoch 1, 10, 100 and 200 with 5
evaluations per controller

Exploration Combination Network

Fig. 6. Example evolved controllers using the weighted controller structure. From
left to right it is possible to see: an exploration focused controller, a combination
of exploration and network focused controller, and a pure network focused con-
troller. Notice the difference in coverage and the links between the individual agents.
Videos of these behaviors can be found at https://www.youtube.com/playlist?list=
PL18bqX3rX5tQN2HKdHSCna8ysbX9lUeSM
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Fig. 7. Evolving parametric controllers. Figure shows epoch 1, 10, 100 and 200 with 5
evaluations per controller.

Exploration Combination Network

Fig. 8. Example evolved controllers using the parametric controller structure. From
left to right, controllers were selected based on exploration performance, a combi-
nation of exploration and network performance, and solely large network coverage.
Videos of these behaviors can be found at https://www.youtube.com/playlist?list=
PL18bqX3rX5tQN2HKdHSCna8ysbX9lUeSM.
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less direct encoding might allow for more structured behaviors - this is an area
with potential for future improvement.

6 Discussion

6.1 Comparison weighted and parametric
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Fig. 9. The difference between the parametric controller and weighted controller reper-
toires at final epoch. Grey bins indicate where both controllers have a solution.

When comparing the result from the weighted and parametric controller it is
clear that the weighted controller is inferior to the parametric controller. This is
highlighted in Fig. 9, which shows the difference between the repertoire from the
parametric controller, after subtracting all the bins that the weighted controller
also found solutions for. The difference is also documented in Tab. 3, where the
number of unique solutions to each controller type is shown.

Table 3. Comparison between the weighted and parametric controller. The unique
column are solutions found with one controller type but not the other. Relative average
fitness % is the average fitness achieved, compared to the best fitness found across all
experiments.

Solutions Fill % Unique Fitness %

Weighted 429 38.6 14 96.7
Parametric 608 54.7 193 89.3

The results for the weighted controller suggest that this representation is not
powerful enough to describe a controller that is good at both the exploration and
the networking at the same time (Fig. 5). While it successfully manages to fill
up 38.6% of the characteristics space, it is unable to do very well on the task of
creating a stable communication network. As mentioned earlier, creating a stable
network requires the ability to keep a given distance to neighboring agents, this
is challenging for the weighted controllers as the description does not explicitly
allow for hold-distance type primitive and the only way to achieve this is to make
use of the boundary of the simulation area. As such, the problem with creating
a stable network is exaggerated in cases where there are too few agents to cover
the entire area of operations. This was the case for all the experiments described
previously.



In order to extend this architecture, we propose to use a different weight, or
more precisely: a different non-scalar parametric weight function. This allows for
controllers with the ability to hold a distance, effectively enabling the applica-
tion of communication network maintenance. The parametric controller manages
to fill 54.7% of the characteristic space, which is a 41.7% improvement over the
weighted controller. From the results, it is also possible to see signs of another is-
sue with the weighted controller approach. Compared to the weighted controller,
the MAP or repertoire generated with the parametric controller is much more
consistent in terms of fill. This is connected to the MAP-elites algorithm itself,
the evaluation of the individuals, as well as the lack of an explicit hold distance
primitive. Fitness and behavioral characteristics are evaluated post-test, based
on the log for the given test. For instance, the networking characteristic consid-
ers two snapshots from the simulation; one at the end of the test and one in the
middle of the test. By calculating the networking characteristic based on just
these two snapshots, the metric may be susceptible to noise. In addition, we are
simulating these agents, and initial conditions such as initial position, speed or
even just random seed may vary. This shows an interesting challenge with the
MAP-elites algorithm.

The MAP-elites algorithm is highly elitist. Within a characteristic bin, the
only solution that will survive or be kept, is the best performing solution, ac-
cording to fitness. Similarly, if a solution is found for an empty bin, this solution
is kept, always. While these two traits may be beneficial for exploring or il-
luminating the search landscape, they are also detrimental to determining the
exact shape of this landscape given noisy measurements. In essence, any and all
variance in the fitness or characteristic function will be amplified by the MAP-
elites algorithm. This is an issue that is not yet fully addressed. We introduced
multiple tests for each controller in order to reduce the variation in test results.
However, this comes at a cost in terms of time and processing power. Further,
this may not fully solve the problem.

Consider two swarm controllers: one is unreliable, with a large spread in
performance with a mean of µ. The other, a controller with a lesser spread, and
with a mean of µ + 1. Comparing the two, we would prefer a controller with
lesser spread and a higher/better mean. However, as the MAP-elites algorithm
is greedy it may very well choose the worse solution, with the higher spread and
lesser mean. The worse solution only has to get lucky once, in order to beat the
better and more reliable controller. A similar issue can be seen with an elitist
genetic algorithm. However, we believe that this is a lesser concern for a genetic
algorithm, as the population gives lesser performing solutions a chance while the
MAP or repertoire does not. This suggests that care should be taken in order to
avoid noise in the evaluation of candidate solutions, if the resulting repertoire is
to be as accurate as possible.

7 Conclusion and Future Work

We have shown that it is possible to automatically synthesize swarm controllers
for a multi-function swarm system. Our experiments showcase the ability of the



proposed framework to generate a large variety of controllers that can allow for
finely tuned optimized behaviors for any requirements presented by a human
operator. The behaviors evolved could also be used as swarm primitives with a
different type of high level controller choosing the appropriate controller for the
task. Evolution was done in a top-down approach, where only the skeleton of
the controllers was specified, and the goals for the swarm as a whole. This also
presents a contribution towards the issue of automatically generating low-level
controllers from high level goals or requirements.

A focus of this study was to allow for further expansion through testing on
real-world unmanned aerial vehicles by making sure that the controller inputs
and outputs use only local information and are compatible with current state-
of-the-art unmanned aerial vehicles. As such, a natural starting point for future
work would be to conduct real-world tests on a robotics swarm platform.

It would also be possible to expand the presented framework to optimize more
complex controller architectures. For instance, instead of a simple weighted sum
or parametric function, a neural network could be used. With a more complex
controller structure it could also be possible to include more complex tasks; for
instance tasks that require sequential actions, or tasks that require agents to
segment into smaller groups for optimal performance.

We would also like to conduct a more thorough investigations into the effects
of noise on the MAP-elites algorithm as this poses some interesting challenges
for divergent evolution.
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